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Abstract— In this paper, to realize robust tracking, we pro-
pose a particle filter (PF) model to track a single paramecium.
The proposed PF model consists of a system dynamical model
and an observation model. The information about our tracking
object is described by a state vector and the system state is
assumed to evolve according to the system dynamical model.
The parallel region-based level set method with displacement
correction (PR-LSM-DC) proposed in our previous work now
works as the measurements for the PF model. The tracking is
achieved by estimating the state of a moving object from the
observations. Experiments show that with motion prediction
using the PF model, we increase the robustness of tracking and
extend the duration of single paramecium tracking. The 2 [ms]
computational time indicates that we developed an algorithm
and a computer aided system which achieves nonrigid single
micro-organisms tracking in real-time as they deform, move
and collide with others under optical microscope.

I. INTRODUCTION

Visual single object tracking is an important task for

many applications such as video surveillance system, mobile

robots, medical diagnosis, microorganism observation and so

on. Visual single object tracking still remains a challenging

problem, because the tracking objects are always subject to

deformation, various illuminations and collisions. In general,

visual target tracking algorithms can be divided into two

categories: deterministic methods and stochastic methods.

The deterministic method is usually formulated as an opti-

mization problem solved by minimizing the energy function.

The stochastic approach is represented by state-space models,

and the tracking problem is treated as a state-estimation

problem.

In our previous work, we have been using parallel region-

based level set method with displacement correction (PR-

LSM-DC) which is one of deterministic methods to track a

single paramecium [1], [2], [3], [4]. A parallel region-based

level set method (PR-LSM) is used to detect the boundary of

tracking object which is for calculating the centroid of object.

However, when collisions happen, the detected contour of

the object spreads to the other obstacle which induces target

missing and tracking failure. Therefore, after the collision

is detected, we correct the boundary detection result of

PR-LSM by translating the level set function of previous

frame according to the displacement information of object.

However, failure rates of single paramecium tracking is still
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52% after displacement correction. These results are not good

enough for biologist application.

Since we have obtained the certain robustness of sin-

gle paramecium tracking using the deterministic method,

therefore, we try to combine the stochastic methods to

increase our tracking robustness. Because in our tracking sys-

tem, disturbances such as measurement errors from camera,

measurement error from servo motor of stage and control

precision of servo motor, it is hard for us to describe

our system as a linear model, we therefore choose particle

filter (PF) as our basic framework. The most common PF

algorithm, i.e., condensation filter combined with PR-LSM-

DC as measurement is proposed to estimate the object

location for single moving paramecium tracking. The exper-

iment results indicate that the proposed model successfully

improves robustness of tracking performance during collision

and prolong the average tracking duration.
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Fig. 1. Updating the posterior density in the iterative computation.

II. OBJECT TRACKING BASED ON PARTICLE

FILTER

A. The general object tracking problem

Object tracking based on PF is described as the problem of

estimating the state vector xk of a system at time k (discrete)

while a set of observations zk is available over time. The aim

is to estimate the posterior density p(xk|z1:k) recursively in

time, where z1:k = {y1,y2, · · · ,yk}. Ultimately it is required

to estimate recursively in time some function f (xk) of the

object state which is the location of the object in our tracking

problem.
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As shown in Fig. 1, an iteration step of process starts

with a sample set x representing the a posteriori density

p(xk−1|zk−1) from the previous time step. Then the posterior

density p(xk−1|z1:k−1) is propagated into the next time step

via the transition density p(xk|xk−1) as follows:

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (1)

The next step involves the application of Bayes rule when

new measurement data p(zk|xk) are observed:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (2)

After Bayes rules, sample set now represents the new a

posteriori density p(xk|zk).

The expected value of the function f (xk) is computed as

E[ fk(xk)] =
∫

f (xk)p(xk|z1:k)dxk. (3)

The prediction and update strategy of (1) and (2) provides

an optimal solution to the tracking problem, which, unfor-

tunately, involves high-dimensional integration. Therefore,

iterative sampling techniques can be used which leads to the

use of particle filter.

B. General Particle Filter

The key idea of particle filter is to represent the required

posterior probability density function (PDF) by a set of

random samples with associated weights and to achieve

estimation based on these samples and weights.

To develop the details of particle filter, we define

{xi
0:k,w

i
k}N

i=1 as a random measurement set that characterizes

the posterior PDF p(x0:k|z1:k), where {xi
0:k, i = 0, · · · ,N}

is a set of support points with associate weights {wi
k, i =

0, · · · ,N}. x0:k = {x j, j = 0, · · · ,k} is the set of all states up

to time k. The weights are normalized as ∑
i

wi
k = 1. The

posterior density at k can be approximated as

p(xk|z1:k)≈
N

∑
i=1

wi
kδ (x0:k − xi

0:k) (4)

The weights are chosen using the principle of importance

sampling [5], [6]. Let xi ∼ q(x), i = 1, · · · ,N be samples that

are easily generated from a proposal distribution q(·) called

an importance density. Then, the weight update equation can

be shown to be

wi
k = wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

0:k−1,z1:k)
. (5)

The posterior density is non-parametrically approximated

according to weighted states of particles. Then, the mean

state of the particles is treated as the estimated value which

we are interested in.

C. Condensation Filter

The Condensation algorithm, a variant of particle fil-

ter, evolves system states according to their probabilities

which are calculated from the observations [7]. Recently,

the Condensation algorithm has been introduced for non-

Gaussian, nonlinear contour tracking problems [8], [9]. The

Condensation generates a weighted, time-stamped sample

set, denoted by {xi
k,w

i
k, i = 1, · · · ,N}, to approximate the

conditional state-density p(xk|zk) at time k. Its iterative

process is depicted as following:

1) Initializing particles from the prior p(xi
0) to obtain a

set {x̃i
0,1/N, i = 1, · · · ,N}.

2) Predicting particles p(xk|xk−1 = x̃k) using dynamic

model.

3) Weighting

a. Weight the new state in terms of the measured

features zk:

wi
k = p(zk|xk = xi

k). (6)

b. Normalize the particle weights so that ∑
n

wi
k = 1.

w̃i
k =

wi
k

N

∑
i=1

wi
k

(7)

c. Store normalized particle weights together as

cumulative probability ci
k where

c0
k =0,

ci
k =ci−1

k + w̃i
k, i = 1, · · · ,N,

c′ik =
ci

k

ci
N

, i = 1, · · · ,N. (8)

4) Outputting a set of particles {(xi
k,w

i
k), i = 1, · · · ,N}

that can be used to approximate the posterior distri-

bution:

p(xk|z1:k)≈
N

∑
i=1

wi
kδ (xk − xi

k). (9)

5) Resampling

a. Generate a sequence of N sorted random number

Tr uniformly distributed in [0,1].
b. Find the smallest j for which c′ j ≥ T

j
r

c. Set xi
k = x

j
k.

6) k = k+ 1, go to step 2.

III. SINGLE PARAMECIUM TRACKING BASED ON

CONDENSATION

A. Coordinate System

For single paramecium tracking, we are interested in

localizing target to keep target in the center of visual field

under microscope by moving stage in opposite direction. It

is important to analyze the movement of paramecium in the

tracking system. As we can see in Fig. 2, the stage is moved

within control table by controlling motor. A coordinate

system for stage moving on control table is defined as in
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Control table X

Y
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Fig. 2. Coordinate system for single paramecium tracking.
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Fig. 3. Schematic diagram of paramecium motion with translation and
rotation information.

blue and the location of stage in stage coordinate system

is represented as (xs,ys). The slide glass shown as black

rectangle in Fig. 2 is fixed on the stage and moving with the

stage together. Paramecium shown as red dot in Fig. 2 swims

within slide glass. A coordinate system for paramecium

moving on slide glass is defined as in black and the location

of paramecium in slide glass coordinate system is represented

as (xp,yp). The motion of stage relative to control table

combining with the motion of paramecium relative to slide

glass results in the motion of paramecium in the image

that is captured by the camera mounted on microscope. A

coordinate system for paramecium moving on the image is

defined as in red and the location of paramecium in image

coordinate system is represented as (xi,yi).

B. Motion of Paramecium

In order to predict the probability distribution of the pose

of the moving paramecium we propose a motion model

which describes translation and rotation information of the

moving target cell. The motion of a cell from time k to

k + 1 is shown in Fig. 3. The simplest approximation of

the moving process is to model this motion as a translation

along its own axis followed by a rotation. The orientation

of the cell at the beginning (location A in Fig. 3) denoted

by θ (k) and the orientation at the end (location B in Fig. 3)

by θ (k+1) = θ (k)+ εθ , where εθ represents the amount of

the rotation that occurs after the translation modeling by the

effect of noise [10], [11], [12]. The translation ∆ρ(k) from

time k to k+1 is modeled by the translation from time k to

k−1 plus unpredictable noise. Then the paramecium motion

model can be represented as eq. 10.

x(k+ 1) =x(k)+∆ρ(k)cos(θ (k))+ εx(k)

y(k+ 1) =y(k)+∆ρ(k)sin(θ (k))+ εy(k)

θ (k+ 1) =θ (k)+ εθ

∆ρ(k) =
√

(x(k)− x(k− 1))2 +(y(k)− y(k− 1))2, (10)

εθ indicates rotation angle and εx and εy indicates unpre-

dictable velocity change.

C. System Dynamical Model

As we can see in Fig. 4, input for tracking system

is the differences between reference location (xr,yr) and

paramecium location on image (xi,yi). (xr,yr) is the desired

location where the target needs to be kept. The paramecium

location on image (xi,yi) can be measured from our boundary

detection algorithm which is the consequences of parame-

cium moving on the slide glass and stage moving on the

control table. The state vector for tracking system at time

step k is defined as containing the location of paramecium

on slide glass at time step k + 1 and location of stage on

control table at time step k+1 and it is therefore written as

xT
k = (xp(k+ 1),yp(k+ 1),θ (k+ 1),xs(k+ 1),ys(k+ 1))T .

(11)

The output vector is defined as

yT
k = (xi(k),yi(k))

T . (12)

System models are built as non-linear state dynamics with

non-linear disturbances:

xk+1 =f(xk)+Buuk +υk

yk =g(xk)+νk

uk =k(r− yk) (13)

Here xk is the state vector. f and g are functions for states

and measurements. uk is measured inputs. υk represents

unpredictable system disturbances. yk is the measurements

and νk is the measurements noises. The resulting system

model is
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Fig. 4. Schematic diagram of dynamic for single paramecium tracking.
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(16)

u =

(

kx 0

0 ky

)[(

xr

yr

)

−
(

xi(k)
yi(k)

)]

(17)

where kx and ky are gain parameters for proportional control.

D. Observation Model

We uses detected contour from PR-LSM-DC as the mea-

surement cue. Based on detected contour, we can calculate

the centroid of current detected object. Location observation

model of target on image is proposed as

p(yk|x̂k) ∝
1√

2πσc

exp(− (xi(k)− x̂i(k))
2 +(yi(k)− ŷi(k))

2

2σ2
c

)

1√
2πσθ

exp(− (θi(k)− θ̂i(k))
2

2σ2
θ

), (18)

where (xi(k),yi(k)),θi(k) is the pose of paramecium mea-

sured by using PR-LSM-DC, (x̂i(k), ŷi(k), θ̂i(k)) is the pose

of paramecium estimated using system dynamical model.

σc = 1 is the variance keeping all the particles within a

circle (center is (x′i(k),y
′
i(k)), radius is 1) and σθ the variance

keeping all the the rotation angle for each particles not much

different from measured one.

E. Tracking Based on Condensation

Our proposed method works iteratively as follows:

1) Prepare the image I(x,y) of the tracked object (image

size is s×s.) and initialize the particle-set {xi
0,w

i
0}, i=

1, · · · ,N where

wi
0 =

1

N
(19)

xi
0 =













xp(0)
yp(0)
θ (0)
xs(0)
ys(0)













=













s
N

i
s
N

i
360
N

xp

xp













(20)

2) By using system dynamic models above, we predict

the location of target paramecium on image coordinate

system (x̂i(k), ŷi(k)), θ̂i(k) at the next time-step which

helps correct boundary detection error due to the

collision.

x̂k+1 =f(x̂k)+Buuk + υ̂k

ŷk =g(x̂k)+ ν̂k (21)

We assume x̂0 known and ∆ρ(k) inside function f

is fixed as certain value for presenting paramecium

velocity. In υ̂k, we assume noise εx and εy to be

uniformly distributed randoms indicating unpredictable

velocity change within [-0.1, 0.1] micrometer. εθ is

assumed to be randoms drawn from uniform distribu-

tion indicating rotation angle within [-0.5, 0.5] degree.

νk is the measurements noise which is drawn from

uniformly distributed randoms within [-1, 1] pixel.

3) Using PR-LSM-DC model, detected contour is ob-

tained. When collision happens, we do not just trans-

late previous φ(k−m) according to displacement, we

also rotate previous φ according to θ (k)− θ (k−m).
Based on the φ of corrected contour, the centroid

(xi(k),yi(k)) of detected object is calculated as:

mpq =∑
x

∑
y

xpyqIφ (x,y).

xi(k) =
m10

m00

yi(k) =
m01

m00

.

θ (k) =
1

2
tan−1 2µ11

µ20 − µ02

, (22)

where µ11,µ20 and µ02 are first-oder and second-order

central image moments at time step k. Then particle
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weights are updated using observation model (18) as:

wi
k = p(yk|x̂k).

where σc = 1, σθ = 0.5.

4) Once the N particle set have been estimated, the

location of single target paramecium at time-step k is

calculated as:

E[ f (xk)] =
N

∑
i=1

wi
kx̂i

k. (23)

5) Calculate the normalized particle weights w̃i
k and cu-

mulative probability ci
k. Check out if resampling is

necessary.

6) k = k+ 1, go to step 2.

IV. EXPERIMENTS

A. Successfully tracking during Collision

To confirm the ability of our proposed model, we conduct

experiments of tracking the single paramecium with conden-

sation in a non-parallel workstation. We check whether our

proposed method track only target paramecium even when

the tracked paramecium collides with other obstacles. Fig.

5(a) and Fig. 5(b) are consecutive image sequences from

the tracking movies. The center of target paramecium is

calculated by using condensation filter with PR-LSM-DC as

measurements shown as red dot in Fig. IV-A.

Fig. 5(a) is the result of tracking the single paramecium

collided with the other paramecium. At 62 [ms], the target

paramecium without collision is in the center of the image.

At 71 [ms], the target paramecium collides with the other

paramecium. However, the detected location of target does

not slide to another paramecium and the target paramecium

is kept around the center of the image.

Fig. 5(b) is the result of tracking the single paramecium

near a air bubble. From 371 [ms] to 377 [ms], the target

paramecium swims close to the air bubble. During 379 [ms]

to 387 [ms], the tracked paramecium collides with the air

bubble. After 387 [ms], this paramecium swims away from

the air bubble. During the whole process of collision, the

target paramecium is in the center of the image all the time,

indicating that the single paramecium tracking is successfully

using condensation filter.

B. Success and Failure Reasons

To clarify how our proposed collision handling improves

the tracking robustness, we compare success and failure rates

of tracking with condensation filter to the ones without con-

densation filter. 50 trails of real-time tracking are conducted

for two situations. We define successful tracking and failure

tracking as the duration of paramecium staying in the image

is over 60 s or not, respectively. The success rate of tracking

increases from 48% to 66% due to the condensation.

The reasons of failure tracking are (1) collide with lots

of obstacles, (2) lose focus and (3) limitation of system.

In case of reason (1), target moves into a high density cell

population, the boundary of the target contacts or overlaps

with others, our boundary detection will fail in distinguishing

which area is the target. For the reason (2), tracking in

2D is guaranteed by limiting the height of water pool for

paramecium swimming. If our tracking target happens to be

a small one, the body of this cell might loses focus partially

due to the body sinking. This problem interests us as a 3D

cell tracking. The reason (3) presents as limitation of stage

moving range which can be adjusted according to specific

biologic experiment requirements.

C. Tracking Duration

We compare maximum, minimum and average durations

of the real time tracking trials with and without condensation

to show how the collision handling increase the tracking du-

ration (Tab. I). The maximum tracking duration is increased

up to 846 [ms] due to our proposed filter. The minimum

tracking durations with and without condensation are 4 [ms]

and 2 [ms] respectively, indicating there is no big difference

between them. If target paramecium is among high density

population, usually tracking will fail in very short time. This

is a problem that is still not solved even with condensation.

The average tracking duration is increased up to 191 [ms] by

using the condensation filter. These increases of maximum

and average tracking durations are valuable to observe a

moving cell under the microscope for long time.

TABLE I

MAXIMUM, MINIMUM AND AVERAGE DURATIONS OF TRACKING TRAILS

WITH AND WITHOUT CONDENSATION FILTER.

Duration
With Without

condensation condensation

Maximum [s] 846 523

Minimum [s] 4 2

Average [s] 191 74

D. Computational Time

To verify whether condensation filter implemented in

workstation is capable of real-time tracking, we compute an

average computational time for each frame from 10 image

sequences (Tab. II). The average time for 1st frame is 3.15

[ms]. The average time for other frames is 2.13 [ms]. This

reduction of is because level set function φm,0 used in PR-

LSM-DC is initialized as the converged φ of the last frame

and the position change of the tracked paramecium between

two consecutive frames is very small. These results represent

that our method can provide about 2 [ms] cycle time of the

single cell tracking with collision handling for the real-time

tracking.

TABLE II

AVERAGE COMPUTATIONAL TIME FOR THE CONVERGENCE IN

REAL-TIME SINGLE PARAMECIUM TRACKING.

Content Workstation

one loop time: 1st 3.15 [ms]
one loop time: others 2.13 [ms]
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62 [ms] 64 66 67 68

71 [ms] 73 75 76 79

(a) Location of target (colliding with others)

371 [ms] 374 377 379 380

384 [ms] 387 390 393 396

(b) Location of target (colliding with bubbles)

Fig. 5. Locations of target paramecium detected using condensation with PR-LSM-DC in nonparallel PC.

V. CONCLUSION AND DISCUSSION

To improve the robustness of single paramecium tracking

further, we combined condensation filter with PR-LSM-DC

model. To implementing this combined model, a paramecium

motion model, a tracking system dynamic model and an

observation model was established. Considering the small

differences between two frames, we built up a simple linear

model for paramecium motion under microscope. The evolv-

ing system states were estimated from dynamical model.

Using our previous PR-LSM-DC model as measurements,

the observation model updated weights for all the states in

PF. Experiments confirmed that with the motion prediction

from condensation, this proposed method also increases

maximum tracking durations, average tracking durations, and

the success rate of single cell tracking among other obstacles.

However, still cannot solve the tracking problem when target

among large cell population.
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