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Abstract— This paper proposes an approach to hierarchy
formation of human behaviors, extraction of the behavioral
transitions, and their application to prediction and automatic
generation of behaviors. Human demonstrator motion patterns
are stored as motion symbols, which abstract the motion data
by using Hidden Markov Models. The stored motion patterns
are organized into a hierarchical tree structure, which repre-
sents the similarity among the motion patterns and provides
abstracted motion patterns. Concatenated sequences of motion
patterns are stochastically represented as transitions between
the abstracted motion patterns by using an Ngram Model,
and the transitional relationships of the human behaviors are
extracted. The behavioral hierarchy and transition model make
it possible to predict human behaviors during observation and
to generate sequences of motion patterns automatically while
maintaining a natural motion stream, as if the system is a “crys-
tal ball” to reflect future behaviors. The experiments validates
the proposed framework by using a developed visualization
system, which shows the demonstrator or the operator the
established hierarchical tree and the transition network of the
motion patterns, predicted behaviors and generated sequences
of the motion patterns.

I. INTRODUCTION

Structuring knowledge about human motion through ob-

servation of human behavior is a notable research issue. The

motion knowledge can be applied to intelligent humanoid

robots which can recognize the human motion and generate

human-like motion autonomously, realistic human-like mo-

tion generation for animated characters, and motion analysis

during sports training or rehabilitation.

In robotics, there has been a long standing research

work to develop algorithms of motion learning by imitation

for robots [1]. Especially, various approaches to symbolize

motion patterns through observation have been proposed.

Tani et al. describe an approach for modeling robot

motion patterns by using Recurrent Neural Networks with

Parametric Bias (RNNPB) [2]. Motion patterns are abstracted

by a parameter bias layer added to an input layer in a

recurrent neural network. Hidden Markov Models (HMMs)

have been a prominent technique for motion pattern sym-

bolization [3][4]. Motion patterns have been encoded by

sets of parameters of HMMs, recognized as the HMMs and

generated by the HMMs. However, clustering and sequential

relationships between the motion patterns are not represented

by these frameworks.
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Kadone et al. uses an associative neural networks with

non-monotonic sigmoid functions for hierarchical clustering

of motion patterns [5]. Parameters in the sigmoid function

correspond to a abstraction level. The observed motion are

recognized as motion patterns at arbitrary abstraction levels

by tuning the parameters. However, the time correlation

between the motion patterns is not encapsulated by their

model.

Kulić et al. have been developing algorithms for clus-

tering motion patterns to form a hierarchical tree structure

representing motions learned by robots, and for establish-

ing a directed graph representing transitions between the

motion patterns [6]. Observed motions are abstracted by

using HMMs. The parameters of the model define a distance

between the motions. The motions are clustered based on this

distance to form a hierarchical tree structure. Each node in

the tree represents a cluster of motion patterns, which can

be used for motion recognition and generation. However,

the tree structure depends on some parameters of distance

thresholds for the cluster, which are manually specified. The

parameter tuning requires expertise to construct a desired tree

structure.

Kovar et al. proposed a motion graph [7]. The seamless

motion transition candidates can be detected by distances

between segmentation points of motion data. An edge on the

motion graph corresponds to frames of motion data, and a

node serves as a choice point for connecting motion frames.

A realistic looking motion can be generated under dynamics

of the motion graph. However, the motion patterns are not

hierarchically represented by model parameters to reduce the

dimensionality of the motion.

Sidenbladh et al. proposed a behavioral prediction method

[8]. This method uses the dimensional reduction of motion

data by the principal component analysis and the binary tree

of the low dimensional data. This approach is suitable for

generating motion prediction. The prediction based on a large

database of motion data requires modeling the motion data

as symbols in order to compress temporal spatial data.

A structure of motion primitives is represented by a

context-free-grammar model [9]. A pair of adjacent motion

primitives is grouped incrementally and a tree structure

can be formed. A node in the tree corresponds to a short

sequence of motion primitives. The motion primitives are

not symbolized in various abstraction levels.

This paper describes a framework to extract knowledge

of human motion by forming a hierarchical structure of

motion patterns through binary tree clustering and by es-

tablishing a directed graph representing transitions between
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Fig. 1. The motion pattern data is encoded into a motion symbol. Similar
motion symbols are grouped into another abstract motion symbol. The
grouping process forms a motion symbol tree. A motion data stream is
expressed as a sequence of the abstract motion symbols. The sequential
relationship between the motion symbols is stochastically represented by a
motion symbol graph. A current node in the motion graph can be estimated
from an observed motion sequence. Multiple paths starting at the current
node with large likelihood can be retrieved. The paths show future motion
patterns.

abstracted motion patterns. The hierarchical structure can

be constructed by the Ward clustering method. The motion

sequences are memorized as transition probabilities between

the abstracted motion patterns in the directed graph. The in-

tegration of the hierarchical structure and the directed graph

make it possible to predict motion patterns following the

observed motion sequences and to autonomously generate

frequent motion sequences on the transition. An experiment

using a motion capture system verified the validity of our

proposed framework.

The proposed framework is a basic technology for robots

to memorize motion patterns as symbols during observation,

recognize human behaviors as memorized symbols, predict

the human motions through observation and support the

humans by understanding their behaviors.

II. MOTION SYMBOL TREE AND MOTION SYMBOL

GRAPH FORMATION

Fig.1 shows an overview of the motion symbol tree and the

motion symbol graph. The motion symbol tree hierarchically

represents clustering relationships between motion patterns,

and the motion symbol graph represents sequential relation-

ships between the clusters of the motion patterns. The motion

symbol tree and the motion symbol graph realize fast motion

recognition processing, prediction of motion patterns through

observation of whole body human motions, and automatic

generation of frequently observed motion sequences.

A. Motion Symbol Tree

Continuous motion data is automatically segmented into

motion pattern data [10][11][12]. The motion pattern data

Oi (i = 1, 2, 3, · · · , n) is encoded into the corresponding

HMM λi (i = 1, 2, 3, · · · , n), since the HMM can be used

for both motion recognition and motion generation. n is

the number of the segmented motion pattern data set. The

dissimilarity between the HMMs, λi and λj , is defined by

Kullback Leibler information :

D(λi, λj) =
d(λi, λj) + d(λj , λi)

2
(1)

d(λi, λj) =
lnP (Oi|λi) − lnP (Oi|λj)

Ti

where P (O|λ) is the probability that the HMM λ generates

the motion pattern data O, and Ti is the length of the motion

pattern data Oi. The motion pattern data can be grouped

into abstracted motion patterns based on the dissimilarity by

using the Ward clustering method. When the dissimilarity

between λchild
1 and λchild

2 is smallest, these two HMMs are

grouped into λparent, which is optimized by using training

motion pattern data encoded into λchild
1 and λchild

2 . The

incremental grouping forms a hierarchical tree, where a node

in the bottom layer represents HMMs corresponding to each

motion pattern data and a node in the upper layer represents

HMMs corresponding to multiple motion pattern data. Since

the HMMs abstract motion pattern data, the HMMs and the

formed tree are called “motion symbol” and “motion symbol

tree” respectively.

The constructed motion symbol tree can be used to

recognize observed motions as motion symbols in various

abstractive resolutions according to following steps:

step1 The observation O is given to motion symbol λparent.

step2 The likelihood that the observation O is generated by

motion symbol λchild
1 or λchild

2 is computed, where the

motion symbols, λchild
1 and λchild

2 , correspond to child

nodes of the motion symbol λparent.

step3 The motion symbol (λchild
1 or λchild

2 ) with the largest

likelihood becomes the parent motion symbol, and go

back to step1. If the motion symbol is located on the

bottom layer and it has no child motion symbol, the

iteration processing is terminated.

This computation allows for fast motion recognition.

B. Motion Symbol Graph

Continuous motion data is recognized as a sequence of

the motion symbols. The sequential relationship between the

motion symbols can be stochastically modeled by an ergodic

HMM, where motion symbols are generated by each node

through node transition. However it is difficult for the ergodic

HMM to learn a large amount of the sequential relationship.

The relationship need to be learned by a simple directed

graph, where each node represents a motion symbol and each

edge represents a transition between the motion symbols.

N-gram model is used for the motion symbol graph in

this paper. N-gram is a stochastic model, which takes the

assumption that each motion symbol depends only on its

1781



t=16sec          t= 17sec         t= 25sec          t=26sec            t=48sec           t=53sec       t=61sec     t=65sec        t=81sec        t=87sec        t=92sec      t=94sec                                          

t=106sec         t= 109sec         t= 112sec          t=116sec            t=123sec               t=124sec         t=132sec       t=134sec                 t=148sec        t=159sec                                               

Fig. 3. The demonstrator performs radio physical exercises. Human whole body motion data of the demonstrator is collected in an optical motion capture
system. The radio physical exercise consists of following motion patterns: moving both hands in a circle, arching the back, bending the body to the left,
bending the body to the right, forward bending, backward bending, twisting the body around the vertical axis, raising both hands, twisting the body around
the horizontal axis, jumping and deep breathing.
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Fig. 2. The motion pattern data is incoming the motion symbol in the
top layer. The motion symbol is a parent motion symbol and two motion
symbols forming the parent motion symbol are child motion symbols. The
system selects one child motion symbol with the larger likelihood that
the motion symbol generates the motion pattern data. The selected motion
symbol becomes a parent motion symbol, and one child motion symbol is
chosen as recognition result in the same manner. This iteration leads to fast
motion recognition.

N − 1 previous motion symbols. Each edge in the motion

symbol graph is expressed by the transition probability

P (λupper[k] | λupper[k − N + 1], · · · , λupper[k − 1]). Note

that the segmented motion pattern data Ok is recognized as

the motion pattern symbols λupper[k], the abstraction level

of which is manually given. The transition probability can

be derived as :

P
(

λi|λ
N−1

1

)

=
C(λN−1

1 , λi)

C(λN−1

1 )
(2)

where λN−1

1 is a sequence of N − 1 motion symbols, and

the number of sequences λ in the training motion data is

given by C(λ).

The motion pattern data Ok is also recognized as the

motion symbol λbottom[k], which corresponds to a motion

pattern and is located at the bottom in the motion symbol

tree. The output probability that the motion symbol λupper

generates the motion symbol λbottom is estimated as :

P (λbottom | λupper) =
C(λbottom, λupper)

C(λupper)
(3)

where C(λbottom, λupper) is the number of times that the

motion pattern data is recognized as both λbottom and λupper,

and C(λupper) is the number of times that the motion pattern

data is recognized as λupper.

In this way, a sequential ordering of motion pattern data

can be characterized by the transition relationship between

the motion symbols in the upper layer and the output

relationship between the motion symbols in the upper layer

and in the bottom layer. The motion symbol graph is repre-

sented by a set of the transition probabilities and the output

probabilities.

The motion symbol graph can be used to calculate possible

sequences of motion patterns by searching the graph for valid

paths starting at an initial motion symbol. The retrieved se-

quences of motion patterns leads to technologies for motion

prediction and automatic motion generation. The search for

the paths is done based on the following evaluation function

:

E(λbottomk+M

k+1 ) = log P (λbottomk+M

k+1 |λupperk
k−N+1) (4)

=

k+M
∑

t=k+1

log P (λbottom[t]|λupper[t])

+

k+M
∑

t=k+1

log P (λupper[t]|λuppert−1

t−N ) (5)

Eqn.4 represents the likelihood that a sequence of motion

symbols is generated given an initial sequence of motion

symbols, λupperk
k−N+1. The first term and the second term

in Eqn.5 are the output probability and transition probability

respectively. The path with the largest likelihood can be

found by using the A∗ search algorithm. M is the length

of a sequence of motion symbols for motion prediction and

motion generation.
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Fig. 4. The motion data collected during a radio physical exercise is segmented into 185 motion pattern data, which are encoded into the corresponding
HMMs. The HMMs are labeled as motion symbol indices( from 0 to 184). They are located in the bottom layer. In this figure, 185 motion pattern data
are grouped into 13 abstracted motion symbols.

III. EXPERIMENTS

The proposed framework of combining the motion symbol

tree and the motion symbol graph was tested on human whole

body motion data collected in an optical motion capture

system. The motion capture system measures the positions of

34 reflective markers attached to a demonstrator, at a sample

rate of 5ms. The marker positions are converted to positions

of virtual markers attached to a demonstrator through inverse

kinematics computation using a 40 DOF model. The virtual

markers indicate representative points for each body part

of the demonstrator. The motion pattern data is represented

by a time series data of 112 dimensional vectors. The

demonstrator performs exercises from an exercise video for

about 3min. This exercise is call “radio physical exercise” in

Japan.

The captured motion data is segmented into 185 motion

pattern data. The motion symbol tree is established using

the motion pattern data, which are represented by HMMs,

and is hierarchically grouped into a motion symbol tree. The

resulting motion symbol tree is shown in Fig.4. The nodes

in the bottom layer of the tree correspond to the captured

motion pattern data, and the motion pattern data is abstracted

by the nodes in the upper layers. In Fig.4, the 185 motion

pattern data sets form 13 motion clusters. Fig.5 shows motion

patterns in the 13 motion clusters. The motion patterns in

the same cluster are similar. The Ward clustering algorithm

based on Kullback Leibler information between the motion

pattern data is found to be effective.

The motion data is represented by a sequence of the

motion pattern symbols in the resulting motion symbol tree.

The sequence has been learned as a motion symbol graph.

Fig.6 shows the formed motion symbol graph, which consists

of 60 motion symbols. Note that the motion symbol graph

in Fig.6 is bigram model(N=2) for visualization. The 4-gram
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[115]            [138]             [183]              [78]              [129]             [77]                 [49]               [160]              [66]              [61]     

[90]              [89]                [4]                 [144]             [176]             [59]                 [63]               [75]              [114]              [123]     

[20]              [54]                [33]              [132]             [127]             [128]                [131]              [34]              [14]              [105]     

(F)                                     (G)                                                             (H)                                       ( I )                                  

(J)                                                           (K)                                       (L)                                       (M )                                  

(A)                                     (B)                                      (C)                                       (D)                                      (E)

Fig. 5. Two Motion patterns classified into one of the 13 groups in Fig.4 are shown. Motion patterns of forward bending are categorized as Group (A).
Motion patterns of twisting the body are included in Group (F). Motion patterns of bending the body to the right and left are categorized as Group(E) and
(H) respectively. Similar motion pattern data are classified into the same Group.
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Fig. 6. The motion graph shows the bigram (N = 2) for visualization.
The transition between the motion symbols can be represented by a edge
in the graph.

is used for motion prediction.

Fig.7 shows sequences of motion patterns predicted from

the observed motions. Note that 8 motion patterns following

the current motion are predicted. Table.I shows the evaluation

result of the motion prediction. The prediction performance

Z is derived as :

Z =
Ncorrect

Ncorrect + Nwrong

(6)

Ncorrect is the number of predicted motion patterns which

correspond to actual motion patterns. If the predicted motion

pattern does not coincide with the actual motion pattern,

the motion pattern is counted as Nwrong . The coincidence

means that an index of the predicted motion pattern symbol

in the bottom layer of the motion symbol tree is equal to

an index of the recognition result of an observed motion

pattern. The number of predicted motion sequences is set

to 10. The prediction performance is 82.2% for a motion

pattern following the observed motion. The motion pattern

which follows subsequently can also be predicted with the

performance of 77.1%. In this way, it can be seen that the

accurate prediction of the motion patterns can be achieved

from Fig.7 and Table.I.

IV. CONCLUSIONS

The contributions of this paper are summarized as follows:

1) This paper presents a motion symbol tree ,which is

formed by encoding motion pattern data into HMMs,

grouping the HMMs by Ward clustering method. Each

group is found to consist of similar motion pattern data

through experiment with a motion capture system.

2) The sequential relationship between motion symbols is

stochastically represented by a motion symbol graph,

where a node corresponds to a motion symbol or

a short sequence of motion symbols, and an edge

corresponds to a transition between motion symbols

or between the short sequences. This paper presents
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Fig. 7. Motion patterns “bending the body to the left and right” are predicted from the motion “arching the back” in [A]. Motion patterns “forward
and backward bending” are predicted during observation of the motion “bending the body to the left and right” [B]. The motion patterns are accurately
predicted from the observation in the same orders as the training radio physical exercise.

TABLE I

PREDICTION PERFORMANCE IS SHOWN IN THIS TABLE. THE MOTION

PATTERNS FOLLOWING THE CURRENT MOTION CAN BE PREDICTED

VERY ACCURATELY. THE PREDICTION PERFORMANCE IS 82.2%. THE

EIGHTH NEXT MOTION PATTERN CAN BE ALSO PREDICTED WITH 65.1%

ACCURACY.

Prediction Term Prediction Performance

1st motion pattern 82.2

2nd motion pattern 77.1

3rd motion pattern 74.2

4th motion pattern 70.2

5th motion pattern 69.7

6th motino pattern 67.4

7th motion pattern 64.5

8th motion pattern 65.1

an approach to predict motion patterns using the mo-

tion symbol graph. The motion can be predicted by

searching for the most probable paths starting at a node

corresponding to the current observation.

3) We tested the proposed framework integrating the

motion symbol tree and the motion symbol graph

on the captured motion data of physical exercise.

The motion following the current observation can be

predicted with 82.2% accuracy. Even when the 8th

next motion pattern is predicted, the accuracy is 65.1%.

The experiment validates the prediction based on the

motion symbol tree and the motion symbol graph.
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