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What Do You Expect from a Robot that Tells Your Future?
The Crystal Ball

Wataru Takano, Hirotaka Imagawa, Dana Kuli¢ and Yoshihiko Nakamura

Abstract— This paper proposes an approach to hierarchy
formation of human behaviors, extraction of the behavioral
transitions, and their application to prediction and automatic
generation of behaviors. Human demonstrator motion patterns
are stored as motion symbols, which abstract the motion data
by using Hidden Markov Models. The stored motion patterns
are organized into a hierarchical tree structure, which repre-
sents the similarity among the motion patterns and provides
abstracted motion patterns. Concatenated sequences of motion
patterns are stochastically represented as transitions between
the abstracted motion patterns by using an Ngram Model,
and the transitional relationships of the human behaviors are
extracted. The behavioral hierarchy and transition model make
it possible to predict human behaviors during observation and
to generate sequences of motion patterns automatically while
maintaining a natural motion stream, as if the system is a ‘“crys-
tal ball” to reflect future behaviors. The experiments validates
the proposed framework by using a developed visualization
system, which shows the demonstrator or the operator the
established hierarchical tree and the transition network of the
motion patterns, predicted behaviors and generated sequences
of the motion patterns.

I. INTRODUCTION

Structuring knowledge about human motion through ob-
servation of human behavior is a notable research issue. The
motion knowledge can be applied to intelligent humanoid
robots which can recognize the human motion and generate
human-like motion autonomously, realistic human-like mo-
tion generation for animated characters, and motion analysis
during sports training or rehabilitation.

In robotics, there has been a long standing research
work to develop algorithms of motion learning by imitation
for robots [1]. Especially, various approaches to symbolize
motion patterns through observation have been proposed.

Tani et al. describe an approach for modeling robot
motion patterns by using Recurrent Neural Networks with
Parametric Bias (RNNPB) [2]. Motion patterns are abstracted
by a parameter bias layer added to an input layer in a
recurrent neural network. Hidden Markov Models (HMMs)
have been a prominent technique for motion pattern sym-
bolization [3][4]. Motion patterns have been encoded by
sets of parameters of HMMs, recognized as the HMMs and
generated by the HMMs. However, clustering and sequential
relationships between the motion patterns are not represented
by these frameworks.

W. Takano, H. Imagawa and Y. Nakamura are with Mechano-
Informatics, University of  Tokyo, {takano , 1imagawa,
nakamuraj}eynl.t.u-tokyo.ac.jp. D. Kulié is with

Kadone et al. uses an associative neural networks with
non-monotonic sigmoid functions for hierarchical clustering
of motion patterns [5]. Parameters in the sigmoid function
correspond to a abstraction level. The observed motion are
recognized as motion patterns at arbitrary abstraction levels
by tuning the parameters. However, the time correlation
between the motion patterns is not encapsulated by their
model.

Kuli¢ et al. have been developing algorithms for clus-
tering motion patterns to form a hierarchical tree structure
representing motions learned by robots, and for establish-
ing a directed graph representing transitions between the
motion patterns [6]. Observed motions are abstracted by
using HMMs. The parameters of the model define a distance
between the motions. The motions are clustered based on this
distance to form a hierarchical tree structure. Each node in
the tree represents a cluster of motion patterns, which can
be used for motion recognition and generation. However,
the tree structure depends on some parameters of distance
thresholds for the cluster, which are manually specified. The
parameter tuning requires expertise to construct a desired tree
structure.

Kovar et al. proposed a motion graph [7]. The seamless
motion transition candidates can be detected by distances
between segmentation points of motion data. An edge on the
motion graph corresponds to frames of motion data, and a
node serves as a choice point for connecting motion frames.
A realistic looking motion can be generated under dynamics
of the motion graph. However, the motion patterns are not
hierarchically represented by model parameters to reduce the
dimensionality of the motion.

Sidenbladh et al. proposed a behavioral prediction method
[8]. This method uses the dimensional reduction of motion
data by the principal component analysis and the binary tree
of the low dimensional data. This approach is suitable for
generating motion prediction. The prediction based on a large
database of motion data requires modeling the motion data
as symbols in order to compress temporal spatial data.

A structure of motion primitives is represented by a
context-free-grammar model [9]. A pair of adjacent motion
primitives is grouped incrementally and a tree structure
can be formed. A node in the tree corresponds to a short
sequence of motion primitives. The motion primitives are
not symbolized in various abstraction levels.

This paper describes a framework to extract knowledge
of human motion by forming a hierarchical structure of
motion patterns through binary tree clustering and by es-
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Fig. 1. The motion pattern data is encoded into a motion symbol. Similar
motion symbols are grouped into another abstract motion symbol. The
grouping process forms a motion symbol tree. A motion data stream is
expressed as a sequence of the abstract motion symbols. The sequential
relationship between the motion symbols is stochastically represented by a
motion symbol graph. A current node in the motion graph can be estimated
from an observed motion sequence. Multiple paths starting at the current
node with large likelihood can be retrieved. The paths show future motion
patterns.

abstracted motion patterns. The hierarchical structure can
be constructed by the Ward clustering method. The motion
sequences are memorized as transition probabilities between
the abstracted motion patterns in the directed graph. The in-
tegration of the hierarchical structure and the directed graph
make it possible to predict motion patterns following the
observed motion sequences and to autonomously generate
frequent motion sequences on the transition. An experiment
using a motion capture system verified the validity of our
proposed framework.

The proposed framework is a basic technology for robots
to memorize motion patterns as symbols during observation,
recognize human behaviors as memorized symbols, predict
the human motions through observation and support the
humans by understanding their behaviors.

II. MOTION SYMBOL TREE AND MOTION SYMBOL
GRAPH FORMATION

Fig.1 shows an overview of the motion symbol tree and the
motion symbol graph. The motion symbol tree hierarchically
represents clustering relationships between motion patterns,
and the motion symbol graph represents sequential relation-
ships between the clusters of the motion patterns. The motion
symbol tree and the motion symbol graph realize fast motion
recognition processing, prediction of motion patterns through
observation of whole body human motions, and automatic
generation of frequently observed motion sequences.

A. Motion Symbol Tree

Continuous motion data is automatically segmented into
motion pattern data [10][11][12]. The motion pattern data
O; (i = 1,2,3,---,n) is encoded into the corresponding
HMM )\; (i = 1,2,3,---,n), since the HMM can be used
for both motion recognition and motion generation. n is
the number of the segmented motion pattern data set. The
dissimilarity between the HMMs, \; and J);, is defined by
Kullback Leibler information :
d(Xis Aj) +d(Nj, N)

2

T;
where P(O|)) is the probability that the HMM A generates
the motion pattern data O, and T; is the length of the motion
pattern data O;. The motion pattern data can be grouped
into abstracted motion patterns based on the dissimilarity by
using the Ward clustering method. When the dissimilarity
between A4 and "¢ is smallest, these two HMMs are
grouped into AP27¢"t which is optimized by using training
motion pattern data encoded into A§"? and A", The
incremental grouping forms a hierarchical tree, where a node
in the bottom layer represents HMMs corresponding to each
motion pattern data and a node in the upper layer represents
HMMs corresponding to multiple motion pattern data. Since
the HMMs abstract motion pattern data, the HMMs and the
formed tree are called “motion symbol” and “motion symbol
tree” respectively.

The constructed motion symbol tree can be used to

recognize observed motions as motion symbols in various
abstractive resolutions according to following steps:
stepl The observation O is given to motion symbol \Pa7e"t,
step2 The likelihood that the observation O is generated by
motion symbol A{"¥? or Ashi!d is computed, where the
motion symbols, )\ih”d and )\gh“d, correspond to child
nodes of the motion symbol \PaT¢nt,
The motion symbol (A{""4 or \$"i!) with the largest
likelihood becomes the parent motion symbol, and go
back to stepl. If the motion symbol is located on the
bottom layer and it has no child motion symbol, the
iteration processing is terminated.

D(\i, Aj) = (1)

d(Xi, Aj) =

step3

This computation allows for fast motion recognition.

B. Motion Symbol Graph

Continuous motion data is recognized as a sequence of
the motion symbols. The sequential relationship between the
motion symbols can be stochastically modeled by an ergodic
HMM, where motion symbols are generated by each node
through node transition. However it is difficult for the ergodic
HMM to learn a large amount of the sequential relationship.
The relationship need to be learned by a simple directed
graph, where each node represents a motion symbol and each
edge represents a transition between the motion symbols.

N-gram model is used for the motion symbol graph in
this paper. N-gram is a stochastic model, which takes the
assumption that each motion symbol depends only on its
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Fig. 3. The demonstrator performs radio physical exercises. Human whole body motion data of the demonstrator is collected in an optical motion capture
system. The radio physical exercise consists of following motion patterns: moving both hands in a circle, arching the back, bending the body to the left,
bending the body to the right, forward bending, backward bending, twisting the body around the vertical axis, raising both hands, twisting the body around

the horizontal axis, jumping and deep breathing.
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Fig. 2. The motion pattern data is incoming the motion symbol in the
top layer. The motion symbol is a parent motion symbol and two motion
symbols forming the parent motion symbol are child motion symbols. The
system selects one child motion symbol with the larger likelihood that
the motion symbol generates the motion pattern data. The selected motion
symbol becomes a parent motion symbol, and one child motion symbol is
chosen as recognition result in the same manner. This iteration leads to fast
motion recognition.

N — 1 previous motion symbols. Each edge in the motion
symbol graph is expressed by the transition probability
P (Avrrer[k] | AvPPeT[k — N + 1], -+, A*PPe" [k — 1]). Note
that the segmented motion pattern data Oy, is recognized as
the motion pattern symbols A“PP¢"[k], the abstraction level
of which is manually given. The transition probability can
be derived as :

COONN)
PNIAYTY) = = 2
( ‘ 1 ) C()\i\ffl) ( )
where )\f[ ~! is a sequence of N — 1 motion symbols, and

the number of sequences A in the training motion data is
given by C'(X).

The motion pattern data Oy is also recognized as the
motion symbol A’°**™[k] which corresponds to a motion
pattern and is located at the bottom in the motion symbol
tree. The output probability that the motion symbol \“PPe"

generates the motion symbol \*°*°™ is estimated as :

C()\bottom , /\upper)

O()\upper) (3)

P()\bottom | /\upper) _

where C/(\Pottom \upper) js the number of times that the
motion pattern data is recognized as both A\*°*°™ and \vPpPer
and C(\“PPe") is the number of times that the motion pattern
data is recognized as A\“PPe",

In this way, a sequential ordering of motion pattern data
can be characterized by the transition relationship between
the motion symbols in the upper layer and the output
relationship between the motion symbols in the upper layer
and in the bottom layer. The motion symbol graph is repre-
sented by a set of the transition probabilities and the output
probabilities.

The motion symbol graph can be used to calculate possible
sequences of motion patterns by searching the graph for valid
paths starting at an initial motion symbol. The retrieved se-
quences of motion patterns leads to technologies for motion
prediction and automatic motion generation. The search for
the paths is done based on the following evaluation function

Btk ) = log Pt yert ) @)
k+M
— Z logP(/\bOttom[tH)\uPPET[t])
t=k+1
k+M
+ Y log PONPPTHINPPTITN) ()
t=k+1

Eqn.4 represents the likelihood that a sequence of motion
symbols is generated given an initial sequence of motion
symbols, )\”pperﬁf N1+ The first term and the second term
in Eqn.5 are the output probability and transition probability
respectively. The path with the largest likelihood can be
found by using the A* search algorithm. M is the length
of a sequence of motion symbols for motion prediction and
motion generation.
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Fig. 4. The motion data collected during a radio physical exercise is segmented into 185 motion pattern data, which are encoded into the corresponding
HMMs. The HMMs are labeled as motion symbol indices( from O to 184). They are located in the bottom layer. In this figure, 185 motion pattern data

are grouped into 13 abstracted motion symbols.

III. EXPERIMENTS

The proposed framework of combining the motion symbol
tree and the motion symbol graph was tested on human whole
body motion data collected in an optical motion capture
system. The motion capture system measures the positions of
34 reflective markers attached to a demonstrator, at a sample
rate of Sms. The marker positions are converted to positions
of virtual markers attached to a demonstrator through inverse
kinematics computation using a 40 DOF model. The virtual
markers indicate representative points for each body part
of the demonstrator. The motion pattern data is represented
by a time series data of 112 dimensional vectors. The
demonstrator performs exercises from an exercise video for
about 3min. This exercise is call “radio physical exercise” in
Japan.

The captured motion data is segmented into 185 motion
pattern data. The motion symbol tree is established using

the motion pattern data, which are represented by HMMs,
and is hierarchically grouped into a motion symbol tree. The
resulting motion symbol tree is shown in Fig.4. The nodes
in the bottom layer of the tree correspond to the captured
motion pattern data, and the motion pattern data is abstracted
by the nodes in the upper layers. In Fig.4, the 185 motion
pattern data sets form 13 motion clusters. Fig.5 shows motion
patterns in the 13 motion clusters. The motion patterns in
the same cluster are similar. The Ward clustering algorithm
based on Kullback Leibler information between the motion
pattern data is found to be effective.

The motion data is represented by a sequence of the
motion pattern symbols in the resulting motion symbol tree.
The sequence has been learned as a motion symbol graph.
Fig.6 shows the formed motion symbol graph, which consists
of 60 motion symbols. Note that the motion symbol graph
in Fig.6 is bigram model(N=2) for visualization. The 4-gram
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Fig. 5. Two Motion patterns classified into one of the 13 groups in Fig.4 are shown. Motion patterns of forward bending are categorized as Group (A).
Motion patterns of twisting the body are included in Group (F). Motion patterns of bending the body to the right and left are categorized as Group(E) and
(H) respectively. Similar motion pattern data are classified into the same Group.

Z is derived as :

Ncorrect
Z = 6
Ncorrect + Nwrong ( )

Neorrect 18 the number of predicted motion patterns which
correspond to actual motion patterns. If the predicted motion
pattern does not coincide with the actual motion pattern,
the motion pattern is counted as Ny.ong. The coincidence
means that an index of the predicted motion pattern symbol
in the bottom layer of the motion symbol tree is equal to
an index of the recognition result of an observed motion
pattern. The number of predicted motion sequences is set
to 10. The prediction performance is 82.2% for a motion
pattern following the observed motion. The motion pattern
which follows subsequently can also be predicted with the
performance of 77.1%. In this way, it can be seen that the
accurate prediction of the motion patterns can be achieved
from Fig.7 and Table.I.

IV. CONCLUSIONS

Fig. 6. The motion graph shows the bigram (/N = 2) for visualization. The contributions of this paper are summarized as follows:

The transition between the motion symbols can be represented by a edge 1) This paper presents a motion symbol tree ,which is

in the graph. formed by encoding motion pattern data into HMMs,
grouping the HMMs by Ward clustering method. Each
group is found to consist of similar motion pattern data
through experiment with a motion capture system.

2) The sequential relationship between motion symbols is

i d f ti diction.
18 used of mohion prediction stochastically represented by a motion symbol graph,

Fig.7 shows sequences of motion patterns predicted from where a node corresponds to a motion symbol or
the observed motions. Note that 8 motion patterns following a short sequence of motion symbols, and an edge
the current motion are predicted. Table.I shows the evaluation corresponds to a transition between motion symbols
result of the motion prediction. The prediction performance or between the short sequences. This paper presents
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Fig. 7.  Motion patterns “bending the body to the left and right” are predicted from the motion “arching the back” in [A]. Motion patterns “forward
and backward bending” are predicted during observation of the motion “bending the body to the left and right” [B]. The motion patterns are accurately
predicted from the observation in the same orders as the training radio physical exercise.

TABLE 1 . .
the Promotion of Science.
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tion symbol graph. The motion can be predicted by Interactive Communication, 2009, pp. 1210-1215.
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predicted with 82.2% accuracy. Even when the Sth tion of sequential data,” in Advances in Neural Information Processing
) ’ System, vol. 14, 2001.
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