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Abstract—In this paper, to realize robust tracking, we pro-
pose a particle filter (PF) model to track a single paramecium.
The proposed PF model consists of a system dynamical model
and an observation model. The information about our tracking
object is described by a state vector and the system state is
assumed to evolve according to the system dynamical model.
The parallel region-based level set method with displacement
correction (PR-LSM-DC) proposed in our previous work now
works as the measurements for the PF model. The tracking is
achieved by estimating the state of a moving object from the
observations. Experiments show that with motion prediction
using the PF model, we increase the robustness of tracking and
extend the duration of single paramecium tracking. The 2 [ms]
computational time indicates that we developed an algorithm
and a computer aided system which achieves nonrigid single
micro-organisms tracking in real-time as they deform, move
and collide with others under optical microscope.

I. INTRODUCTION

Visual single object tracking is an important task for
many applications such as video surveillance system, mobile
robots, medical diagnosis, microorganism observation and so
on. Visual single object tracking still remains a challenging
problem, because the tracking objects are always subject to
deformation, various illuminations and collisions. In general,
visual target tracking algorithms can be divided into two
categories: deterministic methods and stochastic methods.
The deterministic method is usually formulated as an opti-
mization problem solved by minimizing the energy function.
The stochastic approach is represented by state-space models,
and the tracking problem is treated as a state-estimation
problem.

In our previous work, we have been using parallel region-
based level set method with displacement correction (PR-
LSM-DC) which is one of deterministic methods to track a
single paramecium [1], [2], [3], [4]. A parallel region-based
level set method (PR-LSM) is used to detect the boundary of
tracking object which is for calculating the centroid of object.
However, when collisions happen, the detected contour of
the object spreads to the other obstacle which induces target
missing and tracking failure. Therefore, after the collision
is detected, we correct the boundary detection result of
PR-LSM by translating the level set function of previous
frame according to the displacement information of object.
However, failure rates of single paramecium tracking is still
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52% after displacement correction. These results are not good
enough for biologist application.

Since we have obtained the certain robustness of sin-
gle paramecium tracking using the deterministic method,
therefore, we try to combine the stochastic methods to
increase our tracking robustness. Because in our tracking sys-
tem, disturbances such as measurement errors from camera,
measurement error from servo motor of stage and control
precision of servo motor, it is hard for us to describe
our system as a linear model, we therefore choose particle
filter (PF) as our basic framework. The most common PF
algorithm, i.e., condensation filter combined with PR-LSM-
DC as measurement is proposed to estimate the object
location for single moving paramecium tracking. The exper-
iment results indicate that the proposed model successfully
improves robustness of tracking performance during collision
and prolong the average tracking duration.
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Fig. 1. Updating the posterior density in the iterative computation.

II. OBJECT TRACKING BASED ON PARTICLE
FILTER

A. The general object tracking problem

Object tracking based on PF is described as the problem of
estimating the state vector Xx; of a system at time k (discrete)
while a set of observations z; is available over time. The aim
is to estimate the posterior density p(xi|z;) recursively in
time, where z;x = {y1,y2,--,yx}. Ultimately it is required
to estimate recursively in time some function f(x;) of the
object state which is the location of the object in our tracking
problem.
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As shown in Fig. 1, an iteration step of process starts
with a sample set x representing the a posteriori density
p(Xg_1|zx_1) from the previous time step. Then the posterior
density p(xg_1|z1.x—1) is propagated into the next time step
via the transition density p(xy|x;_1) as follows:

P(Xk|Z1:k71):/P(Xk|Xk71)P(Xk71|Z1:k71)dxk71 (1)

The next step involves the application of Bayes rule when
new measurement data p(z|x;) are observed:

p(ze|x) p(Xi|Z1x1)
P(Zk|Z1—1)

(@)

p(Xk|zik) =

After Bayes rules, sample set now represents the new a
posteriori density p(xx|zy).
The expected value of the function f(x;) is computed as

EL 0] = [ f(x0)plxelzr)a Q)

The prediction and update strategy of (1) and (2) provides
an optimal solution to the tracking problem, which, unfor-
tunately, involves high-dimensional integration. Therefore,
iterative sampling techniques can be used which leads to the
use of particle filter.

B. General Particle Filter

The key idea of particle filter is to represent the required
posterior probability density function (PDF) by a set of
random samples with associated weights and to achieve
estimation based on these samples and weights.

To develop the details of particle filter, we define
{x{ ., wi ¥ | as a random measurement set that characterizes
the posterior PDF p(Xo|zi), where {x{,,i=0,--- N}
is a set of support points with associate weights {w},i =
0,---,N}. X0 = {xj,j=0,--- ,k} is the set of all states up
to time k. The weights are normalized as ij'{ = 1. The

l
posterior density at k can be approximated as

N
p(Xk|z14) = Z w8 (X0 — X0:1.) “)
i=1

The weights are chosen using the principle of importance
sampling [5], [6]. Let x' ~ q(x),i=1,--- /N be samples that
are easily generated from a proposal distribution g(-) called
an importance density. Then, the weight update equation can
be shown to be

(X)) p(xi[x;_,)
C](X;(|X6:k71,ll;k)

i i
k= Wi—1

(&)

The posterior density is non-parametrically approximated
according to weighted states of particles. Then, the mean
state of the particles is treated as the estimated value which
we are interested in.

C. Condensation Filter

The Condensation algorithm, a variant of particle fil-
ter, evolves system states according to their probabilities
which are calculated from the observations [7]. Recently,
the Condensation algorithm has been introduced for non-
Gaussian, nonlinear contour tracking problems [8], [9]. The
Condensation generates a weighted, time-stamped sample
set, denoted by {x;,wi,i=1,---,N}, to approximate the
conditional state-density p(xi|z;) at time k. Its iterative
process is depicted as following:

1) Initializing particles from the prior p(x}) to obtain a
set {&,1/N,i=1,--- ,N}.
2) Predicting particles p(xg|x;_; = X;) using dynamic
model.
3) Weighting
a. Weight the new state in terms of the measured
features z;:

W = p(zelxe = x}). (6)
b. Normalize the particle weights so that ):w;; =1
n

Wi

N
1

X Wi

i=1

W, =

(N

c. Store normalized particle weights together as
cumulative probability ¢ where

c2:0,
¢, =ci T4 wii=1,--- N,
. ci
/ k -
ckl:—l.,lzl,"',N. (8)
N

4) Outputting a set of particles {(xi,w}),i=1,--- ,N}
that can be used to approximate the posterior distri-
bution:

N . .
P(Xilzix) = ) WS (% —x). ©)
i=1

5) Resampling

a. Generate a sequence of N sorted random number
T, uniformly distributed in [0, 1]. .
b. Find the smallest j for which ¢/ > T,/
c. Set xi =xj.
6) k=k+1, go to step 2.

ITI. SINGLE PARAMECIUM TRACKING BASED ON
CONDENSATION

A. Coordinate System

For single paramecium tracking, we are interested in
localizing target to keep target in the center of visual field
under microscope by moving stage in opposite direction. It
is important to analyze the movement of paramecium in the
tracking system. As we can see in Fig. 2, the stage is moved
within control table by controlling motor. A coordinate
system for stage moving on control table is defined as in
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Fig. 2. Coordinate system for single paramecium tracking.
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Fig. 3.  Schematic diagram of paramecium motion with translation and
rotation information.

blue and the location of stage in stage coordinate system
is represented as (x;,ys). The slide glass shown as black
rectangle in Fig. 2 is fixed on the stage and moving with the
stage together. Paramecium shown as red dot in Fig. 2 swims
within slide glass. A coordinate system for paramecium
moving on slide glass is defined as in black and the location
of paramecium in slide glass coordinate system is represented
as (xp,yp). The motion of stage relative to control table
combining with the motion of paramecium relative to slide
glass results in the motion of paramecium in the image
that is captured by the camera mounted on microscope. A
coordinate system for paramecium moving on the image is
defined as in red and the location of paramecium in image
coordinate system is represented as (x;,y;).

B. Motion of Paramecium

In order to predict the probability distribution of the pose
of the moving paramecium we propose a motion model
which describes translation and rotation information of the
moving target cell. The motion of a cell from time k to
k+1 is shown in Fig. 3. The simplest approximation of
the moving process is to model this motion as a translation
along its own axis followed by a rotation. The orientation
of the cell at the beginning (location A in Fig. 3) denoted

by 0(k) and the orientation at the end (location B in Fig. 3)
by 0(k+1)=0(k)+ &, where &g represents the amount of
the rotation that occurs after the translation modeling by the
effect of noise [10], [11], [12]. The translation Ap (k) from
time k to k+ 1 is modeled by the translation from time k to
k — 1 plus unpredictable noise. Then the paramecium motion
model can be represented as eq. 10.

x(k+ 1) =x(k) + Ap (k)cos(6/(k)) + &, (k)
¥k 1) =y(k) + Ap(K)sin(B(k)) + & (k)
0(k+1) =0(k) +

Ap(K) =/ (x(k) —x(k— 1))+ (k) —y(k— 1)), (10)

€¢ indicates rotation angle and & and &, indicates unpre-
dictable velocity change.

C. System Dynamical Model

As we can see in Fig. 4, input for tracking system
is the differences between reference location (x,,y,) and
paramecium location on image (x;,y;). (x,y,) is the desired
location where the target needs to be kept. The paramecium
location on image (x;,y;) can be measured from our boundary
detection algorithm which is the consequences of parame-
cium moving on the slide glass and stage moving on the
control table. The state vector for tracking system at time
step k is defined as containing the location of paramecium
on slide glass at time step k41 and location of stage on
control table at time step k+ 1 and it is therefore written as

xi = (xp(k+1),5p(k+1),0(k+1),x5(k+ 1), 35k +1))"
(1D
The output vector is defined as
Yi = (xi(k)i(k))"

System models are built as non-linear state dynamics with
non-linear disturbances:

12)

X1 =F(xi) + Buug + Uy
i =8(Xk) + Vi

e =k(r —y;) (13)

Here x; is the state vector. f and g are functions for states
and measurements. u; is measured inputs. U represents
unpredictable system disturbances. y; is the measurements
and Vv, is the measurements noises. The resulting system
model is

xp(k+1) 1 0 0 0 0\ [xy(k)
yp(k+1) 01 00 0f]yk
6(k+1) =10 0 1 0 of | 6k
xs(k+1) 0 0 0 1 0] x(k)
ys(k+1) 00 0 0 1) \yk

Ap (k)cos(6 (k) &x(k)

Ap (k)sin(6 (k)) &(k)

+ 0 +Buu+ 89(/()

0 0

0 0

(14)

2910



System Paramecium location Stage location on
noise on slide glass : (ZL‘P,yp)m table : (xs,ys)
> 4 )<

Paramecium

Camera

Paramecium location
onimage : (z},y;)

>| Controller H Stage F%

Fig. 4. Schematic diagram of dynamic for single paramecium tracking.
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where k. and k, are gain parameters for proportional control.

D. Observation Model

We uses detected contour from PR-LSM-DC as the mea-
surement cue. Based on detected contour, we can calculate
the centroid of current detected object. Location observation
model of target on image is proposed as

Xi —)2[ 2 f _ Ai 2
Pyl o< ﬁac exp(— O S ;y () =54
(6:(K) — Bi(k))?
V2710 xp(= 203 ) (18)

where (x;(k),yi(k)),0;(k) is the pose of paramecium mea-
sured by using PR-LSM-DC, (£;(k),#:(k), 6;(k)) is the pose
of paramecium estimated using system dynamical model.
o, = 1 is the variance keeping all the particles within a
circle (center is (x}(k),y}(k)), radius is 1) and 0y the variance
keeping all the the rotation angle for each particles not much
different from measured one.

E. Tracking Based on Condensation

Our proposed method works iteratively as follows:

1) Prepare the image I(x,y) of the tracked object (image
size is s x 5.) and initialize the particle-set {x{, wh},i=
1,---,N where

1

wo = (19)

xp(0) %l

_ yp(0) Nl
xo=160) | =R (20)

x5(0) Xp

ys(O) Xp

2) By using system dynamic models above, we predict
the location of target paramecium on image coordinate
system (£;(k),9i(k)),6;(k) at the next time-step which
helps correct boundary detection error due to the
collision.

Rit1 :f(ﬁk) +Byuy, + U
Vi =8(Re) + Vi (1)

We assume £y known and Ap(k) inside function f
is fixed as certain value for presenting paramecium
velocity. In 0, we assume noise & and & to be
uniformly distributed randoms indicating unpredictable
velocity change within [-0.1, 0.1] micrometer. &gy is
assumed to be randoms drawn from uniform distribu-
tion indicating rotation angle within [-0.5, 0.5] degree.
Vi is the measurements noise which is drawn from
uniformly distributed randoms within [-1, 1] pixel.

3) Using PR-LSM-DC model, detected contour is ob-
tained. When collision happens, we do not just trans-
late previous ¢ (k —m) according to displacement, we
also rotate previous ¢ according to 0(k) — 0(k —m).
Based on the ¢ of corrected contour, the centroid
(xi(k),yi(k)) of detected object is calculated as:

Mpg :ZZx”y"I¢ (x,y).
Xy

mio
xi(k) =—
(k) moo
moj
i(k) =—
yi(k) o
1 2un
0(k) ==tan ' ———— 22
® 2 20 — Ho2 22)

where 11, Uy and U, are first-oder and second-order
central image moments at time step k. Then particle
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weights are updated using observation model (18) as:

wi = p(ye/&e).

where o, =1, 6y =0.5.

4) Once the N particle set have been estimated, the
location of single target paramecium at time-step k is
calculated as:

N
E[f(x0)] = ) Wik

i=1

(23)

5) Calculate the normalized particle weights W}; and cu-
mulative probability ¢j. Check out if resampling is
necessary.

6) k=k+1, go to step 2.

IV. EXPERIMENTS
A. Successfully tracking during Collision

To confirm the ability of our proposed model, we conduct
experiments of tracking the single paramecium with conden-
sation in a non-parallel workstation. We check whether our
proposed method track only target paramecium even when
the tracked paramecium collides with other obstacles. Fig.
5(a) and Fig. 5(b) are consecutive image sequences from
the tracking movies. The center of target paramecium is
calculated by using condensation filter with PR-LSM-DC as
measurements shown as red dot in Fig. IV-A.

Fig. 5(a) is the result of tracking the single paramecium
collided with the other paramecium. At 62 [ms], the target
paramecium without collision is in the center of the image.
At 71 [ms], the target paramecium collides with the other
paramecium. However, the detected location of target does
not slide to another paramecium and the target paramecium
is kept around the center of the image.

Fig. 5(b) is the result of tracking the single paramecium
near a air bubble. From 371 [ms] to 377 [ms], the target
paramecium swims close to the air bubble. During 379 [ms]
to 387 [ms], the tracked paramecium collides with the air
bubble. After 387 [ms], this paramecium swims away from
the air bubble. During the whole process of collision, the
target paramecium is in the center of the image all the time,
indicating that the single paramecium tracking is successfully
using condensation filter.

B. Success and Failure Reasons

To clarify how our proposed collision handling improves
the tracking robustness, we compare success and failure rates
of tracking with condensation filter to the ones without con-
densation filter. 50 trails of real-time tracking are conducted
for two situations. We define successful tracking and failure
tracking as the duration of paramecium staying in the image
is over 60 s or not, respectively. The success rate of tracking
increases from 48% to 66% due to the condensation.

The reasons of failure tracking are (1) collide with lots
of obstacles, (2) lose focus and (3) limitation of system.
In case of reason (1), target moves into a high density cell
population, the boundary of the target contacts or overlaps
with others, our boundary detection will fail in distinguishing

which area is the target. For the reason (2), tracking in
2D is guaranteed by limiting the height of water pool for
paramecium swimming. If our tracking target happens to be
a small one, the body of this cell might loses focus partially
due to the body sinking. This problem interests us as a 3D
cell tracking. The reason (3) presents as limitation of stage
moving range which can be adjusted according to specific
biologic experiment requirements.

C. Tracking Duration

We compare maximum, minimum and average durations
of the real time tracking trials with and without condensation
to show how the collision handling increase the tracking du-
ration (Tab. I). The maximum tracking duration is increased
up to 846 [ms] due to our proposed filter. The minimum
tracking durations with and without condensation are 4 [ms]
and 2 [ms] respectively, indicating there is no big difference
between them. If target paramecium is among high density
population, usually tracking will fail in very short time. This
is a problem that is still not solved even with condensation.
The average tracking duration is increased up to 191 [ms] by
using the condensation filter. These increases of maximum
and average tracking durations are valuable to observe a
moving cell under the microscope for long time.

TABLE I
MAXIMUM, MINIMUM AND AVERAGE DURATIONS OF TRACKING TRAILS
WITH AND WITHOUT CONDENSATION FILTER.

. With Without
Duration . .
condensation | condensation
Maximum [s] 846 523
Minimum [s] 4 2
Average [s] 191 74

D. Computational Time

To verify whether condensation filter implemented in
workstation is capable of real-time tracking, we compute an
average computational time for each frame from 10 image
sequences (Tab. II). The average time for 1st frame is 3.15
[ms]. The average time for other frames is 2.13 [ms]. This
reduction of is because level set function ¢”° used in PR-
LSM-DC is initialized as the converged ¢ of the last frame
and the position change of the tracked paramecium between
two consecutive frames is very small. These results represent
that our method can provide about 2 [ms] cycle time of the
single cell tracking with collision handling for the real-time
tracking.

TABLE II
AVERAGE COMPUTATIONAL TIME FOR THE CONVERGENCE IN
REAL-TIME SINGLE PARAMECIUM TRACKING.

Content Workstation
one loop time: 1st 3.15 [ms]
one loop time: others 2.13 [ms]
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62 [ms

(a) Location of target (colliding with others)

371 [ms

(b) Location of target (colliding with bubbles)

Fig. 5.

V. CONCLUSION AND DISCUSSION

To improve the robustness of single paramecium tracking
further, we combined condensation filter with PR-LSM-DC
model. To implementing this combined model, a paramecium
motion model, a tracking system dynamic model and an
observation model was established. Considering the small
differences between two frames, we built up a simple linear
model for paramecium motion under microscope. The evolv-
ing system states were estimated from dynamical model.
Using our previous PR-LSM-DC model as measurements,
the observation model updated weights for all the states in
PF. Experiments confirmed that with the motion prediction
from condensation, this proposed method also increases
maximum tracking durations, average tracking durations, and
the success rate of single cell tracking among other obstacles.
However, still cannot solve the tracking problem when target
among large cell population.
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