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Abstract— Visual tracking is a quite challenging issue for
a moving robot due to the appearance changes of both the
background and targets, large variation of motion, partial or
full occlusion and so on. However, humans are capable to
cope with those difficulties to achieve satisfactory tracking
performance. Thus this paper presents a biologically-inspired
method of visual tracking for moving robots by using object-
based visual attention mechanism. This tracking method con-
sists of four modules: pre-attentive segmentation, top-down
attentional biasing, post-attentive completion processing and
online learning of the target model. Experimental results in
natural and cluttered scenes are shown to validate this general
and robust tracking method.

I. INTRODUCTION
There are mainly three types of challenging issues in

the visual tracking task. The first challenge is caused by
the cluttered and dynamically changing background since
1) background contains a variety of clutters that share
some features with the target, and 2) discrimination between
foreground and background will change dynamically during
tracking. To cope with this issue, two requirements for
building the target model should be satisfied: robustness and
discriminability. Robustness means that the target model can
represent various instances of the target in different viewing
conditions. Several probabilistic models [1], [2], [3], [4] and
subspace appearance models [5], [6] are proposed to improve
robustness. Discriminability means that the target model can
be discriminated from the background. Collins et al. [7],
[8] proposed a method for online selecting a discriminative
feature from a set of color features. However, there are three
shortcomings in that feature selection method. Firstly, some
important features, such as contour, are not included in the
candidate feature set. Secondly, a rectangle or an ellipse is
used to approximately outline the target and surrounding
regions such that outliers included in both regions would
interfere the feature selection. Thirdly, the selected feature
is locally discriminative as only a small background region
around the target is used for feature selection.

The second challenging issue is the ability of automatical
recovery in the case of tracking failure. Besides background
clutters, a large variation of motion and full occlusion during
several sequential frames are another two major reasons
causing tracking failure. Although some methods [9], [10],
[11] have been proposed to accommodate abrupt motion, the
occurrence of tracking failure cannot be absolutely elimi-
nated based on the fact that the designed tracking systems
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cannot accommodate all possible reasons that cause failure.
Thus an automatical recovery mechanism is required. This
paper proposes that two components are necessary for the
recovery mechanism: validation and global search. For each
frame, the estimated target state needs to be validated. If it is
incorrect, a global search then attempts to detect the correct
target in the entire image. Thus it is required to online select a
target’s feature that are discriminative over the entire image.

The third challenging issue is the completion of the tracked
target. It is required in robotic applications, since a complete
target region can provide important information for robot’s
following actions, such as grabbing. Unfortunately, most
tracking methods only use primitive geometric shapes, e.g.,
an ellipse [2], [3], to represent the target.

The perception behavior of humans inspires a novel ap-
proach to the above issues in a unified framework. Object-
based attention theory posits that some pre-attentive pro-
cesses serve to segment the field into discrete objects,
followed by an attention process that selects one object
at a time [12]. Integrated competition (IC) hypothesis [13]
is further proposed to model object-based attention: By
directing attention to a conspicuous cue of an object, it
produces a competitive advantage over the whole object.

Therefore, this paper presents a biological-inspired vi-
sual tracking method based on IC hypothesis. The tracking
process is modeled as an object-based attentional selection
procedure. This new tracking method attempts to contribute
in the following aspects: 1) Adaptivity and effectiveness: The
discriminative feature of the learned target model can be
automatically online selected for tracking in order to cope
with cluttered and dynamically changing environment; 2) Ro-
bustness: It has the ability to automatically recover tracking
failure caused by any reasons; and 3) Target completion:
By combination of pre-attentive segmentation, attentional
selection and post-attentive completion processing, the com-
plete target region is achieved. Another top-down attention
based tracking approach has also been presented in [14]. The
difference is that our method is object based.

The remainder of this paper is organized as follows. The
framework of the proposed target tracking method is given in
section II. Pre-attentive segmentation module is presented in
section III. Online learning of the target model is presented
in section IV. The tracking process is described in section
V. Experimental results are finally given in section VI.

II. FRAMEWORK OF PROPOSED TRACKING METHOD

This tracking method is developed by extending our pre-
viously proposed object-based attention model [15]. It con-
sists of four modules: pre-attentive segmentation, top-down
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attentional biasing, post-attentive completion processing and
online learning of the target model, as shown in Fig. 1.

Fig. 1. Proposed target tracking framework using object-based attention.

The pre-attentive segmentation module extracts a set of
pre-attentive features and then divides the scene into ho-
mogenous proto-objects in a unsupervised fashion.

Following pre-attentive segmentation, the top-down atten-
tional biasing module, consisting of spatial biasing, appear-
ance biasing and validation, is carried out. Spatial biasing
estimates a predicted region based on the target region at
previous moments. Using the discriminative task-relevant
feature deduced from the target model, appearance biasing
then evaluates a proto-object based attentional activation
map, which represents the likelihood of each proto-object
to be the tracked target. The proto-object with the maximal
activation is selected for validation. If it is validated to be
the target, it is put into the post-attentive completion module
to yield a precise and complete target region. Otherwise,
it means an occurrence of tracking failure, the recovery
mechanism is triggered by carrying out the appearance
biasing procedure again over the entire image to globally
search for the target.

After the post-attentive completion processing, the com-
plete target region (i.e., a tracked instance of the target) is
used for online learning. In the first tracking frame, the target
model is initialized by using only one type of supervision
information: the trainer specifies which proto-objects belong
to the target. In the following tracking frames, the tracked
instance of the target is used to update the target model such
that it can accommodate changes of the environment.

III. PRE-ATTENTIVE SEGMENTATION

A. Pre-attentive Feature Extraction
Pre-attentive features include intensity Fint, red-green

Frg, blue-yellow Fby , local orientation energy Foθ and
contour Fct. Given the 8-bit RGB color components r, g,
b, multi-scale intensity Fint(s), red-green Frg(s) and blue-
yellow Fby(s) are created using the method proposed in [16],
where s denotes the spatial scale.

An oriented Laplacian pyramid [17] (a log-Gabor like
filter) is used to extract multi-scale orientation energy Foθ (s)
in four orientation directions θ ∈ {0◦, 45◦, 90◦, 135◦}.

Contour feature Fct(s) is approximated by using the total
orientation energy, which is obtained by applying a pixel-
wise maximum operator over those four directions:

Fct(ri, s) = max
θ∈{0◦,45◦,90◦,135◦}

Foθ (ri, s) (1)

where ri represents a pixel at scale s.

B. Pre-attentive Segmentation

This paper simulates pre-attentive segmentation as a hi-
erarchical accumulation procedure by extending irregular
pyramid techniques [18], [19]. Each level of the irregular
pyramid is built by accumulating similar nodes at the level
below, resulting that the final global segments emerge in this
process as they are represented by single nodes at some
levels. Details of the pre-attentive segmentation algorithm
can be seen in our previous work [20].

IV. TARGET MODEL AND LEARNING

A. Structure of Statistical Target Model

The proposed target model O consists of global coding
Ogb using contour feature and local coding Olc using in-
tensity, red-green, blue-yellow and local orientations. Each
coding includes two descriptors: appearance Oa and salience
Os. The appearance descriptor represents appearance values
of each feature. The salience descriptor represents discrim-
inability of a feature dimension of the target in contrast to
the background, and therefore it is used to deduce the task-
relevant feature.

B. Post-attentive Features

Based on the hypothesis that the statistical structure of the
perceived data is recoded for high-level processing [21], a set
of statistical quantities, termed as post-attentive features, are
estimated within the complete target region. They are de-
pendent on the structure of target models, thereby consisting
of global post-attentive features F̃gb and local post-attentive
features F̃lc. Each one also consists of appearance component
F̃
a

and salience component F̃
s
.

Appearance components are estimated using the statistics
of corresponding pre-attentive features.

Salience components are estimated using the conspicuity
values of corresponding feature dimensions. The conspicuity
values are calculated from the bottom-up attention mecha-
nism [16]. At first, center-surround differences in terms of
each feature dimension are calculated:

F ′f (c, s) = |Ff (c)	 Ff (s)| (2)

where 	 represents across-scale subtraction, c = {0, 1, 2}
and s = c+ δ with δ = {2, 3} represent the center scale and
surround scale respectively, and f ∈ {int, rg, by, oθ, ct}.

Those center-surround differences in terms of the same
feature dimension are normalized and combined together at
scale 2, termed as working scale, using across-scale addition
to yield a location-based conspicuity map F s of that feature
dimension:

F sf = N
(
1

6

2⊕
c=0

c+3⊕
s=c+2

N
(
F ′f (c, s)

))
(3)

where N denotes the normalization operator,
⊕

is across-
scale addition, consisting of reduction of each normalized
center-surround difference to the working scale and point-
by-point addition, and f ∈ {int, rg, by, oθ, ct}.
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It can be seen that the conspicuity values can be used to
measure discriminability between the target and the back-
ground in the entire scene. Thus the task-relevant feature
deduced from them is globally discriminative.

1) Global Post-attentive Feature: This paper uses B-
Spline techniques [22] to represent a contour curve C:

C = fc(WX + Q0) (4)

where

Q0 =

(
Qx

0

Qy
0

)
=

(
x1, x2, ..., xP
y1, y2, ..., yP

)
(5)

where (x1, y1),...,(xP , yP ) are coordinates of control points
along the contour, and P is the number of control points.

The control point vector Q0 characterizes the target’s basic
shape, which is the metric for shape discrimination between
the target and distractors. The state vector X represents the
spatial transformation (e.g., translation, rotation and scaling)
of a contour instance C with respect to Q0. Using Q0 and X
together, the shape of an object can be described. Since X is
estimated based on the actual observation, this paper builds
the global coding Ogb by using control point vector Q0.

At the beginning of learning, control points along the
complete target region are extracted at the working scale by
using the method proposed in our previous work [23]. The
global post-attentive feature at each extracted control point
is finally estimated at working scale, all of which comprise
a set denoted as {F̃gb}:

F̃gb = (F̃ ax , F̃
a
y , F̃

s
ct)

T (6)

where appearance components F̃ ax and F̃ ay are spatial coor-
dinates of a control point, and the salience component F̃ sct is
the average of conspicuity values in terms of contour feature
(i.e., F sct) around the control point. Each entry is sent into
the learning routine sequentially.

2) Local Post-attentive Feature: It is also a set, denoted as
{F̃lc}. Each entry of that set consists of statistical appearance
and salience values in terms of intensity, red-green, blue-
yellow and local orientations within a proto-object belonging
to the complete target region, denoted as:

F̃lc = (F̃ aint, F̃
a
rg, F̃

a
by, F̃

a
oθ
, F̃ sint, F̃

s
rg, F̃

s
by, F̃

s
oθ
)T (7)

Each F̃lc is also sent into the learning routine sequentially.
Appearance and salience components of intensity, red-

green and blue-yellow are averages of pre-attentive feature
values F and conspicuity values F s respectively in terms of
the corresponding feature dimension within the proto-object.
The appearance component of local orientations is a his-
togram with 4 bins, each of which represents an orientation
direction. Each pixel within the proto-object is accumulated
into the corresponding bin according to its orientation di-
rection. The salience component of local orientations is a
4 × 1 mean vector. For each pixel within the proto-object,
its conspicuity value F s in terms of orientation energy in
its orientation direction is accumulated to the corresponding
entry of that mean vector.

C. PNNs based Target Models

In order to improve robustness, probabilistic neural net-
works (PNNs) [24] are used to model the probabilistic dis-
tributions of the local coding and global coding respectively.
Both PNNs have the identical structure, consisting of three
layers. The input layer receives F̃lc or F̃gb. The hidden
layer is composed of radial basis functions (RBFs), each of
which represents the distribution of a local parts or a global
control point of that target. The output layer is the mixture
distribution by combination of all local parts or global control
points of that target.

The RBFs in the hidden layer are represented by a multi-
dimensional Gaussian distribution G:

qn(F̃) = G(F̃;µn,Σn) (8)

where µn = (µan,µ
s
n)
T and Σn denote the mean vector and

covariance matrix of a RBF indexed by n and F̃ ∈ {F̃lc, F̃gb}.
Assuming that feature distributions are independent, stan-

dard deviation (STD) vector σn = (σan,σ
s
n)
T can be

obtained from the diagonal entries of covariance matrix Σn.
The mean vector and STD vector of a RBF in local PNNs can
be also represented as: µa/sn = (µ

a/s
n,int, µ

a/s
n,rg, µ

a/s
n,by, µ

a/s
n,oθ )

T ,
σ
a/s
n = (σ

a/s
n,int, σ

a/s
n,rg, σ

a/s
n,by, σ

a/s
n,oθ )

T , where a/s means a or
s. The mean vector and STD vector of a RBF in global PNNs
can be also represented as: µan = (µan,x, µ

a
n,y)

T , µsn = µsn,ct,
σan = (σan,x, σ

a
n,y)

T , σsn = σsn,ct.
The output layer of local or global PNNs is:

p(O) = p(F̃) =
∑
n

πnqn(F̃) (9)

where O ∈ {Olc,Ogb} and πn is the weight of a RBF. πn is
estimated based on the occurrence rate of a RBF and thereby
can represent the activity of a RBF. The condition

∑
n πn =

1 is imposed on all RBFs in either local or global PNNs.

D. Online Learning

Since the number of RBFs might be dynamically changed
during tracking, this paper proposes an online incremental
learning algorithm by using both maximum likelihood esti-
mation (MLE) and a Bayes’ classifier.

The learning algorithm regards a control point or a proto-
object as a pattern. A Bayes’ classifier is developed to
classify the training pattern to an existing RBF in terms of
appearance components. In the classifier, prior probabilities
are set identical for all existing RBFs. If the training pattern
is labeled, both appearance and salience descriptors of the
corresponding existing RBF are updated based on MLE;
Otherwise, a new RBF is created. Two thresholds τ1 and
τ2 are introduced to determine the minimum correct classi-
fication probability to an existing RBF of local PNNs and
global PNNs respectively. Meanwhile, τ− is also introduced
to avoid misclassifications. Thus it is used to determine the
STD once a new RBF is created and to adjust the STD of all
RBFs after each learning routine. In order to keep track of the
most recent target’s states, some inactive RBFs are discarded.
τπ is the pre-defined threshold to determine whether a RBF
is active or inactive.
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Algorithm 1 Online learning routine of PNNs

1: Given a local or global pattern F̃ ∈ {F̃lc, F̃gb}:
2: ∀n: Calculate q = qan(F̃

a

lc) or q = qan(F̃
a

gb)
3: if ∃n: q is maximal and q ≥ τ1 or q ≥ τ2 then
4: // Update the existing RBF indexed by n
5: (σn)temp =

[
(σn).

2 + (µn).
2 + (F̃).2

]
/2;

6: µn = (F̃ + µn)/2;
7: σn =

[
(σn)temp − (µn).

2
]
.−

1
2 ;

8: πn = πn × 2;
9: else

10: // Create a new RBF
11: N = N + 1 or P = P + 1; Set n = N or n = P ;
12: µn = F̃; πn = min1≤j≤n−1 {πj};

13: ∀f : σa/sn,f = min1≤j≤n−1

{√
−|µa/sn,f − µ

a/s
j,f |2/τ−

}
;

14: end if
15: // Adjust STD of all RBFs

16: ∀n, ∀f : σa/sn,f = min

{
σ
a/s
n,f ,

√
−|F̃ a/sf − µa/sn,f |2/τ−

}
17: ∀n: πn = πn/

∑
j πj ; // Normalize weights of RBFs

18: for n=1:N or n=1:P do
19: if πn < τπ then
20: Discard the n-th RBF; // Discard inactive RBFs
21: end if
22: end for
23: ∀n: πn = πn/

∑
j πj ; // Re-normalize weights of RBFs

Algorithm 1 shows the learning routine of either local
or global PNNs. In the algorithm, qan is the probability in
terms of appearance in the RBF level, N and P respectively
represent the number of existing local RBFs and global
RBFs, a/s means a or s, f ∈ {int, rg, by, oθ} for local
PNNs, f ∈ {x, y} or f ∈ {ct} for global PNNs, and .2

denotes element-to-element vector square.

V. TRACKING PROCESS

A. Spatial Top-down Biasing

Due to the variation of target’s motion, the target dynamics
is difficult to estimate. Thus this paper only predicts a large
region centered at the target position at the last moment as the
predicted region. Appearance top-down biasing is performed
in that region.

B. Appearance Top-down Biasing

1) Automatical Feature Selection: The proposed tracking
method uses the target’s salience descriptor to automatically
select a task-relevant feature dimension. This is implemented
by finding out a feature dimension that has great salience:

(frel, jrel) = arg max
f∈{ct,int,rg,by,oθ}

max
j

µsj,f
1 + σsj,f

(10)

where frel is the task-relevant feature dimension and jrel is
the index of the task-relevant part. For local features f ∈
{int, rg, by, oθ}: j ∈ {1, 2, . . . , N}. For the global feature
f ∈ {ct}: j ∈ {0}, µs0,ct =

∑P
n=1 µ

s
n,ct/P , and σs0,ct ={∑P

n=1

[
(σsn,ct)

2 + (µsn,ct)
2
]
/P − (µs0,ct)

2
}− 1

2 .

2) Attentional Template: The target’s appearance descrip-
tor in terms of the task-relevant feature dimension is used
to build an attentional template so as to estimate appearance
top-down biases.

If frel is contour, an attentional template Ftct is built as:

Ftct =
(
µa1,x, . . . , µ

a
P,x, µ

a
1,y, . . . , µ

a
P,y

σa1,x, . . . , σ
a
P,x, σ

a
1,y, . . . , σ

a
P,y

)T
(11)

If frel is intensity, red-green or blue-yellow, an attentional
template Ftint, Ftrg or Ftby is built as:

Ftf =
(
F t,µf F t,σf

)
=
(
µa,jrelf σa,jrelf

)
(12)

where f ∈ {int, rg, by}.
If frel is the orientation in a direction θ, an attentional

template F to is built using that direction:

F to = θ (13)

3) Estimation of Top-down Biases: If the task-relevant
feature dimension is contour, a probabilistic method inspired
from active contour techniques [22] is proposed to estimate
the bias. Details of the biasing algorithm in terms of contour
can be seen in our previous work [23]. A location-based top-
down bias map in terms of contour is finally achieved as:

Bct(ri) =

{
1 if ri ∈ Rgmax
0 otherwise

(14)

where B represents the top-down bias, ri is an image pixel
at working scale, and Rgmax is the proto-object that has the
maximal posterior probability.

If the task-relevant feature dimension is intensity, red-
green, blue-yellow and orientation, location-based top-down
biases are estimated respectively as:

Bf (ri) = exp(−1

2

|Ff (ri)− F t,µf |2

(F t,σf )2
) (15)

where f ∈ {int, rg, by}.

Boθ (ri) =

{
Foθ (ri)/255 if θ = F to
0 Otherwise

(16)

4) Proto-object based Attentional Activation Map: This
map, denoted as S, is obtained by combination of location-
based appearance top-down biases within each proto-object:

S(Rg) =
∑

ri∈Rg

Bfref (ri)/Ng (17)

where Ng is the number of pixels in the proto-object Rg .
The focus of attention (FOA) is directed to the proto-object
that has the maximal proto-object based activation.

C. Validation
The validation procedure is based on Bayes’ theorem using

the appearance component of the local post-attentive feature
F̃
a

lc of the attended proto-object. If the probability pa(F̃
a

lc) in
terms of appearance is above the predefined threshold τv , the
attended proto-object is confirmed. Otherwise, the recovery
mechanism is triggered to carry out another appearance top-
down biasing procedure over the entire image.
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D. Post-attentive Completion Processing

This paper proposes that the precise and complete target
region can be achieved using local and global descriptors
of the target model around the attended proto-object. The
detailed routine can be seen in our previous work [20].

VI. EXPERIMENTS

This proposed tracking method is tested in three tasks.
Performance of our method is also compared with CamShift
algorithm [25]. Three videos are obtained by a moving robot
in three scenes with different settings.

A. Tasks

The first task is to track one moving human (i.e., target) in
scene 1, in which the background shares some features with
the tracked target. The objective of this task is to show the
adaptivity of our method in the sense that it can adaptively
track the object by automatically selecting a discriminative
feature. The online learned salience descriptors of the target
in scene 1 are shown in Fig. 2(a), which indicates that
contour is the task-relevant feature. The tracking result of our
method is shown in Fig. 3(e) - 3(h): Our method succeeds
to track the target when it passes by the red board. Results
of Camshift algorithm are shown in Fig. 3(i) - 3(l): It fails
to track the target when it is passing by the red board, since
the red board share hue values with the target.

The second task is to track one moving human (i.e., target)
in scene 2, in which there is full occlusion during several
sequential frames. The objective of this task is to show that
our method can automatically recover the tracking after the
full occlusion. The learned salience descriptors of the target
in scene 2 are shown in Fig 2(b), which indicates that contour
is the task-relevant feature. The tracking result of our method
is shown in Fig. 4(e) - 4(h): Our method succeeds to track
the target after it goes through the full occlusion. Results of
Camshift algorithm are shown in Fig. 4(i) - 4(l): The tracking
region covers almost the whole scene after the target goes
through the occlusion, so CamShift algorithm fails to recover
the tracking after the full occlusion.

The third task is to track one moving human (i.e., target)
in scene 3 in which there is another moving human (i.e.,
distractor). One objective of this task is to show that our
method is robust to variations of lighting on the target.
The other objective is to show our method can provide the
completion of the tracked target that includes several parts.
The learned salience descriptors of the target in scene 3 are
shown in Fig. 2(c), which shows that red-green of the part 2
(i.e., the upper body of the target) is the task-relevant feature.
The tracking result of our method is shown in Fig. 5(e) - 5(h):
Our method succeeds to track the target and achieves target
completion. Results of Camshift algorithm are shown in Fig.
5(i) - 5(l): It fails to track the target when the target passes
by the blue door (Fig. 5(l)).

B. Performance Evaluation

Tracking precision PTPR is one type of performance
evaluation. It is calculated as a true positive rate: PTPR =

nTP/nP where nTP is the number of frames in which the
target is correctly detected and nP is the total number of
frames in a video.

Target completion is another type of performance evalua-
tion. It is calculated by using both true positive rate CTPR =
ATP /Areal and false positive rate CFPR = AFP /Areal,
where Areal is the pixel number of the real target, ATP is
the number of pixels that are both in the tracked region and
in the real target, and AFP is the number of pixels that are
in the tracked region but not in the real target.

Performance evaluation of our method and Camshift al-
gorithm is shown in Table I. It can be seen that the track-
ing performance and target completion performance in our
method are both better than those in CamShift algorithm.

VII. CONCLUSIONS

This paper has presented a target tracking method using
object-based visual attention mechanism. Compared with
other tracking methods, this proposed method is capable to
cope with the difficulties including appearance changes of the
background and the target, large variation of motion, partial
and full occlusion and so on.

TABLE I
PERFORMANCE EVALUATION

Task Method Frm # PTPR CTPR CFPR

1 Ours 44 100.00 % 92.71 % 6.70 %
CamShift 44 11.36 % 39.34 % 2.09 %

2 Ours 42 64.29 % 91.60 % 8.13 %
CamShift 42 26.19 % 36.38 % 3.32 %

3 Ours 65 96.92 % 97.80 % 2.48 %
CamShift 65 80.00 % 92.50 % 5.09 %
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(a)

(b)

(c)

Fig. 2. Online learned salience descriptors of the target representations in
the three tasks. (a) In task 1; (b) In task 2; (c) In task 3.
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