
 
 

 

  

Abstract— This paper presents a new method for extracting 
planar features from noisy range data. The method encodes the 
local geometric information (surface normals) and global 
spatial information (coordinates) of 3D data points into an 
Enhanced Range Image (ERI) which is then clustered into a 
number of homogeneous groups, called Super Pixels (SPs). The 
Normalized Cuts (NC) method is employed to the graph built 
on the SPs and groups the SPs into planar segments. The ERI 
coding enhances object surfaces and edges while its sensitivity 
to surface normals is suppressed by the NC measure that takes 
into account the spatial information of SPs in computing the 
edge weights of the graph. A binary matrix is constructed to 
represent the spatial and similarity relationships among the 
planar segments. We then employ a search algorithm on this 
matrix to merge homogenous planar segments. The proposed 
approach is compared with a representative plane 
segmentation method in various indoor environments and the 
results demonstrate the efficacy of the proposed method. In this 
paper, rang data are captured from a 3D imaging sensor⎯the 
Swissranger SR-3000. 

I. INTRODUCTION 
NE of the research goals of mobile robotics is to enable 
autonomous navigation of a mobile robot in indoor 

environments (e.g., offices, industrial spaces, household 
environments). The navigational task includes navigating a 
robot from floor to floor in a building. To achieve this 
capability, a robot first needs to perceive its operating 
environment in 3D and then process the 3D data for obstacle 
detection/recognition and perform obstacle avoidance/ 
negotiation. Laser Detection and Ranging (LADAR) [1] and 
stereovision systems [2] have been extensively used in the 
existing research. A LADAR system usually has a low range 
data throughput and is good for 3D map-building with a 
stationary platform. The state-of-the-art 3D Velodyne 
LADAR [3] overcomes this problem by using 64 laser 
sensors. However, it is too big and bulky for an indoor 
robot. A stereovision system is not suitable for 3D dense 
map-building because the stereo matching can not return 
complete depth data in its field of view [4]. Recent 
advancements in range sensing technology have led to a new 
class of 3D imaging sensors, know as Flash LADARs [5], 
[6], [7]. A Flash LADAR illuminates the entire scene by a 
modulated light source. Each cell of the sensor can 
determine the time-of-flight of the modulated signal and 
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thus the depth information of the detected object. In this 
work we use one such Flash LADAR⎯the Swissranger SR-
3000 [6] to acquire 3D range data. We use the SR-3000 
because we are targeting autonomous navigation of a small 
mobile robot in indoor environments. The SR-3000 is well 
suited to our case. It is small in size (50×48×65 mm3), has a 
high data throughput⎯176×144 (25344) data points per 
frame and up to 50 frames per second. In addition, the SR-
3000 works well in featureless environments which is 
advantageous over a stereovision system. However, the SR-
3000’s sensing technology is nascent and its range data has 
relatively large measurement errors (much bigger than that 
of a LADAR [8]) due to its random noise and susceptibility 
to environmental factors (e.g., surface reflectivity). Previous 
research efforts [9], [10] have demonstrated that a proper 
calibration process may reduce the errors in the SR-3000’s 
range data to certain extent. However, it cannot eliminate the 
measurement errors induced by random noise. The noise-
induced range error imposes challenges on segmenting 
range data into its geometric constituents⎯an essential step 
for range data understanding. Since an indoor environment 
typically consists of structures formed by flat surfaces such 
as walls, corridors, and staircases, we restrict this work to 
planar feature extraction of 3D range data. 
 Researchers have attempted to extract planar surfaces of 
range data either in 3D data space ℜ3 [11], [12], [13], [14], 
[15], [16] or from a range image [17], [18], [19]. The 
performances of some of the well known methods are 
compared in [20], according to which the USF method [20] 
may produce relatively low number of under segmented 
regions. The USF method is a region-growing method. It 
first computes the normal vector and a so-called interiorness 
measure for each point. They are determined by fitting a 
plane to its surrounding points within a NN × window. The 
point’s normal vector and the interiorness are and the fitted 
plane’s normal and the fitting error, respectively. To start the 
segmentation process, a point with the smallest interiorness 
value is selected as a seed for region growing. Four-
connected points join the region if: (1) the angle between 
normal of point and normal of the region is within a 
threshold; (2) perpendicular distance between point and the 
region’s plane is less than a threshold; and (3) distance 
between point and the four-connected neighbor in the region 
is below a pre-specified threshold. The region grows 
recursively until no point can further join. A new seed point 
is again selected based on its interiorness measure and the 
process repeats. Another common segmentation approach in 
ℜ3 is to sequentially extract planar surfaces by a robust 
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least-square estimator [11], [16]. The method determines 
and labels inliers of a planar surface by fitting a parametric 
plane model to range data and examining the fitting error. A 
limitation of this type of plane-fitting based methods is that 
the fitting error (i.e., an averaged squared error of the fit) is 
not sufficiently accurate to distinguish inliers from outliers 
and thus may result in misclassification.     
 Extraction of planar surfaces from a range image is 
usually performed on an edge-/surface-enhanced range 
image that encodes surface normals [17], [18]. This type of 
methods tends to locate edges (intersections of planar 
surfaces) accurately but the performance may be greatly 
affected by noises of range data that induce variations in 
surface normals.     

In this paper, we use surface normal and depth 
information to enhance a range image. The scheme of image 
enhancement will be described in section III. Figure 1 
illustrates a range image enhancement by the ERI scheme. In 
the ERI (Fig. 1c) the contrast between objects’ surfaces and 
thus the objects’ edges are enhanced. However, the surfaces 
are corrupted. The corruption (shown as surface roughness) 
is caused by large variations in surface normals induced by 
range noises. The corruption may greatly deteriorate the 
efficiency of the existing local feature based segmentation 
methods [11], [16], [17]. This demands a new segmentation 
method that uses both local and global criteria in segmenting 
the range data.  
 

   
(a)                                  (b)                                   (c) 

Fig.1 The range image and ERI: (a) Actual scene, (b) Range images 
acquired by the SR-3000, (c) ERI of (b). 
 

In the literature of intensity image segmentation, recent 
algorithms [21], [22], [23] [24] based on spectral graph 
theory partition an image using intra-segment similarity 
(local information) and inter-segment dissimilarity (global 
information). It has been shown in [22] that the Normalized 
Cuts (NC) clustering method performs better than other 
spectral graph partitioning methods, such as the averaged 
cuts [23] and minimum cuts [24] methods, and produces 
globally optimal clusters. In this work, we extend the NC 
method to range image segmentation.  

We will briefly introduce the NC method in section II and 
extend the NC method to range data segmentation in section 
III. Section IV presents the experimental results and 
comparison of our proposed method with the USF method; 
and the paper is concluded in Section V.  

II. THE NORMALIZED CUTS METHOD 

A. Image Segmentation as a Graph Partitioning Problem 
Image segmentation can be modeled as a graph 

partitioning problem. An image is represented as a weighted 
undirected graph ),( EVG =  wherein each pixel is 

considered as a node iV . An edge ,i jE  is then formed 

between a pair of nodes iV  and jV . The weight for each 

edge is calculated as a function of similarity between each 
pair of nodes. In partitioning an image into various disjoint 
sets of pixels or segments ,,...,,, 321 mVVVV  the goal is to 
maximize the similarity of nodes in a set and minimize the 
similarity across different sets. With the NC algorithm, the 
optimal bipartition of a graph into two sub-graphs A and B is 
the one that minimizes the Ncuts value given by: 
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where 
( , )

( , ) ( , )
u A v B

cut A B w u v
∈ ∈

= ∑  is the dissimilarity 

between A and B, and ( , )w u v  is the weight calculated as a 
function of the similarity between nodes u and v. 

),( VAassoc  is the total connection from nodes in A to all 
nodes in V, while ),( VBassoc  is the total connection from 
nodes in B to all nodes in V. From (1) we can see that a high 
similarity among nodes in A and a low similarity across 
different sets A and B can be maintained by the minimization 
process. Given a partition of nodes that separates a graph V 
into two sets A and B, let x  be an N = ||V dimensional 
indicator vector, ix = 1 if the ith node is in A and -1, 

otherwise. Let ,i i j
j

d w= ∑  be the total connection from the 

ith node to all other nodes. With the above definition, 
),( BANcut  in (1) can be calculated. According to [21], if x  

is relaxed to take on continuous values, the optimal 
partitions can be obtained by splitting the graph using the 
Eigen vector corresponding to the second smallest Eigen 
value of the system:     

DyyWD λ=− )( ,                                      (2) 

where ),,...,,( 21 nddddiagD =   ,i i j
j

d w= ∑ , ,[ ]i jW w= . 

B. Grouping Algorithm 
The grouping of pixels in an image I consist of the 

following steps: 
a) Consider image I as an undirected graph ( , )G V E=  and 

construct a similarity matrix W.  As stated before, each 
element of W is the weight of edge ,i jw  and is calculated 

by 

     ZF

jXiXjFiF

ji eew σσ
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,

−
−

−
−

×=                        (3) 
if rjXiX ≤− 2||)()(||  pixels; or 0, =jiw  otherwise. 
Here X(p) (p stands for i or j) is the spatial location of 
nodes p, and F(p) is the brightness (color information) of 
pixel p. 2• denotes the 2L -norm of a vector. This 

means that 0, =jiw  for a pair of nodes Vi and Vj if they 
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(a)                                      (b) 

     
(c) (d) 

Fig. 2 MS segmentation of a simulated plane: (a) Simulated point-cloud, 
(b) Range image, (c) ERI of (b), (d) Segmentation results of the MS 
algorithm on (c). 

are more than r  pixels apart. In other words, equation 
(3) computes each weight by taking into account the 
global information⎯distance between the two pixels. 
The heuristic behind this treatment is that two distant 
pixels are not likely belonged to a segment even if they 
have similar brightness. 

b)  Solve (2) for the Eigenvectors with the smallest Eigen 
values. 

c)  Use the Eigen vector with the second smallest Eigen 
value to bipartition the image by finding the splitting 
points such that its Ncut value is minimized. 

d)  Recursively re-partition the segments (go to step a) 
e) Exit if Ncut value for every segment is over some 

specified threshold. 

III. PROPOSED METHOD 
In this work we adopt the method in [18] and represent a 

set of range data as a tri-band color image where each 
pixel’s RGB values represent the x, y components of the 
surface normal ],,[ zyxp nnnN =

r
 and the depth information 

(Y value) of the corresponding point in 3ℜ . We use the 
following mapping for color coding:  

⎪
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cos
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,                           (4) 

where k1, k2 and k3 are positive constants that scale the 
pixels’ RGB values and map them into the range [0, 255]. It 
should be noted that: (1) the use of x and y components is 
sufficient to represent the surface normal since 

221 yxz nnn −−= ; (2) the row and column indices and the 

blue component (i.e., the Y value) of the tri-band image 
pixel fully determines the 3D coordinates of the 
corresponding data point in 3ℜ . This means that the scheme 
encodes a 3D point’s local geometric information (surface 
normal) and global information (location) into a pixel in the 
color image. 
 We call this RGB image an Enhanced Range Image (ERI) 
as it enhances the edges and surfaces of objects in the range 
image. As demonstrated in Fig. 1, the ERI conversion 
assigns different colors to the intersecting surfaces and 
makes the roof-edges distinctive. With this image 
enhancement, we can segment the range data by applying 
the NC method to the ERI. Since we use a color image, F(i) 
in (3) is the norm of the color vector of the ith node. The first 
and second terms in (3) represent the weight contributions of 
the color difference and spatial distance between the ith and 
jth nodes, representatively. The physical meaning of (3) is 
that: Two nodes are more likely in the same segment if they 
are spatially close and have similar surface normals.  

A direct implementation of the NC method to an ERI is 
computationally expensive as the number of pixels is huge. 
In [25] this problem is alleviated by down-sampling the 
input image to a reasonable size. However, the weight 
computation is still costly. We resolve this computational 

bottleneck by: (1) clustering a set of nearby homogeneous 
pixels of an ERI into a group, called Super-Pixels (SPs); (2) 
constructing a graph that takes each SP as a node; and (3) 
applying the NC method to the graph. The spatial location 
and color of each SP are computed as the centroid and mean 
color value of its ERI pixels. In our method, a node of the 
graph corresponds to a region rather than a single ERI pixel. 
This reduces the graph’s node number and thus the 
computational cost of the NC method. Our method is less 
sensitive to noise because: (1) the mean color computation 
of a SP smoothes the noise of the range data in the SP; and 
(2) the NC method takes both color and spatial information 
in clustering the SPs. The proposed method is described in 
the following subsections.  

A. L*u*v Color Space Representation of ERI 
In this work we use the Mean-Shift (MS) algorithm [26] 

to cluster an ERI into a number of SPs. Since the MS code 
[27] that we use only accepts L*u*v images, we convert an 
ERI from RGB to L*u*v color space. It is apparent that the 
ERI of an inclined plane has varying color due to the change 
in depth values (i.e., blue band). As a consequence, the MS 
clustering may result in over-segmentation. This is 
demonstrated in Fig. 2 where the MS algorithm is applied to 
a computer generated noise-free planar surface (Fig. 2a) and 
results in a number of SPs (Fig. 2d) rather than a single SP. 
Therefore, it becomes necessary to merge planar SPs. (A 
planar SP is one whose data points form a plane in 3ℜ .) In 
this work the merger is a 2-stage process: (1) classify 
homogeneous SPs into a larger segment by the NC method; 
and (2) merge neighboring planar segments if the angle 

between their normals is small enough.  

B. Classification of Planar Segments 
We first need to classify a segment as planar or non-

planar. Here, a segment can be a SP or a region containing a 
number of SPs. A Least-Square Plane (LSP) is fitted to the 
data points of the segment, and the normal [ , , ]x y zN n n n=

r
 

and the Plane Fit Error (PFE) Δ is computed by the Singular 
Value Decomposition method [28]. A segment with a 
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sufficiently small Δ, i.e., Δ<δ, is labeled as a planar 
segment. The angle between planar segments i and j is 
computed by  

)(cos 1
, jiji NN

vv
•= −θ .                            (5) 

They are considered as parallel if θi,j is sufficiently small, 
i.e., θi,j<ε. 

C. Graph Construction and Partitioning 
We construct a graph ),( EVG =  by treating each planar 

SP as a node. The edge weight, which is a measure of 
similarity between two nodes Vi and Vj, is calculated by 
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where σF and σD are positive constants, F(p) is the L*u*v 
color vector of node p for p=i, j, and di,j is the Euclidean 
distance between the LSPs of SPs i and j (i.e., nodes i and j). 
If θi,j<ε is satisfied, then di,j  is the distance from the centroid 
of the data in SP i to the LSP of the data in SP j. Otherwise, 
di,j =0. Two SPs are considered as neighbors if they have at 
least two neighboring pixels in the ERI space. The weight 
computation in (6) takes into account the statistics of 3D 
data points. This may result in better segmentation results 
(as exemplified in IV).  
 We then apply the NC algorithm to the graph and cluster 
the SPs into a set of segments { }NsssS ,,, 21 L= .  

D. Labeling and Merging of Planar Segments 
In this step, the segments in S are labeled as planar and 

non-planar according to III. B. Two neighboring planar 
segments i and j are further merged if εθ ≤ji,  and jid ,  is 

less than a threshold τ. 
In summary, the proposed plane extraction method is as 

follows: 
a) Construct the ERI from the range data and apply the MS 

algorithm to obtain a number of SPs. 
b) Obtain planar SPi; for 1, ,i m= L  from the resulted SPs 

according to III.B. 
c) Construct a graph G on SPi; for 1, ,i m= L  and compute 

the similarity matrix W of order nn ×  by (6).  
d) Apply the NC algorithm to graph G with W as the input 

and obtain N segments, si for i=1,...,N, each of which 
contains a number of SPs. Each segment r in si is 
further classified to form a set of planar segments 

},...,,{ 21 tpppP = ; Nt ≤ . 
e) Construct a binary matrix }|{ ,...,1;,...,1, tjtijikK ===  to 

record the neighborhood relationship among segments 
in P, where 

⎩
⎨
⎧ ≤≤

=
otherwise  0

,and  neighbors are and   if  1 ,ji,
,

τεθ jiji
ji

dpp
k   (7) 

It is noted that a segment is treated as its own neighbor. 
Therefore, , 1i ik = . 

f) In the final step, the entire planar surfaces are extracted 
by merging those segments whose k values equal zero. 
This is done by using the depth first search algorithm. 

IV. EXPERIMENTAL RESULTS 
We have validated our method and compared it with the 

USF method with range data captured from the SR-3000 in a 
number of representative indoor environments. We 
implement the methods in Matlab 7.01 (R14) on a Sony 
Vaio–SZ220B laptop with a 1.83 GHz Intel Core Duo 
processor, 1GB RAM, and Windows XP OS. The rationale 
behind choosing the USF method is that it has a low rate of 
under-segmentation.  

In all our experiments, a pre-specified segment number1 
N=75 is used for the NC method. For the results shown in 
this section, we represent an unlabelled segment in black 
and a labeled segment (a planar segment) with a random 
non-black color. The labeled segments are then overlaid on 
the ERI and Point-cloud data.                                                              
 To demonstrate the function of the NC algorithm, we also 
run the proposed method without the NC component (i.e., by 
taking off steps c) and d) from the method). We refer this to 
Mean-Shift Dominated (MSD) segmentation method and the 
proposed method Extended Normalized Cuts (ENC) method. 
In this section we will compare them with the USF method. 
To measure each method’s segmentation performance, we 
define a Segmentation Quality Index (SQI) given by  

A
ARSQI −

= ,                                        (8) 

where A is the actual number of planes (hand labeled in the 
experiments) and R is the resulting number of planes by the 
segmentation method. The sign of SQI indicates over-
segmentation (positive sign) or under-segmentation 
(negative sign) and the magnitude of SQI represents the 
segmentation quality. A SQI value closer to 0 indicates a 
better segmentation result.  

The first experiment is to segment the range data of a 
hallway (Fig. 3a). Figure 3b and Fig 3c display the range 
image and ERI, respectively. Figure 3d shows the 4 
prominent planes in ERI found by hand labeling. After 
applying the MS algorithm to the ERI, we obtained 270 SPs 
as shown in Fig. 3e. The use of SPs causes a reduction of 
node number from 25344 to 270. As the edge number of a n-
node graph is ( 1) / 2n n× − , the number of edge-weight 
computations is reduced from 321146496 to 36315, about 

410 times smaller. This computational reduction will be 
referred to as Computational Reduction Factor (CRF) 
further on. The initial grouping of SPs using the NC method 
is shown in Fig. 3f. The extracted planar segments using the 
MSD and ENC methods are shown in Fig. 3g and Fig. 3h, 
respectively; while the result of the USF method is depicted 
in Fig. 3i. The 3D point-cloud rendering of the results are 
shown in Fig. 3j, Fig. 3k and Fig. 3l, respectively.  
 

1 We have currently devised a recursive cut method that removes the 
need of a pre-specified N values. However, it is beyond the scope of the 
paper. In fact, the pre-specified value does not affect the final segmentation 
result as long as the value is big enough. 
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From a qualitative perspective, the MSD results in 
fragmented walls (at planes labeled as 2 and 3) whereas the 
ENC method is able to extract the walls in their entirety. 
There are some misclassifications at the intersection of the 
front wall and floor in Fig. 3h. This is most likely due to the 
use of a small N. However it should be noted that their 
impact on navigating a robot may be ignored as they occurs 
at a faraway location from the robot. The USF method 
results in a huge number of unclassified pixels.  

To quantify the segmentation result, we calculate the SQI 
of the MSD and ENC methods using (8). In this experiment 
A=4, RMSD=28, RENC=8. Hence SQIMSD=6 and SQIENC=1. 
This means that the ENC performs much better than the 
MSD. The SQI for the USF method is not calculated as the 
method resulted in a huge number of unclassified points. 

The 2nd experiment was carried out to examine the 
method’s performance on a scene with a stairway as shown 
in Fig. 4a. As we can see, the ENC method extracts most of 
the horizontal (tread) and vertical (riser) surfaces with less 
fragmentation than the other two methods. This is attested 
by the SQI. In this experiment A=10, RMSD=59, RENC =14, 
resulting in SQIMSD=4.9 and SQIENC =0.4. SQIENC is much 
closer to 0, indicating a better segmentation result.  

The 3rd experiment was carried out to examine the 
method’s performance in an environment with scattered 
obstacles. We tested this by placing two boxes and a trash 
can on the floor as shown in Fig. 5a. We can see from Fig. 

5d that the MSD method results in under-segmentation on 
the top surface of each box. The boxes’ top surfaces are 
merged with the floor surface. However, the ENC method 
extracts all of the surfaces with decent accuracy. This 
demonstrates that the ENC method can be used to extract the 
true extent of a floor and the surfaces of objects on the floor, 
an important capability for a robot to plan a collision free 
path. The quality of segmentation can further be verified by 
the SQI. In this case we have A=12, RMSD=43, RENC=21, 
resulting in SQIMSD =2.25 and SQIENC=0.41. Again, the 
ENC method outperforms the MSD method. 

The runtimes of the above experiments are tabulated in 
Table I. It takes the ENC method ~10 seconds to segment a 
typical indoor scene. The ENC method’s runtime in each 
case is only slightly (~10%) longer than that of the MSD due 

  
(a)                                    (b)                                     (c) 

  
(d)                                    (e)                                     (f) 

Fig. 4 Segmentation of the range data of a stairway: SPs=217, 
CRF=1.31×104: (a) Actual scene, (b) ERI of (a), (c) ERI with the marked 
prominent planes, (d) Extracted planes  using the MSD method, (e) 
Extracted planes using the ENC method, (f) Extracted planes by the USF 
method. 
 

  
 (a)                                    (b)                                     (c) 

  
(d)                                    (e)                                     (f) 

Fig. 5 Segmentation of the range data of a scene with scattered obstacles, 
SPs=277, CRF=8.4×103: (a) Actual scene, (b) ERI of (a), (c) ERI with the 
marked prominent planes, (d) Extracted planes using the MSD method, 
(e) Extracted planes using the ENC method, (f) Extracted planes by the 
USF method. 

TABLE I 
RUNTIMES OF THE ENC AND MSD METHODS 

Runtime (seconds) Experiment Scene 
MSD ENC 

1 Hallway 8.48 9.37 
2 Stairway 7.38 8.43 
3 Scattered obstacles 9.23 10.42 

  
(a)                          (b)           (c) 

  
(d)                          (e)           (f) 

  
(g)                          (h)           (i) 

  
(j)                          (k)           (l) 

Fig. 3 Segmentation of the range data of a hallway: (a) Actual scene, (b) 
Range image, (c) ERI of (a), (d) ERI with prominent planes marked in 
black, (e) SPs of (c), (f) Results after applying the NC algorithm on (e), 
(g) Extracted planes using the MSD method, (h) Extracted planes using 
the ENC method, (i) Extracted planes by the USF method, (j) Point-cloud 
of (g), (k) Point-cloud of (h), (l) Point-cloud of (i). 
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to the additional NC computation. This indicates that our 
SP-based NC method is computational efficient. We expect 
that ENC method may achieve real-time performance after 
we implement it in C++. 

We have performed additional experiments with various 
configurations of objects and the results are similar. This 
demonstrates that the inclusion of the NC method can 
substantially improve segmentation result. All of our 
experiments have also indicated that the proposed method 
performs much better than the USF method in the cases of 
noisy range data.  

V. CONCLUSIONS  
We have presented a new method that may reliably 

extract planar surfaces from noisy range data captured by 
the Swissranger SR-3000. The method extends the NC 
method to segment range data with relatively large random 
noise by using a new edge-weight function. The proposed 
method enhances object edges and surfaces by converting a 
range image into an ERI that encode the local geometric and 
global spatial information of the 3D data points. To reduce 
the computational cost, the MS method is used to preprocess 
the ERI and cluster the ERI into SPs. The plane-fitting 
statistics of these segments are used to label planar segments 
and merge homogeneous planar segments. From the 
experimental results, we find that the inclusion of the NC 
method results in a better segmentation result. This validates 
that the NC measure is able to suppress the effect of noise in 
range data. We have compared the performance of our 
method with the USF range image segmentation method. 
The results demonstrate that our method out-performs the 
USF method due to the use of global information. In all of 
our experiments, the proposed method achieves decent 
segmentation results even in a cluttered environment.  

The method can be used for range image understanding, 
symbolic map-building, and navigation of a mobile robot.  
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