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Abstract— A repertory of nine biomechanical aggressive activ-
ities is investigated in this paper, in our effort to instigate a new
paradigm at aggregating descriptive mathematical models with
evolutionary, symbolic program representations. Such represen-
tations are based on shared biomechanical primitives inspired
from kinematics, dynamics, and energetics. Our intension is
twofold, initially to study the nature of aggressive biomechanical
models and then to classify their physical activities by evolving
expression-trees with biomechanical synthesis. The methodology
targets on evolving expression programs using the Gaussian
Ground-plan Projection Area model, to discriminate among
three aggressive behaviours and recognise the individual actions
involved. For the n-class problem, three programs have been
evolved, each for an aggressive behaviour such as the arm-
Launch, the legLaunch, and the bodyLaunch behaviour, so that
to be able to examine separately the evolvable characteristics
induced. The proposed approach has evidently shown strong
classification and discrimination performances.

I. INTRODUCTION

Genetic Programming (GP) [1], has introduced a variety

of contributions solving various pattern recognition prob-

lems, by proposing new paradigms using principles inspired

from Darwinian evolution. For the multiclass problem, we

introduce an innovative probabilistic fitness function, which

stipulates geometric circles to represent Gaussian distribu-

tions of program evaluations, in a virtual ground-plan pro-

jection (see Fig. 1). The goal of this architecture is to

evolve expression program-trees, which output single nu-

meric values denoting the probability of a pattern being

recognised, as well as the generation of features reflecting

towards a certain pattern. The patterns we investigate regard

aggressive physical activities described by the behaviours

shown in Fig. 2: armLaunches = {punching1 (P), slapping2

(S), hammering3 (H)}, legLaunches = {frontkicking4 (FK),

sidekicking5 (SK), kneeing6 (KK)}, and bodyLaunches =

{pushing7 (PS), pulling8 (PL), headering9 (HD)}. Through

trial combinations of six biomechanical features, depicted in

Table I, GP undertakes to construct a solution discriminating

among these patterns, similar to [2]. The derived solution

is represented by the generation of three evolutionary mod-

els, based on each behavioural type: armLaunches→upperm,

legLaunches→lowerm, and bodyLaunches→inertialm model.

The aggressive pattern recognition task is designated for ubiq-

uitous indoor surveillance, utilising intelligent environments

and mobile robots.

Previously, in the multiclass problem of binary represen-

tations, proposed by [3], a discriminant function is evolved

through training examples for each class, and only samples

belonging to the same class are credited by strengths of

association degrees. In their work, a separate expression-tree

is evolved per class, assessing wether unseen test instances

belong to the class being tested. Similarly, in [4] the binary

problem is decomposed in two binary subproblems letting

GP to evolve a solution based on the class being tested.

Two dynamic boundary determination approaches based on

centre and slotted boundaries, suggested by [5], were used to

generate a single numeric output where a class label is given

after some transformation. In a probability-based approach

proposed by [6], Gaussian distributions have been to construct

fitness evaluations assessing the classification performance

with two different methods: the distribution distance and the

overlapping area, similar to our work.

Outline: Section II presents the aggressive biomechanical

analysis. In section III, the evolutionary architecture is dis-

cussed. Experimental results are demonstrated in section IV,

whereas section V points out conclusions and future work.

Fig. 1: The ground plan projection showing the Gaussian

intersection and the Gaussian extremes with virtual circles.
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(a) (b) (c) (d)

Fig. 2: Biomechanical models. (a) Upperm, (c) Lowerm, (b) Inertialm, (d) Action planes (S: sagittal, C: coronal, T: traversal).

II. BIOMECHANICAL AGGRESSIVE MODELLING

A detailed biomechanical analysis [7] of the nine aggres-

sive, physical activities is discussed in this section. Each

activity is represented by a set of descriptive mathematical

models inspired from kinematics, dynamics, and energetics

categories utilising six biomechanical features (see Table I).

The aim of this analysis is to describe the expressive nature

of aggressive actions, where the derived descriptive formulas

are being used partially to construct expression-trees with

biomechanical synthesis.

A. Kinematics Analysis

1) Upper Strikes: We study the kinematic equations of the

position displacements with respect to the three upper-body

strikes (see Fig. 2(a)): punching, hammering, and slapping.

The first two actions take place on the sagittal plane as Fig.

2(d) depicts, while the third is expressed on the traversal

plane. The equations that describe the position and accel-

eration of the two first actions (Eq. 1) are similar, with only

some differences in the constraints.

x4 = l4
2

sinθ4
y4 = 0 (a)

x5 = x4 + l5 cosθ5
y5 = y4 + l5 sinθ5

(b)

x6 = x5 + l6 cosθ6
y6 = y5 + l6 sinθ6

(c)

(1)

where x4,y4, x5,y5 and x6,y6 define the position xy-

coordinates of the shoulder, elbow, and fist respectively. The

angle θ4 is the angle of the line of shoulders as the torso is

turning to extend the arm, θ5 is the vertical shoulder angle,

and θ6 is the elbow angle. Finally, l4, l5, l6 are the lengths of

shoulder to shoulder distance, shoulder to elbow, and elbow

to hand lengths. For the punching case, the fist must cross a

horizontal trajectory, satisfying the following restriction:

l5sinθ5
+ l6sinθ6

≈ 0 (2)

There are some additional constraints that help to distinguish

one movement from another: the shoulder itself and the

elbow must satisfy the following restrictions for (a) Punching:

θ4,θ5,θ6 ∈ {0,π/3}. (b) Hammering occurs under different

conditions θ4 ∈ {0,π/3}, and θ5,θ6 ∈ {0,π/2}. Slapping

occurs on the traversal plane and involves mostly a twist of

the shoulder line and an extension of the arm (Eq. 3).

x4 = l4
2

sinθ4
y4 = l4

2
cosθ4

(a)

x6 = x4 +(l6 + l5)cosθ5
y6 = x4 +(l6 + l5)sinθ5

(b)
(3)

2) Lower Strikes: We consider three types of leg induced

launches (see Fig. 2(b)): front and knee-kicks (Eq. 4), and

side-kicks.

x1 = l1sinθ1
y1 = −l1cosθ1

(a)

x2 = x1 + l2sinθ2
y2 = y1 − l2cosθ2

(b)
(4)

where x1,x2,y1,y2 give the xy-coordinates of the knee and

foot, l1, l2 are the lengths of the hip to knee and knee to foot,

whereas θ1 and θ2 are the hip and knee angles. Front kicks

and knee kicks share the same set of kinematic equations as

they expressed on the same sagittal plane. However, there is

one constraint that helped us to distinguish this movement

from the front kick (see Eq. 5):

π −θ1 ≈ θ2 (5)

Sidekicks make use of slightly more parameters within the

equations because they are more complex (see Eq. 6).

x0 = l0
2

sinθ0
y0 = 0 (a)

x1 = x0 + l1sinθ3
sinθ0

sinθ1+θ0
y1 = y0 − l1cosθ3

cosθ1
(b)

x3 = x1 + l2sinθ3
sinθ0

sinθ2+θ0
y2 = y1 − l2cosθ3

cosθ2
(c)
(6)

Here, we have added the hip to hip distance (l0), and an extra

angle for the hip (θ3).

3) Inertial Strikes: Inertial strikes (see Fig. 2(c)), include

movements such as pushing, pulling, and head-launches. The

motions of pushing and pulling, shown in Eq. 7, appear

similar differences only in the direction of the action. Such

motions take place in the horizontal axis as there is no

significant change in the other axes if we take into account
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the simplifications mentioned earlier. Mechanically, the head-

strike is an ordinary activity that uses two degrees of freedom

originating from the back and head.

x8 = x7 + l8sinθ8
+ l9 y8 = l8cosθ1

+ l9 (7)

One can easily obtain speeds and acceleration by differenti-

ating the above equations.

B. Dynamics Analysis

1) Upper Strikes: All the upper-body activities are de-

scribed by very similar equations, which are given by the

angular forces of the joint momentums M and inertias J:

M4(t) = J4
d2θ4

dt2 +M5(t) (a)

M5(t) = J5
d2θ5

dt2 +m5g
l5
2

sinθ5
+M4(t)+M6(t) (b)

M6(t) = J6
d2θ6

dt2 +m6g
l6
2

sinθ6
+M5(t) (c)

(8)

where friction and elasticity are ignored as they are not

important in this context.

2) Lower Strikes: The front-kick is a clear movement to

analyse as it typically uses one plane of direction. While the

force originates from the leg being on the ground (see Eq. 9),

in this movement the leg passes through the hip to the other

leg cohesively.

M1(t) = J1
d2θ1

dt2 +m1g
l1
2

cosθ1
+M2(t) (a)

M2(t) = J2
d2θ2

dt2 +m2g
l2
2

cosθ2
+M1(t) (b)

(9)

3) Inertial Strikes: The dynamics of the inertial expres-

siveness of the actions pushing (+) and pulling (−) is

identical, and can be described by Eq. 10, while the dynamics

of the headering action (+) is described by two body axes

(lower back and head) as the models showed earlier.

F(t) = M
d2x7

dt2 + l8M8(t) (a)

M8(t) = J8
d2θ8

dt2 + F(t)
l8

(b)
(10)

where mass M equals to the average human weight. The

impulse is given by the integral of momentums:
∫ t2

t1
Mdt.

C. Energetics Analysis

In the case of punching there are three body parts that

move: the torso that rotates on the traversal plane, and the

motion of the arm and forearm. The kinetic energy of this

system can be then calculated by Eq. 11. All the other

energies of the body segments can be derived similarly. In

the case of mechanical power we engage the product of

momentum and angular velocity: M × θ̇ , for all the body

segments involved.

T = 1
2
J4θ̇4

2
+ 1

2
m5(ẋ5

2 + ẏ5
2)+ 1

2
m6(ẋ6

2 + ẏ6
2) (11)

III. EVOLUTIONARY ALGORITHM, VARIATION

OPERATORS, RUN PARAMETERS, AND FITNESS

A. Program Representation Language

Table I presents the strongly-typed programming language

used for the construction of probabilistic classifiers. The

List argument type, of the six biomechanical features,

receives the entire timeseries signal from a parameter input.

For each primitive a slope sign change method, based on

the directional changes of a vector, undertakes to break the

signal in n fragments equal to the number of extracted slopes.

Thereafter, a mechanical feature evaluation is estimated for

every chunk, and the maximum value among all is returned

in double.

B. Evolutionary Parameters

Our evolutionary algorithm (EA) is an elitist, generational

model genetic algorithm, which promotes diversity with pan-

mictic population. The evolutionary run proceeds for 100

generations, and the population size is set to 100 individuals.

Evolution halts when all of 100 generations have elapsed

for each of the 50 independent runs. Small population with

large generation number, employed to allow GP to search

for appropriate biomechanical primitives for each aggres-

sive behaviour. Ramped-half-and-half with probability < 0.2
performs random sampling of full expression-program trees,

otherwise grow trees are created. This preference towards

grow trees is to avoid bushy ones created by the full, which

engage large amounts of memory, and consequently delay the

evolutionary runs. With initial depth of 4, the trees are allowed

to grow up to medium depth of 12 so that to be interpretable.

During fitness assignment, each program is being evaluated

with 27 input parameter timeseries.

The EA employs a mutation-based variation scheme to

explore the space with probability 0.9, whereas the rest 0.1
is set to perform Koza’s sub-tree crossover [1]. A heuristic

search scheme is defined by a probabilistically governed

TABLE I: Primitive element language for evolving probabilis-

tic classifier programs with biomechanical synthesis.
Function Argument(s) type Returns
acceleration List double· α = [u(t)−u0(t)]/∆t → m/s2

displacement List double
· dx,y = u(t)∆t +

(

1/2α∆t2
)

→ m

force List double· F = mα → N

impulse List double· I = F · t → Ns

power List double· P = Fu(t) →W

kinetic-energy List double
· T = 1/2m

[

u2(t)−u2
0
(t)

]

→ J

+, −, ∗, / double, double double
Conditional Argument(s) type Returns
If-Then-Else boolean, double, double double
and, or boolean, boolean boolean
>, < double, double boolean
Terminal Value Type

Constants
50 reals in range
{0, 1} step 0.02 double

Parameters 27 timeseries double
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application, based on a mixture of standard mutation variation

operators initially presented by Chellapilla [8]. In our scheme,

the λ parameter of the multi-mutation architecture of Eq. 12,

has been set to 6. Unlike to [8], our scheme induces three

groups of operators to (a) enhance diversity: grow and fair,

(b) control bloating: hoist, permut, and fair, and (c)

perform smooth variability: point and term. Eventually, a

tiny probability of 0.0001 has been set for reproduction.

O f f spring = hoist(permut(point(term(fair(grow(Parent))))))
(12)

For the selection mechanism, tournament selection has

been used with dynamically adaptive selection pressure to

promote exploration for the early generations, and exploita-

tion for later ones. Consequently, Eq. 13 uses the factor 0.2
to adjust the range of the individuals being engaged from the

first to the last generation. With the parameters given above,

the adaptive selection pressure sp(g) ranges in the interval

{2,20} individuals. In addition, negative tournament is also

employed by replacing the worst individual with the elitist.

sp(g) =

{

2 if ⌈(0.2 g
G

) ·P⌉ < 2

⌈(0.2 g
G

) ·P⌉ otherwise
(13)

where g is the current generation, G is the total generation

number, and P is the population size.

C. Fitness Function

1) The Gaussian Ground-plan Projection Area (GGPA)

Model: The GGPA model accounts Gaussian distributions as

circles on a ground plan imaginary view, where distribution

are being evaluated from the top as depicted in Fig. 1.

The representation makes use of geometric circles, where

their dimensional properties reflect characteristics from the

Gaussians such as the mean µ and the standard deviation σ ,

to stipulate the centre and the radius of a circle.

Based on this concept, during the evolutionary process each

individual is evaluated through a number of training cases for

each class; hence, every pattern forms a normal distribution

of evaluations with equal samples to the number of training

cases. From such Gaussian distribution, the first σ , which cor-

responds to µ ±1σ ≡ 68%, is exploited as it is the area with

the most essential samples of the most significant evaluations.

The model for each distribution surrogates a geometric circle

to represent the 68% of the evaluation samples, in a ground

plan projection as Fig. 1 shows. A congruence relation is

established between the centre of the circle c and its radius

r, equaling to the distribution’s µ and σ respectively.

A repulsive weight w = 1/d is employed to equalise the

two Gaussians away from each other, thus the closer the dis-

tribution means are, the more repulsive the weight becomes.

This is analogous to the distance d (Eq. 14), showing the

distance of every two distributions (see Fig. 1).

d = |µ1 −µ2| (14)

x1 =
d2 + r2

1 − r2
2

2d
(15)

x2 =
d2 + r2

2 − r2
1

2d
(16)

a(x,r) =
1

2
πr2 − x

√

|r2 − x2|− r2 · arcsin
( x

r

)

(17)

Eqs. 15 and 16 represent the circle’s geometry of the distance

between the centre c and the edge of the half plane, where

the overlapping area intersects the circle [9]. The area of

intersection given by Eq. 17, computes the overlap covered

by the two circles. The overlap area is also defined by the

shared chord o, with the two edge points coming from the

pair of circles denoting the intersection instances (see Fig 1).

There are two extreme cases also shown by Fig. 1. In the

first, the two Gaussians are under full overlap with circle c1

being embedded in c2; this contingency is covered by Eq.

18(b). On the other extreme, Gaussians do not overlap at all

as µ3 shows (according to Eq. 18(a)) with the intersection

area being zero. In the case of normal overlap (18(c)), as

with µ1,2, the sum of the two intersected areas is returned.

area(d) =











0 if d ≥ r1 + r2 (a)
{

πr2
1 if r1 < r2

πr2
2 otherwise

if d ≤ |r1 − r2| (b)

a(x1,r1)+a(x2,r2) otherwise (c)

(18)

A(d) =
1

1
d

+area(d)
(19)

For the sake of convenience, the area derived by Eq. 18 is

normalised as the fraction of Eq. 19 presents, which is a

distance-based metric.

2) Binomial Fitness Function of Gaussians: Assuming a

binary case used to determine the overlapping/intersection

area as a distance metric between the classes i and j, similar

to [6], [4], by correlating the µ with c and the σ with

r. In multiclass pattern classification, the fitness function is

determined by considering the distribution distance between

every two classes. For the N-class problem, there are C2
N =

N!/2!(N −2)! class combinations.

f itness =
1

T

T

∑
i=1

C2
N

∑
j=1

1

1+A(d)i j

(20)

where T is the number of training examples, N is the number

of classes, A(d)i j is the distance of the intersection area for

the index of training examples i and class combinations j1.

3) Ensemble Pattern Classification: An alternative ensem-

ble weighting method called statistical voting, induces 2, 3,

and 4 binomial combinations of ten best programs described

by Eq. 21. The method utilises the generalised mean to

estimate distributions of votes which have similar values. The

exponent p = 10 is set relatively high so that distributions

with more votes to be rewarded. Eventually, the class with

the highest density probability (Eq. 22), derived from the

ensemble assessment, is designated as the class of the pattern.

Esv(x) = argmax
y

f (y) =

[

1

C

C

∑
i=1

(

M

∑
m=1

g(Pm(Pd f = ci|x),ci)

)p]1/p

(21)

1The indexes i and j correspond to identifiers 1 and 2 respectively, as
shown in Eqs. 14 through 18.
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Fig. 3: (a) Fitness and fitness-entropy learning curves of the three models, (b) Bloating paths.

Pd f (µ,σ ,x) =
1

σ
√

2π
exp

(−(x−µ)2

2σ2

)

(22)

where m is the classifier model, tested with M max number

of models, Pm is the probability Pd f of class c (C = max

number of classes), given a testing instance x derived by Eq.

20 [10]. Function g() = 1 if Pm() = c, 0 otherwise.

IV. EXPERIMENTAL RESULTS

The Essex robotic arena was the main experimental hall,

where the data collection took place by five subjects who

expressed physical activity on a full-body standing bag.

Basic safety precautions have been kept, while the subjects’

performance has been recorded by the Vicon 3D tracker

using 27 channels: 9 markers × {x,y,z}, attached on the

head and limbs. The recorded data are in timeseries format

containing 1,000 samples normalised in {0, 1} (Training=
60%, Testing= 40%).

A. Diversity and Fitness

The fitness graphs for all the three models of Fig. 3(a), pre-

sented similar learning behaviour by minimising the training

distance-error to 0.4. There have been some outstanding runs

where the fitness, after the 40 first generations, reached zero,

which is an evidence of overfitting. Moreover, the learning

curves seem to stagnate for the next 60 generations due to

the small population size. Nonetheless, as it has initially been

stated, the purpose of this investigation is to examine the type

of biomechanical features evolved by each model, and the

deduced recognition accuracy.

A phenotypic diversity measure depicted also by Fig. 3(a),

demonstrates that for the upperm and inertialm models, the

fitness entropy (see Eq. 23) for the first 20 generations

showed moderate diversity preserving stable levels. For the

next generations though, the diversity of both models had a

diminishing direction, opposite to the lowerm model which

showed augmented trend; this is an indication of increasing

diversity. The outcome derived from the entropy graphs is that

the two first models suffered from stagnation by recycling

existing genetic material and trapping to local optima. How-

ever, all the models outperformed with similar classification

performance, despite the diminishing diversity.

−∑
k

pk · log pk (23)

where pk is the proportion of the population P, and k is the

occupied partition [11].

A different perspective to our analysis is given by Fig.

3(b), in which the GGPA fitness model shows to guide the

evolution without bloating, as depth and fitness progress

linearly up to a certain level. Moreover, it is also observed that

almost linear direction of the fitness path was followed for

all the models, versus the max size (= 12) and depth over 50

runs. From the graph, the lowerm model seems to evolved

bushy trees with large expansion, engaging continuously

conditional statements, while the average size was below

the maximum. The rest models followed similar behaviour

with smaller lengths and sizes (> 1000 primitives). Intuitively,

we assess that the power of the energy spent, needed from

kick-based activities, was the reason why the lowerm model

dominated in size and depth. Hence, bushy programs loaded

with primitives was the ultimate solution for the model to

perform recognition. An alternative proof for this outcome

is given by the upperm model, which needed less expressive

power. Finally, for the inertialm model the power was minimal

due to slow and low frequency activities.

B. Evolution of Primitives

The average number of primitive biomechanical features

evolved by each model is depicted by Fig. 4, which also

indicates the standard errors sdv/
√

N (where N is the gener-

ation number) of each mean value. The error bars verify our

previously made assumption of the high power needed for
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Fig. 4: Error bars of the six biomechanical features, evolved

for each behaviour to construct a recognition model.

TABLE II: Performance Measures
Model Progs Precision Recall Accuracy F-Measure D-Power

U
p

p
er

m 1 0.60 0.60 0.73 0.60 3.2
2 0.31 0.47 0.53 0.36 1.6
3 0.30 0.34 0.53 0.31 1.8
4 0.20 0.27 0.60 0.22 2.0

In
er

ti
al

m 1 0.40 0.40 0.47 0.40 2.4
2 0.45 0.60 0.67 0.51 2.0
3 0.53 0.70 0.73 0.60 2.4
4 0.47 0.60 0.67 0.52 2.4

L
o
w

er
m 1 0.53 0.53 0.73 0.53 4.0

2 0.27 0.33 0.60 0.29 1.8
3 0.33 0.40 0.67 0.36 3.0
4 0.35 0.47 0.67 0.39 1.8

the lowerm model, following the upperm and inertialm. The

power bars for these models exceed the mean usage of all the

other features. Furthermore, the force feature for the upperm

and inertialm models have been used frequently, which seems

rational for the inertial actions to require higher force to push

or pull an object. Eventually, max usage of features was made

by the upperm model following the inertialm and the lowerm.

C. Performance Measures and Statistics

Table II illustrates the classification and discrimination

performance measures induced by multiple best-programs,

designated for each behaviour. Previous research on multiple

ensemble models done by [6] and [2], showed that the

combination of more than four programs does not increase

the classification accuracy. Therefore, with four ensemble

models we observed classification accuracy from 60% to

73.3%, whereas for the models upperm and lowerm, a single

individual needed to achieve the highest accuracy as the

ensemble method failed. Among all the models where their

precisions and f-measures kept low values, the proportional

completeness validation of the classification (recall) of the

inertialm was high, with the contribution of three programs.

In a closer look at which model performed better, Fig. 5

depicts a comparison test with Anova1. The test for both

figures derived with p values equal to 0.57 and 0.64 for the

accuracy and discrimination respectively, meaning that all the

models achieved similar performance (d f = 11). However,

apart from the fact that almost all the performances appear to

be skewed, the interquartile range of the lowerm emphasises

on the highest possible performances. This shows relatively

symmetrical distributions, with the lowerm dominating.
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Fig. 5: One way Anova1, testing the models’ performance.

(a) Classification accuracy, (b) Discrimination power.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an attempt has been made to provide a

complete foundation on the study of mathematical biome-

chanical models, induced by six mechanical features. Such

features have been employed to evolve solutions for the n-

class pattern recognition of nine aggressive activities. The

guidance of the evolutionary process was accomplished by

an innovative probabilistic fitness measure, which represents

Gaussians of program evaluations with geometric circles,

manifested in a ground-plan projection. Satisfactory results

have been obtained by the recognition performance, with

maximum classification accuracy reaching the 73.3% and

discrimination power up to 3.2 (= 80%).

Our proposal to future investigation is to exploit the induc-

tion of this new evolutionary paradigm, to evolve programs

using biomechanical features related with myoelectrical in-

tensities (EMGs).
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