
A System on Chip approach to enhanced learning in interdisciplinary
robotics

Anders Stengaard Sørensen Simon Falsig

Abstract— To sustain advanced interdisciplinary teaching
and learning in the rapidly growing and diversifying field of
robotics, we have successfully employed FPGA based System
on Chip (SoC) technology to provide abstraction between
high level software and low level I/O- and control hardware.
Our approach is to provides students with a simple FPGA
based framework for hardware access, and hardware I/O
development, which is independent of computer platform and
programming language, and enable the students to add to,
or change I/O hardware in accordance with their skills. We
have tested the framework in an embedded systems course and
various student projects, and have found that it greatly enhance
the students abilities to control hardware from software, and
dramatically reduce the time spent on software ↔ hardware
interfacing. As the framework is also scalable, it can support
projects from controlling a single LED, to complex modular
and aggregated robots with demands for high bandwidths and
low jitter in the control loop.

I. INTRODUCTION

When we view “robotics” as the art of using computers
to interact with the physical world through sensors and actu-
ators, the field is obviously highly concerned with interdis-
ciplinary connections between the scientific and engineering
fields of:

1) The physical processes we want to interact with
2) The relevant mathematics and computer sciences al-

lowing us to develop algorithms and programs for the
application

3) The interface between 1) and 2) — typically low-level
software, embedded computers, I/O electronics, and
signal conditioning.

Naturally, our students specialize in certain estab-
lished fields like mechanical-, electronic-, and software-
engineering, but by applying problem based and project
oriented learning, with robotics as the main theme, we
encourage the students to apply everything we teach to
robotics, and hence lay a good foundation for interdisci-
plinary cooperation and projects along their study path and
later careers.

A. Inhibitors

One of the major inhibitors we encounter in interdisci-
plinary learning, is the increasing complexity of the indi-
vidual fields as the students progress, illustrated in figure 1.

A. S. Sørensen is with the Faculty of Engineering, the Mærsk Mc-Kinney
Møller Institute, University of Southern Denmark, Campusvej 55, 5230
Odense M, Denmark anders-s@stengaard.net

S. Falsig is with the Faculty of Engineering, the Mærsk Mc-Kinney
Møller Institute, University of Southern Denmark, Campusvej 55, 5230
Odense M, Denmark sifa@mmm.sdu.dk

Algorithms & Math (software)

Physical process (mechanics)

Interface (embedded system)

Bachelor level Master level

Fig. 1. Complexity progression in robotics educations

Early in the education, the courses are quite similar across
different engineering fields, but as the educations progress,
students have to specialize within certain subsets, defined by
the educational profiles available, creating divergence and
the well known dilemma between specialization and gener-
alization. As our educations are research based, there is an
underlying bias toward specialization, reducing the tolerance
for the complexities involved in interdisciplinary projects
at higher levels in the education, as these complexities are
not relevant from an academic point of view, but merely
represents unwelcome hassle.

B. The SW ↔ HW gap

One of the major contributors to unwanted complexity is
the necessary interface between the physical world and the
algorithms we want to control it. In junior projects this com-
plexity can easily be hidden inside standardised equipment
like LEGO-mindstorms, LabView or other commercially
available products. But in senior projects, it is common to
encounter situations where such solutions no longer live
up to demands for performance, interfaces, programming
methodology, size, power consumption etc.

As students — or professors, interested in applying al-
gorithms to the physical world are hardly also interested in
the embedded systems domain of electronics, low-level pro-
gramming and computer architecture; the gap of interfacing
between algorithms and the physical world become a serious
inhibitor, unless the complexity is well hidden.

Imagine a simple system, where the position of a motor
has to be controlled by high-level software (Application).
The high-level software reside on a PC, and the motor is
controlled by an embedded computer, connected to the PC
through a field-bus. Conceptually, we imagine that the appli-
cation software just commands the mechanics, as shown in
Fig. 2(a), but as shown in Fig. 2(b), the details are somewhat

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4050



Robot PC
M
e
c
h
a
n
ic
s

A
p
p
li
c
a
ti
o
n

(a) Conceptual path

Comm
Linklayer

Comm
HAL

I/O
Library

I/O
HAL

I/O
registers

I/O
function

Signal
conversion

Signal conditioning &
Power electronics

Sensors &
actuators

Robot
Library

Comm
HAL

Comm
Linklayer

Comm
Library

Motion control

CPU

I/O BUS

Bus
interface

Mechanics

OS

PCEmbedded computer

I/O moduleRobot

Application

OS

Link, network or bus

(b) Typical path

Fig. 2. The complexity imposed by the electronic/computer platform

more involved. The structure of figure 2(b) is typical of
most current interface technologies, and is consistent with
acknowledged commercial and academic interface systems
like PMAC GENERIS [1] LEGO mindstorms and LabView.

The path from application SW to robot mechanics passes
through numerous layers of hardware and software that pro-
vide abstraction from that hardware, like operating systems,
libraries, and motion control. In Fig 2, the red (dark) boxes
indicate the parts that typically change from project to project
due to the intended application — the components we like
to focus on. The white boxes indicate parts that are usually
hidden inside the chosen platform technology, and does not
need to be understood by individual developers. The blue
(light) boxes indicate components it is often necessary to
change, adapt or create to achieve the application goals. On
top of the complexity of the embedded system itself, comes
the programming languages and programming paradigms
that impose themselves when developing software for the PC
application, and the embedded software. Typically an object
oriented paradigm, implemented in Java, C# or C++ is used
for high-level programs, while the Hardware Abstraction
Layer (HAL) parts are usually developed from a procedural
programming paradigm, using plain C or C++.

An additional source of complexity, is the issue of the
signal delays that are inherent in all CPU based systems,
as the CPU has to share it’s attention sequentially between
the various software components. Junior projects can be
designed so this factor can be ignored, but in advanced
projects it creates a whole new dimension of complexity, in
terms of real-time software architectures or multiprocessor
solutions that ensure that latency and jitter can be bounded.

C. Hiding interfacing complexity

The universal way to hide complexity, is for the design-
ers of the embedded system to make generalizations and
compromises in accordance to the intended application area,
and present the resulting functionality through a number
of well documented interfaces. This approach operate on a
scale, from a complete “black box”, where everything inside
is hidden and unchangeable, to a complete “white box”,
where the user is empowered to change everything inside

the embedded system — provided he has the knowledge
and experience to do so. For example, most commercial
robot arms come with “black box” controllers, that allow
you to control the arm from a C++ program under a certain
operating system, but not to change or add anything inside
the robot controller, or to write applications under a different
operating system. The usability is high, but flexibility is
low. Contrary to this, many educational robots come with
complete white box interfaces, based on fully documented
computer platforms, equipped with open-source software.
Anyone who has the proper skill can change anything he
wants. Here flexibility is high, but usability is low if you are
not an expert in embedded systems technology.

In our experience, a claim that:

Flexibility× Usability× Performance = Constant

Would be a reasonable summary of the dynamics involved
in using software to hide interface complexity, as descibed
above.

D. Flexible hardware

One of the core reasons for system complexity and perfor-
mance limitations, is the inflexibility of traditional electron-
ics, that require all flexibility and abstraction to be created
by software. With the advent and maturity of reconfigurable
hardware like Field Programmable Gate Arrays (FPGA’s)
it is possible to lower the overall complexity of a system,
by using reconfigurable hardware to provide flexibility and
performance combined.

An FPGA is an integrated circuit, containing an array
of thousands to millions of “logic cells” that each perform
a very simple, configurable digital function — like a gate
or flip-flop. The logic cells are connected internally by
a massive array of crisscrossing wires with configurable
connections. By configuring and combining a number of
cells, more complex digital functions like registers, coun-
ters or state machines are realised. An FPGA can thus be
configured into any digital function imaginable, from AND-
gate to microprocessor. Large FPGA’s can easily contain all
the components of a standard computer system, and thus,

4051



a completely flexible embedded computer can be created
within a single IC — much like having your own IC factory.

The configuration of individual logic cells and connections
are derived by synthesizing software, from a description of
the desired functionality. This description is written in a
hardware description language like VHDL, which is syn-
tactically similar to common programming languages. The
development process is very similar to software development,
involving a source-file hierarchy, that is processed into a
binary file that can be downloaded into the FPGA to config-
ure it. No universal name for the configuration data has yet
evolved, but we chose to refer to it as gateware.

Designing a system around an FPGA gives a whole new
approach to flexibility as we can now create the hardware
platform exactly as we like it, and thus reduce the need
for software to make up for inadequate or incompatible
hardware. A very important observation, is that a variable
number of information processing units (state machines)
can exist and operate in parallel, each with bandwidths
exceeding a 100 million operations per second, in a 10e
FPGA, allowing even simple FPGA’s to outperform micro-
controllers in terms of I/O flexibility and performance.

E. Previous work

Convinced that the flexibility of FPGA’s can upset the tra-
ditional balance between flexibility and abstraction, we have
created a FPGA based framework for interfacing software to
robots.

The framework has evolved over many stages, starting
with FPGA based flexible I/O, as part of a generic embedded
control node [2], [3] and [4]. This work was concerned
with distributed network nodes, where the FPGA was used
to implement a flexible I/O interface that allowed the node
to assimilate common robotics mechanisms into a common
control network.

We have then integrated the whole distributed node into
the FPGA, and created our own fiber optical network to
connect the nodes into a closely coupled system intended
for rapid systems prototyping in research projects[5]. This
resulting framework, which we refer to as TosNet, has
been tested with a number of master thesis projects, which
encouraged us to make a simplified version of the framework
(µTosNet) for smaller student projects and teaching. [6]

Others have reported on the learning benefits of FPGA’s
for rapid prototyping [7], but we have not yet encountered
other teaching efforts with an integrated communications
framework.

II. THE FRAMEWORK AND IT’S COMPONENTS
TosNet is designed to allow continuous time data to be

exchanged transparently between a number of distributed I/O
nodes and one or more computers controlling the system
using the distributed I/O, as shown in Fig. 3. Basing it on an
FPGA allow most of the abstraction to be done in gateware,
simplifying the software and the entire system. The following
is a short introduction. A full description of the frameworks
can be found in [5] and [6]. If you would like to use TosNet,

Robot
Library

StdIO
Library

UART
HAL

Shared
I/O

RAM

P
ro

to
c

o
l

S
t 

m
a

c
h

in
e

Shared
I/O

RAM

Shared
I/O

RAM

P
o

w
e

r 
&

s
ig

 c
o

n
d

S
e

n
s

o
rs

 &
a

c
tu

a
to

rs

M
e

c
h

a
n

ic
s

P
o

w
e

r 
&

s
ig

 c
o

n
d

S
e

n
s

o
rs

 &
a

c
tu

a
to

rs

M
e

c
h

a
n

ic
s

S
ig

n
a

l
c

o
n

v
e

rs
io

n
S

ig
n

a
l

c
o

n
v

e
rs

io
n

I/
O

fu
n

c
ti

o
n

I/
O

fu
n

c
ti

o
n

OS

UART

Application

U
A

R
T

PC

Bridge

Robot

Robot TosNet node

Fig. 3. The structure of TosNet

we have made it available as free gateware on the FPGA and
SoC community Opencores.org

A. Overall

The TosNet framework is a set of interconnected nodes,
where each node contain the following gateware modules
specified in VHDL:

• A network interface binding it together with the other
nodes through a ring architecture network with point to
point optical connections.

• A RAM, that is mirrored across the network. All nodes
have a designated area of the RAM that only they can
modify, but all nodes can read the entire content. The
RAM thus has the role of global distributed I/O register.

• A number of I/O components, that interact with a subset
of the RAM registers, to perform their I/O function,
in cooperation with necessary (analog) circuitry outside
the FPGA.

B. Connection to host computer

In order to connect a TosNet system to a computer, one
of the nodes has to take on the role of “bridge” between
TosNet, and whatever means of communication used by
the Computer. The interface toward the computer can be
exchanged without changes to the rest of the system. We
have developed bridges for PCI-express, Ethernet, and for
asynchronous serial communication via a USB UART or RS-
232.

C. Shared memory

The heart of the framework is the shared memory that
implement the distributed I/O registers. We chose this model,
as it represents a simple and understandable abstraction of
continuous-time signals, as global variables. If TosNet is
interfaced to a computer with a memory bus like PCI or
PCI-express, the variables will simply be directly available in
the computers address space, to be used in any programming
language allowing direct memory access. Using an UART or
Ethernet bridge to TosNet, require the memory registers to be
accessed through a protocol. For practical reasons, the shared

4052



memory is organized as 32-bit wide, but there is no need for
a 1:1 mapping between memory cells, and I/O functions, so
it is easy to write the I/O functions in a way that utilize both
shorter and longer widths.

D. I/O functions
As common FPGA’s can only implement digital logic,

not analog circuitry, the I/O functions must be divided
between the digital logic that reside in the FPGA, and the
analog electronics that reside outside the FPGA. The analog
electronics needed for most applications is quite simple, so
the problem can be solved either by having a selection of
standard boards for experiments and teaching, or by the user
designing a “signal conditioning circuit” specifically for the
application at hand.

Over time, we have accumulated a small library of com-
monly used I/O functions, so we can quickly configure a
system for a specific combination of I/O functions. Each
entry in the library is the VHDL source files for the digital
I/O, along with design files for the matching external analog
circuitry.

E. Performance
The system performance is defined by the 10Mbps

TosLink transceivers used to implement the distribution of
the RAM, and the number of exchanged variables. In a
system with a total of 64 32-bit variables shared, the cycle
frequency will be 10MHz/(64×32) ' 4.8kHz. The cyclic
nature of the network ensure the cycle frequency is jitter
free. Enabling high performance control to take place across
the system. The high cycle rates and absence of jitter exceed
the performance demands of all our previous motion control
projects.

F. The view as I/O designer
If you plan to develop a TosNet I/O function, your

interface will be the address- and data-bus of the shared
memory, along with signals to control the double buffering.
Your job is then to develop a state-machine that performs
the desired I/O function, exchanging relevant information
with the RAM. This interface is completely invariant to what
other nodes are on the network, and which I/O functions and
bridges they contain.

G. The view as application programmer
If you plan to write application programs using TosNet,

you first need to pick the bridge between the host computer
and the TosNet.

a) UART: Interfacing to TosNet through a UART
bridge is very easy, as we use a simple clear text protocol.
Commands and responses can literally be typed and viewed
in a terminal program like Putty, or be handled by string
oriented I/O functions that can access the serial port.

b) Ethernet: Using Ethernet is equally easy, you open
a channel to a socket on the TosNet bridge, and then issue
commands using a simple protocol based on UDP datagrams.
This mode is available to all programming languages that
support socket communication over Ethernet.

c) PCI express: Using PCI-express gives the tightest
integration between the application program and the real
world application. Unfortunately it is more complicated than
the above methods. You must first install the appropriate
device driver between the PCI-express FPGA board and
your operating system, in order to map the TosNet address
space into the computers address space. We have drivers
for certain versions of Linux and Windows. Once that is
accomplished, you can directly read and write the content
of the shared memory in your program, provided your
programming language has this ability. If using a language
without direct memory access, like Java, you must provide
a software component that can interface to the application.

H. µTosNet

In order to reduce cost we have created a reduced version
for single-node systems, where the network for distributing
the RAM has been replaced by a UART bridge, so the entire
system reside on a single node. The RAM has a smaller
address space, but is organized the same way as the full
TosNet, so the I/O functions developed for TosNet can be
used with µTosNet and vice-versa.

III. TEACHING REQUIREMENTS

Our ability to develop TosNet for teaching was based
on the fact, that we we already had robotics, FPGA’s and
software on the curriculum, so it was very easy for most of
our students to put these aspects together, but the students
do not need to be FPGA or VHDL experts to begin with,
as they can start with these skills at a relatively low level.
Below we discuss some of the more practical requirements
for problem based learning in this field.

A. FPGA boards

The TosNet framework was developed on the Xilinx
Spartan-3 family of FPGA’s, and can be used with all
evaluation/demonstration/development-boards containing a
Spartan-3. We have also successfully used TosNet with the
Xilinx Spartan-6 family. If you want to use the UART bridge,
your board should have an RS232 interface, or a UART to
USB bridge. We use Toshiba TosLink optical transceivers
and cables for Inter-node connections in the full TosNet
system, but any tranceiver able to transfer a digital signal
at 10Mbps will suffice. The inter node connection require 1
input and 1 output on each FPGA board.

For our introductory course, we have used the smallest
possible 50k Spartan-3 FPGA (XC3S50AN) on the simplest
possible board, shown in Fig. 4, that allow the students to
use the FPGA in a breadboard. This somewhat unorthodox
approach has the pedagogical advantage of demystifying the
FPGA, forcing the students to design signal conditioning
circuits for the FPGA, as there is no I/O device on the FPGA
board except two LED’s. The board is also so cheap ' 20e
and simple to assemble, that we can allow eager students to
make and take home their own boards, for increased learning
in their spare time.

4053



B. Development software

As we are using Xilinx FPGA’s, we also rely on Xilinx
development tool: “ISE”. Which is available for Linux and
Windows on commercial and educational license, as well as a
reduced license available for free download (ISE WebPack).
The TosNet framework itself is compatible with the free
WebPack, and there is no need for a full version of ISE.

C. Application programming

As the 50k FPGA is too small for the full TosNet, we
have used µTosNet throughout the introductory course, so
the only requirement to the application software platform is
that it can read and write to a serial port. If the students are
reasonably experienced with application programming, they
can easily cope, but if they are inexperienced, a beginners
programming language and a knowledgeable teacher would
be beneficial.

D. I/O circuitry

In our course, one of the objectives was to create simple
I/O circuitry, that would enable the digital FPGA to interact
with the analog world. This require both students and teacher
to be experienced with, and interested in, basic analog and
digital electronic design, which is not always the case.

As our students have limited experience with analog and
mixed-signal electronics, we have found it very helpful to
start out with the breadboard compatible FPGA board in
figure 4, which allow inexperienced students a fast way to
combine the strictly digital domain of the FPGA with simple
filters, signal converters, sensors and actuators.

Alternatively, if a typical FPGA demo/evaluation-board is
used, it will contain different I/O elements which can then
be integrated with TosNet. Some evaluation boards are even
modular, with the option of buying or building different I/O
functions on daughter boards.

IV. THE ROBOTRONIX COURSE

We have tested our framework on 30 students attending
the introductory course in embedded system on the masters

Fig. 4. The FPGA board used for introduction - mounted in a breadboard
where 8 LED’s and a resistor array have been added

of engineering education in robotics. The course, referred to
as “Robotronix” is 5 ECTS (1/6 semester), and run over 6
weeks, with two blocks of 4 × 45 minutes per week. One
Tuesday, one Wednesday. 1 additional week is available for
unsupervised project work in the end.

The course is organized with Tuesdays in class, and
Wednesday in the lab. Tuesdays we cover necessary theory
for the coming lab exercise, Wednesday we spend in the lab.
The lab report must be submitted during the weekend. The
students peer review the lab reports before Tuesday, where
we evaluate the reports on class, and go on to theory on the
next lab exercise.

A. First 3 weeks

As we recruit students with a wide range of bachelors
degrees, from a wide range of countries, with varying tra-
ditions. We spend some time on boosting/refreshing basic
electronics skills. Generally, our students are quite strong in
math and software engineering, but have limited knowledge
of electronics and computer architecture. Before we get to
working with FPGA’s, we spend 3 weeks working with
oscillators, flip-flops and sequential logic. These topics allow
the inexperienced a chance to get up to speed with lab work,
while the experienced get a chance to absorb themselves in
a advanced electronics topics outside the mandatory scope.
During these 3 weeks, we also offer a parallel voluntary 2×4
lesson crash-course in VHDL and FPGA’s, as these topics
are not mandatory with the foreign bachelors we accept for
the course, and some have never worked with them before.

B. In the 4. week

The students are given the FPGA board, along with a users
guide, containing examples of simple I/O related functions
in VHDL.

We ask the students to implement the examples, and to
change them to suit different design criterion. The culmi-
nation of this, is to build a control system for temperature
control using: 1): A 12V fan controlled through a transistor
by pulse width modulation (PWM). 2) A NTC thermistor
and a capacitor, configured as a low-pass filter, which time-
constant is read using a square generator and a timer im-
plemented in the FPGA. 3): A heat source placed near the
thermistor. Although simple, this exercise give the students
a good sense of the potential for I/O applications.

C. In the 5. week

The students are given the source code for µTosNet, along
with an undocumented application example, implementing
some simple timers, PWM generators, and digital inputs
controlled by µTosNet. First we ask them to analyze the
source code and document the I/O functions. Then we ask
them to merge some of the I/O examples from the 4. week
into µTosNet, in order to familiarize them with writing
TosNet I/O functions. The culmination of this, is the ability
to read temperature and control the speed of a fan, from
an application program on their laptops. At this point, the
students became quite excited, as they realized how easy it

4054



was to access the physical world from a high level application
program.

D. The final project

The students have two weeks available for a project,
and are asked to select a more advanced I/O application
to implement in µTosNet, combined with an application
program. In order to demonstrate the ease and flexibility of
using the framework, we suggested some rather different I/O
interfaces, as described in the following section.

E. Course conclusions

Although there was only two weeks at part time available
— giving an estimated 5 to 7 full days for the students to
complete the final project, the students were able to arrive
at quite impressive results.

• Two groups successfully implemented the digital part of
3-phase AC inverters for controlling AC servomotors.
Demonstrating open loop control of both syncronous
and asyncronous AC motors (at reduced voltages for
safety reasons), using a PC program with GUI as user
interface.

• Two groups had implemented RC servomotor con-
trollers, also with their own GUI PC application, al-
lowing them to control a Lynx 5DOF demo robot arm,
and a RoboNova 18DOF android using sliders in their
GUI.

• One group had created both an I/O interface for the
PlayStation control pad, and a VGA interface displaying
the Pong video-game. Running the Pong game-play in
a PC application, they had created a powerful demon-
stration of a real-time feedback system over µTosNet.

• One group had interfaced to a MIDI controller featuring
16 sliders, allowing musicians to control synthesizer
parameters over the MIDI network. Using the FPGA
to intercept the MIDI commands, they could display
the slider positions in a GUI on the PC. They had
also implemented a VGA controller on another FPGA,
and using a separate USB cable, the application could
display the slider position through the second FPGA. A
video of this is available at [8]

• One group interfaced the DC motor of the robot gripper,
and were able to control it from a PC application.
Additionally they also integrated a SONAR rangefinder
with the system, becoming able to measure the distance
from gripper to the nearest surface.

As the circumstances of teaching changes from semester
to semester, it is impossible to draw definite conclusions
from a single course, especially as 7 weeks is a short time
for evaluating the learning effect of a new approach. Some
differences from previous micro-controller based courses are
however so significant that we feel safe in concluding the
following:

• TosNet has made it feasible to replace CPU/micro-
controller based interfaces with FPGA based in the
course.

• The students have been able to utilize the flexibility and
performance of the FPGA, to create combinations of
I/O interfaces that exceed the abilities of normal micro-
controllers.

• The students have been able to write high-level appli-
cation programs in JAVA and C# that interact with their
I/O applications through µTosNet.

• The TosNet/FPGA approach have ensured that the
students have avoided the conventional timing- and
resource sharing challenges of CPU based interfacing.

• Considering the two week (part time) time-frame for
the final project, the students have been able to come
up with impressive and diverse applications.

• The unanimous feedback from the students is that they
are impressed and pleased with the frameworks ability
to offer them focus on the SW application and I/O
interface, without dragging them into the particulars of
communication electronics and protocols.

• Approximately 1/3 of our students had no prior expe-
rience with FPGA’s and VHDL. Our strategy of a 2×4
lesson crash-course made it possible for those students
to participate reasonably well, but there is no doubt that
more time should be allocated for learning VHDL.

• The exam revealed that some students had immersed
themselves completely in the application software, and
had been able to write high quality application programs
for I/O functions implemented by other members of
their team. This was contrary to the course description,
but indicated that TosNet can be used by programmers
without insight into the implementation of the I/O
functions.

To summarize, the students have been able to let high-
level software on a PC interact with various aspects of the
physical world, at a relatively high quality, considering the
available time-frame. It is our clear impression that this is
due to the reduced hassle of moving information across the
SW ↔ HW gap, offered by the TosNet/FPGA framework.

V. OTHER STUDENT PROJECTS

After the Robotronix course, we have also used TosNet in
a small number of other students projects. The projects have
been started in the wake of our initial TosNet experiments, by
simply letting students take over our demonstration platforms
after we were finished with them. One of the projects is
particularly interesting, as it was done by a single student as
follow up on the Robotronix course.

A. The 18 DOF Walker

One of our students, Rolf Ugilt, wanted to work further
with TosNet at the same time we were contemplating resur-
recting an obsolete 18DOF walking demonstration robot. We
thus defined an individual course, with the following goals:

• Interface a µTosNet node to the 18DOF walking robot.
• Write a C# high-level program, with a GUI that allow

manual programming of the robot gait.

4055



As the robot uses RC servomotors, controlled by simple
PWM signals, the task is not very complicated. Even so,
Rolf was able to complete the project from scratch, in ap-
proximately 30 hours of work, to a level where he can begin
focusing on kinematics and gait control, without worrying
about the embedded system [9]. In the project originally
creating the walker robot, hundreds of hours were spend on
the 68HC11 based micro-controller system interfacing a PC
to the 18 servomotors [unpublished]

VI. CONCLUSIONS AND FUTURE WORKS

All our experience with the TosNet framework indicate
that it provides a very transparent conduit between high level
application software and I/O functions. As the major parts
of the framework is implemented in reconfigurable hardware
(gateware), there are no performance issues, or derived issues
about resource sharing, timing, deadlocks etc. which is a
major reason for the transparency of the abstraction our
framework provides.

By utilizing popular communication technology like
UART, USB and Ethernet as bridge between our framework
and the application, we have bypassed many common prob-
lems of compatibility between I/O devices, operating systems
and programming languages, and have arrived at a method
which is completely platform and language independent, as
our framework can be accessed by any application that can
access a serial port or an Ethernet socket.

The price of this approach over memory mapping is a
dependency on the operating system and programming lan-
guage to handle the communication. We have no guarantees
about the latency and jitter when we do not handle the
information ourselves all the way.

On the other hand, when concerned with teaching, poten-
tial latency and jitter can be a small price to pay for the
boost in efficiency and focus on the relevant subject matter.

A. Conclusions

It was evident that the µTosNet framework worked very
well, and that it enabled the Robotronix students to focus on
the subject matter of application programming and low-level
I/O interfaces, without any distractions from intermediate
layers.

This focus is a reasonable explanation for the impressive
progress they made in the small final projects, and is a strong
indication that our framework does indeed boost problem
oriented learning in robotics.

B. Future Works

The preliminary success in both teaching and research
projects, prompt us to continue development and dissemi-
nation of the TosNet Framework.

a) More projects: Is the way to generate more expe-
rience and ideas. We will start up a batch of master thesis
projects using TosNet in Septermber 2010, and by making
the Framework available at OpenCores.org, we hope others
will use, comment and contribute to the framework.

b) The library of I/O functions: is still very informal
and ad-hoc. We see a formalized and well kept library as
a major way of saving students, researchers and technicians
time, so we will increase our focus on this part.

c) The effect of the OS on latency and jitter: Is a very
relevant issue, as it is very tempting to let the high level
application handle closed loop feedback, at least in teaching
and during experimental project phases. We have actually
been surprised about the lack of reported problems with OS
generated jitter. We have a suspicion, that hyper-threading
and dual-core processors are responsible for reducing the
OS generated jitter, and we would like to investigate this
question further.

d) Real-time Ethernet: As we are working with the
real-time Ethernet derivative “powerlink” in other projects,
it will be very natural to create a powerlink based bridge to
support easy real-time communication between the PC and
the Bridge. Powerlink is also well suited as a node to node
medium to keep the RAM syncronized, so we are considering
Powerlink as an alternative to our own protocol.

VII. ACKNOWLEDGMENTS

The authors will like to thank our skilled and efficient
technician Carsten Albertsen and the students of Robotronics
2009, for their invaluable help with developing and testing
the framework.

REFERENCES

[1] Emilio Ruiz Morales, GENERIS: the EC-JRC generalised software
control system for industrial robots, Industrial Robot: An International
Journal, Vol. 26 Iss: 1, pp.26 - 32

[2] A. S. Sørensen, Modular control of industrial mechanics,
Ph.D. dissertation, 2003, University of Southern Denmark
http://www.stengaard.net/anders-s/Thesis/phd.pdf.gz

[3] A. S. Sørensen, O. G. Jakobsen, P. Favrholdt, H. G. Pe-
tersen,Implementation of a practical reconfigurable manipulator sys-
tem based on hybrid parallel and sequential elements, 2004, Pro-
ceedings from the ”Intelligent manipulation and grasping international
conference” (IMG04), Genoa

[4] A. S. Sørensen, H. G. Petersen, A development of modular robots
for flexible robotic manufacturing units, 2002, in: “Proceedings of the
33nd ISR (International Symposium on Robotics)”, Stockholm

[5] S. Falsig, A. S. Sørensen “TosNet” an Easy-to-use, real-time com-
munication protocol for modular, distributed robot controllers” ,
2009, in “Proceedings from the 2. international Conference on Robot
Communication and Coordination” Odense

[6] S. Falsig, A. S. Sørensen An FPGA based approach to increased
flexibility, modularity and integration of low level control in robotics
research, 2010, to appear in “2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. (IROS 2010)” Taipei

[7] K.C. Aw, S.Q. Xie, E. Haemmerle A FPGA-based rapid prototyping
approach for teaching of Mechatronics Engineering Mechatronics
Volume 17, Issue 8, October 2007, Pages 457-461

[8] M. Green, R. R. Christensen, T. Haastrup Midi on TosNet YouTube
video, 2009 http://www.youtube.com/watch?v=PNwYi--gjuE

[9] Anders S. Sørensen, Simon Falsig, Rolf Ugilt, A step toward plug
and play robotics with SoC technology, 2010, To appear in Proceed-
ings of the 13. international conference on climbing and walking
robots. video1: http://www.youtube.com/watch?v=Gr43OqVB7 4
video2: http://www.youtube.com/watch?v=JX0XHqHAySU

4056




