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Abstract— Classification of spatial regions based on semantic
information in an indoor environment enables robot tasks such
as navigation or mobile manipulation to be spatially aware.
The availability of contextual information can significantly
simplify operation of a mobile platform. We present methods for
automated recognition and classification of spaces into separate
semantic regions and use of such information for generation of a
topological map of an environment. The association of semantic
labels with spatial regions is based on Human Augmented
Mapping. The methods presented in this paper are evaluated
both in simulation and on real data acquired from an office
environment.

I. INTRODUCTION

Humans are constantly trying to make their lives easier.
Service robots capable of operating in human environments
have the potential to improve daily life by assisting humans
in a variety of tasks. Endowing these robots with the ability
to understand and reason about spatial regions such as
individual rooms, as well as understanding the semantic
labels of such spaces could facilitate tasks such as navigation
and mobile manipulation in human environments.

Human environments are typically partitioned into discrete
spaces, such as offices, corridors, living rooms, etc. Such
a partitioning allows humans to organize and enable their
everyday activities, and these spaces typically have specific
purposes and labels. Service robots that understands the par-
titioning of human environments can utilize this information
to better assist humans in everyday tasks. For example, if
a robot is given the command ”fetch the red mug from the
kitchen”, having an understanding of the location and extent
of the region considered ”kitchen” is beneficial.

In this paper, we present a method for building a semantic
map partition in cooperation with a human guide. Given a
metric map that the robot can localize in, the system creates a
semantic map partition. The resulting semantic map partition
provides a probabilistic classification of the metric map into a
set of labels provided by the human guide. The robot can then
use this semantic map partition to navigate to a region with
a specific label, and can determine the maximum likelihood
label for any point in the partition. Additionally, if the robot
is not confident that it knows a likely semantic label for its
current pose in the map, it will prompt the guide to provide
one.
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The paper is organized as follows. We briefly describe
related work in Section II, followed by the motivation of
our research in Section III. We then present our Gaussian
probabilistic regions approach in Section IV. In Section V,
we present some experiments and results both in simulation
and on a real robot. Finally, conclusions and future work are
given in Section VI.

II. RELATED WORK

In recent years, we have seen important developments
in service and assistive robots for domestic applications
and tasks. These works focus on the understanding of the
environment using semantic information in order to cre-
ate a synergistic interaction between humans and robots.
Dellaert and Bruemmer[3] proposed extending FastSLAM
to add semantic information of the environment to each
particle’s map. Several approaches have been presented for
map partitioning, using topological and geometric represen-
tations of the environment. For example, Oberländer [11]
proposed a SLAM algorithm based on FastSLAM 2.0 [9]
that maps features representing regions with a semantic type,
topological properties, and an approximate geometric extent.
The resulting maps enable spatial reasoning on a semantic
level and provide abstract information allowing efficient
semantic planning and a convenient interface for human-
machine interaction. Thrun [16] integrated grid-based maps
to learn the environment using artificial neural networks and
naı̈ve Bayesian integration to generate a topological map by
partitioning the latter into coherent regions.

Another body of work focuses on extracting semantic spa-
tial properties of the environment from 2D and 3D data. Don-
sung and Nevatia [7] introduced a new spatial representation,
s-map, for an indoor navigation robot. This map represents
the locations of visible 3D-surfaces of obstacles in a 2D
space. O’Callaghan [12] developed a new statistical modeling
technique for building occupancy maps by providing both a
continuous representation of the robot’s surrounding and an
associated predictive variance employing a Gaussian process
and Bayesian learning. Ekvall [4] applied an automatic strat-
egy for map partitioning based on detecting borders between
rooms and narrow opening to denote doors or gateways using
different types of features (lines, points, SIFT). ’Rhino’ [2] is
an example of a service robot which integrates localization,
mapping, collision avoidance, planning, and various modules
concerned with user interaction telepresence giving tours on
a museum. BIRON, a mobile Home Tour Robot [15], uses
integrated vision based localization a modular architecture
and extending a spoken dialog system for on-line labeling
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and interaction about different locations in a real, fully
furnished home environment where it was able to learn
the names of different rooms. The approach presented by
Topp and Christensen [18] and [17], provides a separation
of regions that relate to a users view on the environment
and detection of transitions between them. They assumed an
interactive setup for the specification of regions and showed
the applicability of their method in terms of distinctiveness
for space segmentation and in terms of localisation purposes.

III. SEMANTIC SLAM

As robots have to cooperative with humans it is advanta-
geous that they have a shared representation of the space,
preferably a model that is simple for the human to use
as part of commanding the robot and understanding feed-
back. Semantic mapping literature has focused on developing
robotic mapping techniques capable of functionally support-
ing these types of interactions. To perform these tasks, one
of the strategies that is used is to portray the relationship
between a place and the knowledge that is associated with it
e.g.(functionality, objective location), is semantic mapping.
Kuipers [8] proposed the Spatial Semantic Hierarchy (SSH),
which is a qualitative and quantitative model of knowl-
edge of large-scale space consisting of multiple interacting
representations. This map also informs the robot of the
control strategy that should be used to traverse between
locations in the map. This representation is based on the
relationship of objects, actions and the dependencies from
the environment. More recently, Beeson et al. [1] provided a
more specific framework representation of spatial knowledge
in small scale space. This framework is focused on the
robot’s sensory horizon e.g.(global and local symbolic, and
metrical reasoning of the space), but also human interaction.

Existing approaches for robot indoor navigation build an
occupancy grid map using range data from its sensors. These
maps, however, only provide geometric information such
as obstacles and open areas in the environment without a
semantic understanding of it. Martı́nez-Mozos and Rottmann
[10] [14] introduce a semantic understanding of the envi-
ronment creating a conceptual representation referring to
functional properties of typical indoor environments. Pro-
viding semantic information enables a mobile robot to more
efficiently accomplish a variety of tasks such as human-
robot interaction, path-planning, and localization. Ekvall [4]
integrated an augmented SLAM map with information based
on object recognition, providing a richer representation of the
environment in a service robot scenario.

In this work, we focus on providing a semantic partition of
a metric map using semantic labels provided by a human. We
believe this representation could be used to support semantic
reasoning for a variety of mobile robot tasks in indoor
environments. As an example, we present navigation to the
nearest point in a metric map that has a specific semantic
label.

IV. APPROACH

Our goal was to design a system capable of reasoning
about spaces. In contrast to work such as [10], which builds a
topological map on top of a metric map, we instead provide a
continuous classification of the metric map into semantically
labeled regions.

The semantic map layer of our system is a multivariate
probability distribution on the coordinates of our metric map
to a set of semantic labels. This multivariate distribution is
modeled as a Gaussian model. Each of the Gaussians in
the model is based on the robot’s sensor data when it was
provided a label by a human guide. Each spatial region is
represented using one or more Gaussians in our metric map’s
coordinate frame. So, a region with label L and n Gaussians,
each with mean µ and covariance Σ, is represented as:

Region = {L, {{µ1,Σ1}, {µ2,Σ2}, ..., {µn,Σn}}}

A semantic map is then just a collection of such regions,
so a semantic map with m regions would be represented as:

Map = {region1, region2, ..., regionm}

Our system builds these maps partitions of our metric
maps through human guidance. The human takes the robot
on a tour of the space (either by driving the robot manually,
or using a person following behavior), and teaches the robot
typing the appropriate label for the space that it is currently
in. The regional analysis technique is to take a laser scan
measurement, fit a Gaussian to the resulting points, and store
the mean and covariance in the map along with the label
provided by the human.

Using this semantic map partition, the robot can be asked
for its belief of the name of the region it is currently
occupying. This is done by evaluating the Mahalanobis
distance of the robot’s current pose x close by labels coded
as Gaussian region models (Equation 1), and choosing the
region that is closest using this metric.

DM (x) =
√

(x− µ)T Σ−1(x− µ) (1)

This map representation allows for probabilistic classifica-
tion of the map by region label. Additionally, while navigat-
ing through the environment, the robot continuously checks
its position with respect to the semantic map partition. If it
is not sufficiently confident (more than a certain threshold)
that it is in a region with a known label, it prompts the user
to input the name of the current region.

Once the robot has a semantic map partition, users can
request that the robot navigate to one of the regions, such
as ”living room”. The robot can then find the region in the
map with label ”living room”, and calculate the Mahalanobis
distance from its current position to the mean of each
Gaussian in the region. The robot selects the closest of these
as the goal, and sends this to its path planner in order to
autonomously navigate to that region. While traveling, the
robot continuously calculates its confidence of which region
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it is, and stops when it is confident that it is more likely to
be in the goal region than any other region as follows:

Distance to goal <
1

4
∗ Nearest distance to the non-goal

This results in the robot entering a region, but not attempt-
ing to move to the region’s center. Additionally, if the robot
enters the region with the desired label at any point while
navigating to its goal point, perhaps because the path to the
closest point was blocked, it will recognize this and stop
once it is sufficiently in the goal region.

In this work, we only use the semantic map partition for
navigation tasks; however, we believe this map representation
has a number of other applications, such as searching for
objects. For example, if we have a mobile manipulation
platform and ask the robot to ”get the mug from the kitchen”,
our map representation can be used to give a spatial region of
our metric map which should be search, by finding the area
that is labeled as kitchen with at least a certain confidence
level.

V. EXPERIMENTS

Our approach has been implemented and evaluated in sev-
eral experiments. We designed two simulated environments
in Stage[5]1 in which the robot can be taught locations and
navigate between them. Preliminary experiments were also
performed using our Segway RMP-200 mobile platform to
verify our technique on a real robot platform.

A. Simulation Environment

In this simulated experiment, we tested the effectiveness
of our method by providing labels for each of the rooms and
hallways.

Fig. 1. A visualization of the Gaussian regions representing the rooms and
hallways. All the Gaussians are colored in different colors for identification.
This figure is best viewed in color.

The first experiment, shown in Fig. 1, consisted of labeling
each room and each hallway and navigating between them

1Stage is a 2D multiple-robot simulator from the Player project.
http://playerstage.sourceforge.net

in order to test the system’s effectiveness at accepting this
type of navigation command.

The robot is able to successfully navigate with the calcu-
lated trajectory, avoiding obstacles. One of the tests was to
move from a room labeled ”room 9” to ”room 4” in the map
as appears in Fig. 1.

Fig. 2. The robot’s path is obstructed with a simulated block. The robot
is the smaller blue object and the obstacles are the large red cubes.

Shown in Fig. 2, the shortest path was obstructed with a
simulated block and the robot replanned a new trajectory to
reach the goal as can be seen in Fig 3. The laser hits on the
obstacle that blocks the shortest path can be seen near the
robot in Fig. 3.

Fig. 3. Robot path replanned to navigate from room ’9’ to central hallway
and arrived in room ’4’. The blue circle represents the robot, the green line
the robot path and in red the obstacles detected by the laser scan.

For the second experiment, we labelled twenty seven
rooms and a hallway in the map, and left one unknown area
unlabeled, as can be seen in the upper right corner of Fig.
4. The main purpose was to simulate an office environment,
where the transition region between rooms is a hallway. The
robot is able to continuously provide the current location and
navigate from one region to another.

Based on this map classification, we created several dif-
ferent scenarios to test our system. One of the test scenarios,
shown in Fig 5, involved the robot navigating between
two regions with different labels, a room and a hallway,
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Fig. 4. The second simulated office environment used for our experiments.
Colored ellipses represent the Gaussians in our model, and different colors
represent different spaces. This figure is best viewed in color.

represented by Gaussians with means very close to each
other. The robot was requested to navigate from the room
to the hallway and back.

Our system calculated the Mahalanobis distance to find the
closest Gaussian region, but the regions are very close to each
other that the robot only turn and move only a short distance.
This demonstrates that our system will cause the robot to
move into a region until it has a certain confidence level that
it is in the region, rather than stopping on the equiprobable
decision boundary between the regions as shown in Fig 6.

Fig. 5. Visualization of the robot navigating between to regions in the
environment.

Another scenario, shown in Fig. 7 is to drive the robot
through a hallway to an unknown area which has never been
assigned any label. When the robot reached a location that
was not likely to be part of any previously labeled region, it
displayed “I do not know where I am.” and requested that the
user provide the current location’s label displaying “Please
tell me where I am”.

Several more scenarios consisted of teaching the robot
with different orientations and locations inside of the rooms.

Fig. 6. A visualization of the decision boundaries of the regions repre-
senting the rooms and hallways on the map shown in 4. All the Gaussians
are colored in different colors for identification. This figure is best viewed
in color.

Localizing the robot between rooms and hallways worked
better when the user taught new locations to the robot in the
middle of the room as opposed to in the doorways because
the laser hits were more representative of the room’s extent.

Finally, we tested the robot by starting it with no se-
mantic map information, so that it would prompt the user
immediately for a label, which the human guide provided.
The robot then navigated around the environment, and would
stop whenever it was not confident that it knew the label for
the current pose. Upon being provided with a label for the
current location by the human guide, the tour resumed until it
again needed a new label. This resulting map is shown in Fig.
8. This experiment demonstrates our method’s effectiveness
at determining when a new label is required. The robot began
in the left middle room, and ended in the upper right.

Fig. 7. The robot is driven in an unknown area which has not been assigned
any label.
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Fig. 8. Result from starting the robot with no known locations in the
semantic map, and prompting the user when the robot was not confident of
the appropriate label.

B. Real Environment

Our approach has been implemented on a Segway RMP-
200 mobile platform (Fig 9). It is equipped with a SICK
LMS-291 laser scanner, which is used for localization,
mapping and obstacle avoidance, and is controlled by an
on-board Mac mini computer (2.26GHz/Core 2 Duo). We
conducted an experiment in our real office environment (Fig.
10), teaching the robot with 5 different rooms and several
different points in the hall.

Fig. 9. Our robot platform used in our experiments.

The first step was to drive our robot through the environ-
ment while collecting laser data and odometry. The SLAM
gmapping module included with ROS[13], which is based
on the Rao-Blackwellized particle filter technique by Grisetti
et. al [6], was then used to build a metric grid map of the
environment. The map shown in Fig. 11 was then used for
localization in our experiments.

Beginning with the map, the human tour started from
the hallway to one of the three cubicles. When the human
guide stopped, the robot was provided with the name of

Fig. 10. Robotics and Intelligent Machines Laboratory Map.

the location. During the tour, the robot could be queried
for its current location, then the robot would calculate the
Mahalanobis distance to the Gaussians regions and report
the label of the nearest one. If the robot pose was not near
to a previously labelled location, the robot report the location
as “unknown”. Also, the robot can be asked to move to a
specific known location, for example move from ”C-3” to
”LAB 1”. Then, the robot calculates a safe trajectory to the
room using the global map and continuously runs a local
planner to avoid obstacles throughout the environment. When
the robot successfully completed the task, it reported that it
arrived at the current location’s label.

Fig. 11. Generated Occupancy Grid Map for localization used in our
experiments.

VI. CONCLUSION AND FUTURE WORK

We presented a technique for partitioning metric maps into
labeled spatial regions using a Gaussian model. We then
used this representation to perform navigation tasks in the
map, as demonstrated by our preliminary experiments both
in simulation and on a real robot platform.

In future work, we plan to investigate techniques for
automatically labeling regions. One example of how to do
this could be by reading signs that are present in office
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environments. Objects detected by the robot could also
provide information as to an appropriate label for a space,
for example, if a microwave and a toaster are detected, then
”kitchen” might be an appropriate label.

Also, we would like to investigate additional uses for this
map representation such as constraining the search space
when processing a request such as ”fetch the red mug from
the kitchen”.
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