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Abstract— In many computer vision related applications it is
necessary to distinguish between the background of an image
and the objects that are contained in it. This is a difficult
problem because of the constraints imposed by the available
time and the computational cost of robust object extraction
algorithms.

This report describes a new method that benefits from state
of the art background/foreground classification combined with
the strong theoretical foundations of clustering. The pixels on
the scene background are modeled as Mixtures of Gaussians
and the output of the classification process are continuous
values representing the likelihood that each pixel belongs to
the foreground. The clustering is based on a Self Organizing
Network (SON) which has a robust initialization schema and
is able to find the number of objects in an image or grid. The
algorithm’s complexity is linear with respect to the number of
pixels or cells.

I. INTRODUCTION

Detection of moving objects is a fundamental task in video

surveillance applications like tracking, traffic monitoring

and activity recognition. One common approach to perform

moving object detection from static cameras is resumed

in two steps: (1) background subtraction then (2) object

extraction.

The background subtraction step aims to label pixels as

belonging to one of two classes - background and fore-

ground [1], and constitutes an active research domain. The

interested reader is referred to [2] for an overview of the

field’s state of the art. Usually, the output of most background

segmentation techniques consists of a binary bitmap image,

where values of 0 and 1 correspond to background and

foreground, respectively (eg [3], [4], [5]).

Having such a bitmap the object extraction step consists

of grouping together foreground pixels to obtain candidate

objects. One common approach to object extraction proceeds

by finding 4 or 8-connected components. This is done using

efficient algorithms whose time complexity is linear with

This work has been partially supported by the european BACS Project
and CONACYT 250140/308006.

T. C. Bellardi, J. Rios-Martinez and C. Laugier are with LIG & INRIA
Rhone-Alpes, France

Dizan Vasquez is with ITESM, Mexico
tbellardi@gmail.com
jorge.rios-martinez@inrialpes.fr
dichodaemon@gmail.com
Christian.Laugier@inrialpes.fr

respect to the number of pixels in the bitmap [6], [7]. A

problem with this approach is that it usually produces many

small regions which may correspond to noise or to larger

regions which failed to merge.

One approach to dealing with this situation is to filter out

regions composed of less than a given number of pixels [8].

Although this approach is fast, it has the drawback of

assuming that all small regions are noise, which, in many

situations, is clearly not the case. A second approach consists

of relaxing the neighborhood criterion by assuming, for

example, that regions separated by one background pixel

are still connected. The usual way of doing this is by pre-

processing the bitmap image using morphological operators

(eg dilation, closing), which have the effect of “thickening”

the pixels and “filling in” the holes [9]. Two problems with

this approach are the difficulty of finding the appropriate

parameters for the operators and the lack of clear physical in-

terpretation of the operators’ parameters. A third approach to

object extraction is the use of clustering techniques to group

pixels. This opens up the possibility of choosing between a

plethora [10] of different algorithms having well understood

theoretical properties. On the other hand, most of the robust

clustering algorithms (eg [11], [12]) have three problems

when applied to object extraction: a) the number of objects

to be found should be known beforehand, b) the algorithms’

performance is strongly dependent on the initialization and c)

most algorithms are just too complex to be used in systems

subject to demanding real-time constraints.

In our approach to the background subtraction task we

use Mixture of Gaussians (MoG) to model the background

pixels on the scene. The output of the classification process

is a continuous gray scale image, where the pixel intensity,

which varies between 0 and 1, reflects the likelihood that the

pixel belongs to the foreground (fig.1(e)).

After that, object extraction is done by means of a clus-

tering algorithm based on Self Organizing Networks (SON)

which, in previous works, has been applied to images [13]

and occupancy grids [14], showing that it is able to produce

good results in real time. This paper improves the clustering

algorithm by enabling it to process continuous input pixel

values while maintaining a linear complexity with respect to

the size of the input image.
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(a) Original Image (b) Absolute difference out-
put

(c) MoG binary output (d) Single Gaussian continu-
ous output

(e) MoG continuous output

Fig. 1. Examples of output from the different classification bg/fg algorithms compared. Ellipses correspond to the output of the clustering algorithm.

II. BACKGROUND SUBTRACTION

A. Modeling the background with MoG

The Mixture of Gaussians (MoG) method was first pro-

posed in [15] and has been implemented, reviewed and

improved in many approaches presented in the literature.

This method has the capacity to represent multimodal and

time-varying backgrounds which are common in outdoors

scenarios.

The values for a particular pixel in the image are repre-

sented as a Mixture of Gaussians. Based on the mean value

and the variance of each Gaussian of the mixture it’s possible

to determine which Gaussian may correspond to background

colors. Pixel values that don’t match any of the Gaussians

in the mixture are considered to belong to the foreground

but, if they continue to be observed, the algorithm is able

to include them in the background model by creating a new

Gaussian in the mixture. Our implementation of this model

mainly follows the adaptation suggested by [16], which gives

us fast parameter stabilization. We have introduced as well

some alternatives proposed in [17] in order to get a faster

learning rate adaption.

We begin by describing the basic approach as presented

in [15]. The method models the pixels as a mixture of K

Gaussian distributions where the probability of observing a

current pixel Xt , is

P(Xt) =
K

∑
i=1

ωi,tN(Xt ,µi,t ,Σi,t) (1)

where K is the number of distributions, ωi,t is an estimate of

the weight of the ith Gaussian in the mixture at time t, Σi,t

is the covariance matrix of the ith Gaussian in the mixture

at time t, and N is a Gaussian probability density function:

N(X ,µ,Σ) =
1

(2π)
1
2 |Σ|

1
2

e−
1
2 (X−µ)T Σ−1(X−µ) (2)

K is typically a value between 3 and 5.

Taking in account the RGB color space and assuming an

axis aligned covariance, we can write the covariance matrix

for Gaussian k in an specific instant as

Σk = diag[σ2
k,R σ2

k,G σ2
k,B] (3)

Every new pixel value Xt is checked against the existing

K Gaussian distributions, until a match is found. A match is

defined as a pixel value within λ = 2.5 standard deviations

of a distribution. The weight of distributions is updated as

ωk,t = ωk,t−1 +α(Mk,t −ωk,t−1) (4)

where α is the learning rate and Mk,t is one for the

matching model and zero for the remaining models. In [15]

the Gaussians in the mixture must be ordered according to

weight divided by standard deviation, ωk,t /σk,t , but we use

only ωk,t to order the Gaussians, as proposed by [18].

Once a match is found, the parameters µ and σ for the

corresponding distribution are updated as follows:

µt = µt−1 +ρ(Xt −µt−1) (5)

σ2
t = σ2

t−1 +ρ
(

(Xt −µt)
T (Xt −µt)−σ2

t−1

)

(6)

ρ = αN(Xt ,µk,σk) (7)

The parameters for unmatched distributions remain the

same. If none of the K distributions match the current

pixel value, the least probable distribution is replaced with

a distribution with the current value as its mean value, an

initially high variance and low prior weight, in our case 900

and 0.05 respectively.

TABLE I

PARAMETERS OF THE MOG

Parameter Value Assumption

No. of Gaussian Models (K) 3 -

No. of standar deviations away
(λ)

2.5 -

Learning rate (α) 0.005 -

Background threshold (T ) 0.7 K = 3

Weight of created gaussians
(ωinit )

0.05 K = 3

Initial standard deviation (σinit ) 30 Intensity pixel is between
0 and 255

The MoG parameters for our implementation were chosen

according to [17] and are shown on table I, in practice the

parameter ρ could be approximated dividing the learning

rate, α, by the weight as suggested in the same work, but

we chose the definition of [16] because it yields a better

adaptation of the model when foreground objects appear
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in the first computed frames. For this reason, in the next

equations ρ dissappears and α depends on the number of

frames taken as a window.

In the next section we present the alternative equations

used to update the MoG model. The complete approach is

listed in Algorithm 1.

B. Updating the model

As mentioned above, we use the modified update equation

proposed by [16]. First we choose a number L of frames

to be sampled with a faster learning rate and the following

expressions are used until L frames have been processed:

ωk,n = ωk,n−1 +
1

n
(p(Gk|Xn)−ωk,n−1) (8)

µk,n = µk,n−1 + s(Xn−µk,n−1) (9)

Σk,n = Σk,n−1+s
(

(Xn−µk,n−1)(Xn−µk,n−1)
T −Σk,n−1

)

(10)

s =
p(Gk|Xn)

∑n
i=1 p(Gk|Xi)

(11)

where n is the frame number. When more than L frames have

been processed we update the parameters as follows:

ωk,n = ωk,n−1 +
1

L
(p(Gk|Xn)−ωk,n−1) (12)

µk,n = µk,n−1 +
p(Gk|Xn)

L
(Xn−µk,n−1) (13)

Σk,n = Σk,n−1 +
p(Gk|Xn)

L
((Xn−µk,n)(Xn−µk,n)

T −Σk,n−1)

(14)

In the precedent equations the function p is defined as:

p(Gk|Xn) =

{

1 i f Xn matches Gaussian Gk

0 otherwise
(15)

C. Foreground classification

Instead of using the traditional binary classification to

decide if a pixel is part of the foreground, we calculate

the Mahalanobis distance (MAH) between the pixel current

value obtained from the input image and its correspondent

background model. This way, the output of the classification

process is a continuous value that represents how likely is

that the pixel belongs to the foreground.

Having a given pixel represented by Ii, j = (r,g,b)T , the

MAH distance of Ii, j to the k Gaussian in the mixture is

computed as:

MAH(Ii j,k) =
√

(Ii j−µk)T Σ−1
k (Ii j−µk) (16)

where Σk and µk are the covariance matrix and the mean for

the k-th gaussian, respectively.

III. CLUSTERING-BASED OBJECT EXTRACTION

In this paper we use an object extraction approach which

combines a Self-organizing Network inspired by the Growing

Neural Gas [19] combined with a graph theoretic algorithm

used to cut edges in the network’s graph. The network is

built from M = W ×H nodes connected with undirected

edges, arranged in a grid with H rows and W columns.

This means that, with the exception of nodes located in the

borders, every node i will be connected to four other nodes or

neighbors (neigh(i)), individually denoted by u(i), d(i), r(i)
and l(i) for up, down, right and left, respectively. Every node

i has two associated variables: its mean value µi = (xi,yi)
and an accumulator ci. In a similar manner, for every edge

connecting nodes i and j there will be an accumulator ei, j.

Besides W and H, the algorithm has two other parameters:

0 < εn < εw ≤ 1 which are the learning rates for node mean

adaption.

The following subsections describe the steps that our

algorithm performs for every video frame, using the grayscale

image produced by Algorithm 1.

1) Initialization: The network is initialized by assigning

values to all the µi node centers in order to form a regular

grid. Also, the values of all the weights are set to zero:

{ci← 0,ei, j← 0∀ i, j | i ∈ [1,M], j ∈ neigh(i)} (17)

2) Learning: The learning stage takes as input a contin-

uous valued bitmap I, where the pixel intensity reflects how

likely is that it belongs to the foreground image(fig.1(e)).

Pixels from the input image, are processed starting from the

upper-left corner and then sweeping every row from left to

right. For every pixel i, its coordinates pi and value I(pi) are

used to update the SON in four steps:

a. Find the node whose mean value is closest to pi,

referenced as winner (wi). The search is restricted to a

subset of nodes surrounding the previous winner wi−1

(eg the one corresponding to the previous processed

pixel). This subset, that we call the search boundary,

is represented by sbound(i−1) (see fig. 2).

wi = argmin
j∈sbound(i−1)

‖p−µ j−1‖ (18)

Fig. 2. Neighborhood and search boundary relative to node i
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Algorithm 1. Summary of the background classification algorithm

Input: color frame RGB from video sequence (IM×N)

Output: gray frame (IGM×N) where every pixel (i, j) represents distance from the background estimated in

MOGi, j

MOGi j: Mixture of k gaussians for every pixel (i, j);1.1

The first r gaussians are background;1.2

if Numberframe = 0 then1.3

Initialize every MOGi j with the first frame1.4

else1.5

foreach Ii j do1.6

if Ii j match any Gaussian in MOGi j then1.7

update Gaussian matched according section II-B;1.8

else1.9

create new Gaussian and add to MOGi j replacing the last one;1.10

end1.11

update the other k−1 Gaussians according section II-B;1.12

order k Gaussians in MOGi j;1.13

end1.14

foreach Ii j do1.15

weight = weight1 + ...+weightr ;1.16

IGi j =
weight1∗MAH(Ii j ,1)+...+weightr∗MAH(Ii j ,r)

weight
;1.17

end1.18

end1.19

b. Look in neigh(wi) for the second nearest node to pi:

si = argmin
j∈neigh(wi)

‖pi−µ j‖ (19)

c. Increment the accumulators ewi,si
and cwi

by the pixel

value I(pi):

ewi,si
← ewi,si

+ I(pi) (20)

and

cwi
← cwi

+ I(pi) (21)

d. Adapt the mean of wi and all his neighbors:

µwi
← µwi

+ εw

I(pi)

cwi

(pi−µwi
) (22)

µ j← µ j + εn

I(pi)

c j

(pi−µ j) ∀ j ∈ neigh(wi) (23)

3) Relabeling nodes: As a result of the learning step, the

network adapts its form to represent the objects in the input.

The last step of the algorithm, identifies individual objects by

assigning a discrete value to every node in the SON, so that

nodes having the same label belong to the same node. At the

end the algorithm finds groups of nodes by merging nodes

according to the weight of their common edges ei, j. The idea

is that a higher value of ei, j corresponds to a higher likelihood

that nodes i and j belong to the same object. Under this

assumption, it is possible to compute a maximum likelihood

estimation of the probability, denoted by Pi, j, that two nodes

“belong together” by using the Laplace law of succession,

see [20] for a more detailed explanation. It is important to

highlight the fact that the labels are just identifiers used to

distinguish one region (ie object) from the other and that

new labels are obtained by incrementing a counter.

4) Computing cluster representations: Having labeled the

nodes, the probability that a pixel, given by its image

coordinates p belongs to a cluster m may be represented

as a mixture of gaussians, corresponding to individual nodes

in the cluster:

P∗(p | m) = ∑
i∈m

Piη(p;µi,Si) (24)

In order to compute the covariance matrices Si, the points

located halfway between i and its neighbors can be used:

Si = ∑
j∈neigh(i)

Pj

K







(

x j+xi

2

)2 (x j+xi)(y j+y j)
4

(x j+xi)(y j+yi)
4

(

y j+yi

2

)2






(25)

Where K = ∑ j∈neigh(i) Pj is a normalization constant.

In cases where the algorithm is required to produce interest

regions it is often convenient to produce bounding boxes

which are slightly larger than the contained object. We have

computed the size of these regions using the difference

between the maximum and the minimum mean values of

the cluster nodes as they were before learning this may be

regarded as finding the area bounded by nodes which have

not been adapted.

A. Complexity Analysis

The local search, shown on the equations 18 and 19

gives a complexity of O(N), while a global search would
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(a) AD (b) MoGB (c) SGC (d) MoGC

(e) AD (f) MoGB (g) SGC (h) MoGC

Fig. 3. Detections over the foreground methods. Yellow ellipses representing the resulting detections with the respective bounding boxes in blue.

give O(N f M), where N corresponds to the total number of

pixels in the image, N f the number of foreground pixels

and M the size of the SON. Noting that now it takes into

account all the pixels in the image, instead of just the ones

marked as being part of the foreground, and its complexity

is independent of the SON grid size. This allows us to

weight the pixels background/foreground contribution in a

continuous fashion, instead of using a hard threshold, which

makes the approach much more robust. The key idea for

complexity independence on the SON size is to exploit the

fact that the network is processed in a top-bottom, left-right

sequence, and to limit the set of nodes in the SON which

need to be compared with each pixel by looking in the

neighborhood of the last processed pixel.

Thanks to the existence of efficient algorithms, the cost of

labeling is linear with respect to the number of nodes in the

SON, moreover, the computation of the cluster representation

(i.e. gaussian parameters, mixture of gaussian parameters and

bounding boxes) may be performed at the same time as

labeling. For Algorithm 1, updating every MoG model for

each pixel has a constant cost and, since the number of MoG

models is fixed, its complexity is also linear with respect the

number of pixels in the image. Thus, the algorithm’s overall

complexity is O(N).

IV. EXPERIMENTAL RESULTS

To evaluate the proposed method we are combining the

clustering algorithm with 4 different background/foreground

classification techniques:

(a) A binary bitmap obtained by thresholding the absolute

difference (AD) between the intensity level of the current

and previous video frames;

(b) Traditional MoG classification, with 3 Gaussians and

binary output (MoGB);

(c) Background as a single Gaussian (SGC); foreground

classification similar to the proposed approach.

(d) MoG with 3 Gaussians and the proposed foreground

classification (MoGC).

The SON size and learning factors are the same for the

three cases: 30x30 nodes, εw = 0.1 and εn = 0.01. The tests

were conducted using the CAVIAR test case scenarios [21],

which consist of a number of video sequences of people

moving in the INRIA Lab’s entry hall. The videos come with

data files containing the ground truth of the sequences, which

has been obtained by hand-labeling the images. Typical

images of our detector running on one of these videos is

shown in fig. 3.

For each frame processed the result of the extraction is

compared with the ground truth and the following parameters

are computed:

1) Detection ratio (ηdt)

ηdt =
number of detections

number of labeled objects
(26)

2) Matching ratio (ηmatch)

ηmatch =
detection and ground truth matching area

ground truth area
(27)

3) False positive ratio (η f p)

η f p =
detected false positive area

ground truth area
(28)

4) False negative ratio (η f n)

η f n =
detected false negative area

ground truth area
(29)

The mean values for these parameters, obtained from 1042

effective frames processed from the CAVIAR [21] ’Browse1’

dataset is shown in table II.

We can see on table II that the proposed approach produces

considerably better results than the other ones.
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TABLE II

MEAN RESULTS FOR 1042 EFFECTIVE FRAMES PROCESSED FROM THE

CAVIAR ”BROWSE1” DATASET

input η̄dt η̄match η̄ f p η̄ f n

ideal 1 1 0 0
(a) 2.52 0.62 1.28 0.38
(b) 8.73 0.88 5.9 0.12
(c) 0.96 0.73 7.08 0.27
(d) 1.72 0.93 1.06 0.07

It is important to notice that traditional MoG, with a binary

output, may in some cases produce better results if combined

with post processing techniques to filter the noisy detections.

On the other hand, this post processing step is unnecessary in

our approach, since the noise tends to have lower significance

during the foreground classification phase and the clustering

algorithm can naturally filter out noisy input. In [20] we have

shown as well that for a single-Gaussian background model,

the application of the continuous input yielded slightly better

detections than the thresholded foreground.

With respect to processing time, under the described

experiment, the detection was performed at 15fps, running on

Ubuntu 10.04 32-bit with an IntelTM Core 2 Duo Processor

P7450 at 2.13 GHz.

V. CONCLUSIONS AND FUTURE WORK

In this work we have discussed object extraction from

continuous valued bitmaps emphasizing the advantages, but

also the three big problems of cluster based algorithms

(ie need to know the number of objects to be detected

beforehand, sensibility to initialization and complexity) and

extended previous work on a Self Organizing Network based

on the Growing Neural Gas algorithm which solves the

above mentioned problems and keeps the strong theoretical

properties of clustering algorithms. Our extension permits

makes the complexity of the algorithm independent of the

size of the underlying SON, and eliminates the need of

obtaining a binary image through a threshold.

We have explained the details of our algorithm, and shown

how it may be used to find clusters and represent them using

gaussians, mixtures of gaussians or bounding boxes.

Finally, we have discussed the experimental results we

have obtained by comparing our approach to a ground truth

consisting of hand-labeled data. Our results seem to confirm

that our approach is fast, robust and general.

Is still important to notice the path to simplicity, reducing

the number of parameters and post processing steps, that our

solution promotes.

Future work includes continuing our experimental work,

specially in a way to improve the metrics to compare the

methods. We plan also extend the detection task to detection

and tracking. Finally, we would like to explore the use of

our SON to perform data fusion on a multicamera system.
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