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Abstract— Designing a robot controller that can optimally
manage limited resources in a deterministic, real-time manner
can be challenging. Behavior-based architectures, which split
autonomy into levels, are very popular but neither have real-
time features that enforce timing constraints nor support
determinism. Even though real-time features are not included,
it seems like a natural fit to make each level in the behavior-
based architecture its own task or process. The only that thing
that it lacks are the timing features. This has already been
implemented using Suns Java Real-Time System. It has also
been shown that timing constraints effect performance. This
brings us to the question; why not use the more traditional
language of C or C++ to implement this behavior-based real-
time architecture? Are we not taught that Java is useful but
slow compared to C and C++? If so why not use C++ and
the features of Open Robot Control Software (OROCOS) to
implement the architecture.

This paper answers the question of does it really matter what
language is used in a behavior-based real-time architecture. We
implemented the architecture using OROCOS/C++ running on
UBUNTU. Then compared our implementation to two other
implementations of the architecture: Java/Player on Fedora;
and Suns Java Real-Time System (RTS) on Solaris. Results,
from experiments on a robot, show that our OROCOS/C++
implementation performed similarly to the Java RTS imple-
mentation. Both the OROCOS and Java RTS implementations
performed better than the Player/Java implementation. This
suggests that Java is in fact feasible for a behavior-based real-
time robot architecture but it needs to be run using Java RTS
not the regular version.

I. INTRODUCTION

Mobile robot controllers must be designed to concurrently
handle low level and high level tasks. This leads to an
added complexity in robot controller design. Behavior-based
controllers have prioritized the layers of complexity by using
finite state machines [1]. Although these types of behavior-
based architectures are robust, real-time issues are not con-
sidered in these architectures. In certain cases, tasks need to
be completed with timing constraints. Traditional real-time
system development establishes frequency requirements for
individual subcomponents. In behavior-based systems, the
frequency would be based on the input availability according
to the laws of control theory [2]. Running all behaviors as
fast as possible is not sufficient because resource intensive
behaviors may require more resources and potentially slow
and/or block other time sensitive behaviors.
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Typically, C or C++ is used for real-time system develop-
ment because of their performance and availability of tools.
However, using C or C++ poses issues with memory. It has
been found that students using Java to program real-time
systems performed better and enjoyed it more than other
real-time modules [3]. Unfortunately the traditional garbage
collector in Java can interjects a source of nondeterministic
behavior. Sun’s Java Real-Time System (Java RTS) is de-
signed to have deterministic and real-time features without
requiring developers manage memory [4]. Consequently,
Java RTS includes a real-time garbage collector (RTGC) that
provides a deterministic approach to the traditional garbage
collector.

In [5], a real-time aware mobile-robot architecture [6]
was mapped to Java RTS in order to show that timing
affects performance. The proposed architecture was not an
actual real-time system, rather it uses real-time awareness to
manage timing requirements. In order to be classified as a
real-time system, the proposed architecture needs to run on
a real-time operating system (RTOS). Therefore, in [5] the
robot architecture was rewritten in Java using Java RTS while
running on a RTOS, such as Solaris. The results showed
that the prevailing approach to execute behaviors “as fast as
possible” is not ideal. Higher periods give behaviors more
time to complete but can also cause system instability if too
low.

In this paper, we compare the performance of the temporal
aware mobile robot control architecture in [6] and the real-
time mobile robot control architecture in [5], to the same
architecture written in C++. We rewrote the proposed archi-
tecture in C++ using OROCOS [7]. OROCOS is an open
source modular framework for robot and machine control.
The performance of the architecture in [5] is experimentally
validated against the C++/OROCOS implementation. We
hypothesize that the Java RTS architecture will perform, in
terms of total time to complete a given task and distance
from the goal, similarly to the OROCOS architecture and
the Java/Player architecture [6] will be worse than both. In
Section 2, background and previous work is presented. Our
approach is presented in Section 3. Section 4 describes the
experimental setup. The experimental results and the analysis
are presented in Section 5 and 6 respectively. The conclusion
is presented in section 7.

II. RELATED WORK

A. Real-time in mobile robotics

One could claim research in mobile robotic architectures is
popular, considering the various development platforms that
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have come into existence. But when it comes to providing
real time features, they either don’t provide declarative
frequency specifications or timing is managed solely by
priority. Implementation of real-time specifications in robotic
applications was initially done by Buttazzo et al [8]. Their
architecture that was written in C and encapsulated with a set
of library functions that contained four hierarchical layers.
The layers were: action layer, control layer, communication
layer and an interactive hard real-time kernel (HARTIK).
Even though they had no experimental results, they claimed
that their architecture was flexible enough for implementing
new robotic applications.

Brega et al. [9] performed a case study of the XO/2
operating system, a RTOS, using the Oberon-2 program-
ming language on a Pygmalion Robot. They presented the
necessities and requirements of real time control of robots
in research, education and the real world. They realized
autonomy, real-time and safety could not be quantified in
the mobile robots, which needed advanced requirements for
hardware and software because of the increasing complexity
of mobile robots. They concluded by saying that safe com-
position of software modules, type-safety, deadline-driven
scheduling and automatic memory reclamation mechanisms
can relieve the application programmer from many time-
consuming implementation issues, while raising the safety-
bar.

Auerbach et al. [10] built a helicopter, JAviator, to test
a real-time Java application that made use of Exotasks,
programming construct that achieves deterministic timing.
Though time portability on different platforms was showed,
most of the data was processed off-board and they could
observe only a single behavior (hovering of the helicopter).

McKenzie et al. [6] proposed and implemented a real-
time aware mobile robotic architecture. The architecture used
Player [11] to interface to the robot hardware and Java for the
control code. It was real-time aware by creating a monitor
module that scheduled tasks and reported missed deadlines.
Their architecture ran on Fedora, which is not a RTOS. In
order to be fully real-time the architecture would need to be
run on a RTOS in a real-time compatible language.

B. Real-time in non-mobile robotics

Stewart et al [12] created Chimera II, a real-time architec-
ture based on port based objects. Port based objects account
for input, output and resource ports. They are also fully
competent software components that include both states and
methods. It is assumed that an input can be linked with
only one corresponding output and that all similar outputs
are combined into one precise output. Task scheduling is
manageable, which can in turn stabilize the system and
reduce resource consumption.

Bruyninckx et al. [13] used the hard real-time motion
control core of the OROCOS project [7] to implement a real-
time motion (velocity and hybrid force) control on a KUKA
361 six-DOF robot 8. The code was written using only
OROCOS bypassing the controller that KUKA traditionally
inherits. It runs on the RealTime Application Interface for

Linux in hard real-time and without real-time performance
on Linux.

Using Java RTS on a RTOS, Robertz et al. [14] imple-
mented a motion control system for an industrial robot.
They used non-real time threads for non-critical tasks and
Java RTS’s real time threads for critical tasks. The real time
threads were run at the highest priority and the non-RTTs
were run at a lower priority. They only measured network
delays. They did not give any results showing the real-time
features effects on the overall system.

C. Behavior-based architectures

Subsumption-based robotic controllers build autonomy
out of layers of behaviors [15]. Basic layers are complete
processing units that take input and provide appropriate
output. We are particularly interested in properties that enable
temporal decompositions. Aria [16] is a robotic architecture
that provides support for behavioral decompositions. Aria
programs are composed of individual behaviors that are
each given a priority that is applied to the importance of
actuator output. Priority does not affect resource assignment
or utilization. Because the target hardware architecture only
processes commands every 100ms, all behaviors are run
every 100ms. Other threads can be added by the developer
outside of the framework for processing tasks that have
different frequency requirements.

Carmen [17] is an open source modular architecture for
mobile robot control. It features a three-tier architecture,
where the first layer is the hardware interface, the second
layer contains the basic robot tasks, and the final layer is the
user-defined application. It uses inter-process communication
to provide functionality for mobile robots and supports
various platforms.

OROCOS [7] is an open source modular framework for
general purpose robot and machine control. It supports four
C++ libraries: the Real-Time Toolkit, the Kinematics and
Dynamics Library, the Bayesian Filtering Library and the
OROCOS Component Library.

Although not a behavior-based architecture, Player [11]
is an open source robot architecture designed to operate
with a wide range of hardware components. The Player
architecture specifically avoids defining decompositions and
therefore does not provide a framework for adding frequency
for behaviors.

III. APPROACH

Our C++/OROCOS control architecture (Figure 1) closely
mimics the structure of [5]’s Java RTS based architecture. In
fact, to produce this implementation, we converted the Java
RTS code class-by-class to a functional equivalent in C++.
The most notable difference in the two implementations is
the method through which real-time scheduling is facilitated.
Where the Java implementation used Java RTS’s Real Time
Threads and the Java RTS scheduler, the C++ implementation
used the real-time libraries of the OROCOS project. The
OROCOS Real-Time Toolkit (RTT) is similar enough to Java
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Fig. 1. Framework for the robot architecture.

RTS as to not require any structural changes to the existing
architecture.

With the OROCOS RTT, we created a C++ version of the
Java class TASKS where, similar to the Java implementation,
real-time scheduling was operated by a proven, pre-written
library. Similar to Java RTS’s real time threads, OROCOS
has its equivalent PERIODICACTIVITY class. One main
difference is that OROCOS uses the same TIMERTHREAD
to execute all instances of PERIODICACTIVITY that have the
same period and priority. In this case the periodicActivities
would be executed one after another. The programmer needs
to be aware of this. If all tasks are set to have the same
priority and period then those tasks will run sequentially.
This defeats the purpose of using threads in the first place,
and the resulting system is not necessarily real-time. Because
of this, we had to assign the tasks different priorities. The
same priorities were used in the Java implementation.

The program structure has six key components/task
threads. Table I summarizes the six threads. Note that only
four of the six tasks are actual behaviors. The other two,
DATAPOSUPDATE and DATALASERUPDATE, are explicit
behaviors because they manage sensor readings and send
movement commands to the robot. The KHEPERA class takes
requests from WAYPOINTPLANNER and LASERAVOIDOB-
STACLES then determines what movement commands are
sent to the robot. The motor control order lets safety re-
lated activities, such as stall recovery and have the first
opportunity to control the motors. If both WAYPOINTPLAN-
NER and LASERAVOIDOBSTACLES request motor control,
LASERAVOIDOBSTACLES’ commands take higher priority
because it contains both obstacle avoidance and stall recovery
behaviors. Only when LASERAVOIDOBSTACLES does not
want motor control does WAYPOINTPLANNER get control.

IV. EXPERIMENTAL SETUP

Experiments were performed to compare our
C++/OROCOS based real-time robot controller to a

Java based real-time robot controller [5] applying different
frequency requirements to each controller’s behaviors. The
frequencies were supplied by user input via the command
line. Both controllers used a waypoint navigation controller
to measure the effects of frequency and implementation on
task performance.

Physical experiments employed a K-Team Koala robot.
The robot was equipped with an Acces I/O ETX-Nano com-
puter which has an Intel Core Duo 1.66GHz processor, 2GB
of RAM and an 8GB compact flash card for storage. The Java
RTS controller uses Sun’s Solaris 10 RTOS, which requires
a dual core processor [20]. The C++/OROCOS controller
runs on UBUNTU (a non RTOS) using the OROCOS RTT
version 1.8.5 and the Java/Player controller runs on Fedora
10 using Player version 2.0.3.

The Koala is augmented with a Hokuyo URG laser range
finder, which it uses instead of the onboard IR proximity
sensors. Both the Java RTS and C++/OROCOS controllers
handle the interface to the robot and its devices via serial con-
nection. The Java RTS controller uses javax.comm (the Java
Communication API) for serial communication. Player is
used for sensor and robot communication in the Java/Player
controller. All code, including the logic and control code
is executed onboard the robot. Because of the high power
requirements of the Acces I/O ETX-Nano, the robot was
tethered with a power cord and an ethernet cat5 cable for
remote communication. The testing environment was a 8m
x 6m room (Figure 2).

Fig. 2. The experiment room (8m x 6m) with four waypoints. The
waypoints and waypoint order were chosen such that all behavior tasks
would be employed.

The experiments were run on the three controllers: Java
RTS using Real-Time Threads with the RTGC [5]; OROCOS
using its Real-Time Threads; and Java/Player using a user
written scheduler [6]. All trials were given the same four
waypoints to reach (shown in Figure 2). From the start/end
position X1, the robot traveled to each waypoint in a
counterclockwise order until it arrived at the finish position.
The waypoints were chosen such that all tasks needed to be
employed to reach the ending position.

Five experiment sets were run. Each set consisted of
five runs. The tasks were assigned a value that defined
both its period and deadline for all sets. The robot was
run with the same values as [5]. The other tasks period
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TABLE I
TASK THREADS USED IN THE ROBOT ARCHITECTURE.

Tasks Description Provides Requires
DATAPOSUPDATE Sends movement commands to the robot and receives updated position PositionData

information.
DATALASERUPDATE Gets the laser readings from the URG laser. LaserData
WAYPOINTPLANNER A high-level behavior that moves the robot through a series of pre-defined PositionData,

waypoints using a path created by the DIJKSTRAPATHPLANNER. PathData
LASERAVOIDOBSTACLES Responds to obstacles sensed by the laser, via DATALASERUPDATE, by slowing LaserData

down the robot and turning away from the obstacle, via DATAPOSUPDATE
OCCUPANCYGRIDMAP [18] Uses the position and laser data reported by DATAPOSUPDATE and MapData LaserData

DATALASERUPDATE and maintains an occupancy grid map. The map PositionData
tracks unknown, open and occupied space.

DIJKSTRAPLANNER [19] Takes goal position requests and maintains a path from the current position to
the goal. The requester must remove PathData MapData
the goal when it is no longer valid (has been reached).

values were based on the Hokuyo URG laser, which runs
at 10Hz [21]. Three of the five sets assigned all of the
tasks the same period. The remaining two sets varied the
period of LASERAVOIDOBSTACLES to see its effect on the
overall performance of the experiments. DATAPOSUPDATE
and DATALASERUPDATE periods were set at 75ms and
100ms respectively for all five experiment sets.

It was hypothesized that these experiments would show
if one controller performed better than the others. Each
controller’s performance was measured based on the fol-
lowing metrics: course time, distance to the final goal and
task’s missed deadline rate. Trials were considered complete
if they circled the obstacles approaching and passing each
waypoint. If the robot either got stuck on an obstacle or
did not reach all waypoints within six minutes, the trial was
considered incomplete. Missed deadlines, overall course time
and distance from the last waypoint were recorded for each
run. Each controller was run using the different behavior
periods (shown in Table II) to examine different period sets
including some that were over and under scheduled.

TABLE II
BEHAVIOR PERIODS FOR EACH EXPERIMENT SET.

Behavior Periods (ms)
Waypoint LaserAvoid Occupancy Dijkstra

Set Planner (W) Obstacles (L) GridMap (Oc) Planner (P)
1 10 10 10 10
2 100 10 100 100
3 50 50 50 50
4 100 50 100 100
5 100 100 100 100

V. EXPERIMENTAL RESULTS

Figure 3 shows the average time and standard deviation
that the robot took to finish the course for each experiment
set for each controller. Figure 5a shows the percentage of
total missed deadlines for the behavior tasks (this does not
include DATAPOSUPDATE and DATALASERUPDATE) for
each experiment set. Since the first set of experiments and
the Java/Player controller experiments, had such a large per-
centage of missed deadlines as compared to the others, they
are removed in Figure 5b to show more detail of the other

four sets. The robots final distance from the last waypoint
and corresponding standard deviation for each set is shown
in Figure 4. In all three controllers, the WAYPOINTPLANNER
considers a waypoint reached if it is within 0.5m of it. So the
closer the robot is to 0.5m from the goal the more accurate
it is.

Fig. 3. The average time it took the robot to complete the course.

Fig. 4. The average distance the robot came near to the ending position.
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Fig. 5. Percentage of total missed deadlines (a) For all five experiment
sets. (b) For experiment sets 2 - 5 (rescaled to show more detail).

VI. ANALYSIS

It is also important to point out that the Java/Player
architecture experiments had a large failure rate. While
running the experiments Player would receive messages from
”unknown devices” and stop running. This caused the trials
to be rerun sometimes taking as many as 3 attempts to get
one successful run.

Figure 5a shows that as the behavior tasks’ periods
increase, except in the Java/Player controller, the missed
deadline rate decreases. Note that the difference between
experiment sets 2 and 3 of the Java RTS architecture and
experiment sets 3 and 4 of the OROCOS architecture have
only one or two missed deadlines. So even though the
percentage increases it is only being caused by an increase
of one or two missed deadlines. Note that the computational
requirements of the tasks are greatest with set 1 and decrease
going from set 2 to set 5.

When looking at the average run times for each task,
overall C++ is faster. However, this is not the case for
DIJKSTRAPLANNER task (see Figure 6). OROCOS runs on
the average around 2ms faster than the Java/Player controller.
Note, that even though the Java/Player architectures’ average
runtime in set 1 is around 2ms, it has a standard deviation of
7ms. This makes it less predictable than the other controllers.
Compared to Java RTS, OROCOS takes around 0.4 ms
longer to complete the task.

The average time for the robot to complete the course and
the distance from the last waypoint for all three architectures

Fig. 6. Average time to complete DijkstraPlanner Task.

are almost identical (Figures 3 and 4). Therefore t-tests were
used to determine if the result sets are statistically significant.
The p values for the t-tests comparing the controllers’
distances can be seen in Table III and the values for the
time to finish can be seen in Table IV. When comparing
the t-test results of OROCOS and Java RTS’s time to finish
values the only statistically significant data set is set 3. It
is important to note the p value for set 3 of the time to
finish is p=-.05, the threshold for statistical significance at
5%. The p value is 0.049, which indicates there is a 5%
chance that the samples are from the same distribution. The
other statistically significant sets for time to finish are set 4
comparing OROCOS and Java/Player and set 4 comparing
Java/Player and Java RTS. The statistically significant sets for
distance to goal are sets 3 and 5 comparing the OROCOS and
Java/Player controllers. There is a control-based significance
to set 3. Dorsey [2] states that the sampling rate has to be
at least two times the fastest input signal. In our system, the
Hokuyo laser sends out its data at a rate of 10Hz. So the
periods for all of our behavior tasks need to be at least 50ms
for the system to be stable.

TABLE III
T-TEST RESULTS COMPARING THE THREE CONTROLLERS’ SETS FOR

DISTANCE TO GOAL.

T-test results for distance to goal
OROCOS vs OROCOS vs Java RTS vs

Set Java RTS Java/Player Java/Player
1 0.618 0.243 0.434
2 0.615 0.287 0.224
3 0.135 0.010 0.117
4 0.723 0.890 0.672
5 0.264 0.042 0.622

When we look at the distance from the goal in set 3, the
Java RTS architecture performs better than average. It is also
worth noting that the standard deviation for OROCOS’s time
to finish is almost two times OROCOS’s in set 3, three times
OROCOS’s in set 4 and almost five times OROCOS’s in set
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TABLE IV
T-TEST RESULTS COMPARING THE THREE CONTROLLERS’ SETS FOR

TIME TO FINISH.

T-test results for time to finish
OROCOS vs OROCOS vs Java RTS vs

Set Java RTS Java/Player Java/Player
1 0.421 0.391 0.767
2 0.618 0.935 0.686
3 0.049 0.113 0.377
4 0.603 0.011 0.037
5 0.077 0.474 0.455

5. OROCOS’s and Java RTS’s time to finish and the standard
deviation of set 1 is almost identical. The Java/Player’s time
to finish is larger than the other two controllers in every set
except set 4.

VII. CONCLUSION

We implemented a behavior-based real-time robot archi-
tecture using OROCOS. The system was created by con-
verting [5]’s Java RTS based architecture into C++ and
using OROCOS RTTs’ PERIODICACTIVITY to be used for
executing the tasks. The OROCOS system allows individual
behaviors to be assigned separate execution frequencies and
priorities. Unlike the Java RTS architecture, the OROCOS
and Java/Player architectures run on non real-time operating
systems. Experiments demonstrated how manipulating the
timing of subtasks to the OROCOS and JAVA RTS archi-
tectures made their results (excluding set 3) not statistically
significant. Whereas, the Java/Player controller sets were
found not to be statistically significant when compared to
Java RTS and OROCOSs overall time and when compared
to Java RTS’s distance from the goal. Also, since the
Java/Player controller missed more deadlines, on an average
took more time to finish, and required almost three attempts
for each successful experiment one can conclude that the
other two implementations are better choices. These results
from testing support our hypothesis. Our hypothesis was that
[5]’s Java RTS based controller will be comparable to the
OROCOS RTT architecture and both would perform better
than the Java/Player controller. Even though it was not the
main focus of the research, we found evidence that a RTOS
was not necessarily needed to implement a behavior-based
real-time controller.

Future work will include user studies to determine if
programmers prefer to use [5]’s Java RTS architecture
over our C++/OROCOS RTT architecture. User studies that
evaluate programmer proficiency on both architectures may
shed light on features that are useful in teaching embedded
programming techniques.
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