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Abstract— There are many difficulties in operating a hu-
manoid which has high degree-of-freedom and instability in
balancing its body. In addition, due to the shape of a humanoid,
it is expected to have motions like a human. In order to
overcome its operational difficulties and to provide a human-
like motion, a teleoperation with the motion imitation is studied
in this paper. Specifically, a framework for online generation
of a footprint from a human walking motion is proposed. The
human walking motions acquired from a motion capture device
are parameterized and normalized to give a human independent
foot motion. The normalized parameters are restored by a hu-
manoid considering its hardware limit. The restored footprints
generate a walking trajectory of a humanoid, which imitates the
human walking motion in terms of the footprint. Experiments
are conducted with MAHRU-R, a humanoid robot developed
in KIST.

I. INTRODUCTION

In teleoperation of a humanoid, there are two difficult

control features compared with other robot systems, i.e.

control of high DOF system and self-balancing ability. Since

a humanoid usually has more than thirty DOFs and many

branches in its body, it is not easy to control every joint or

branch simultaneously by buttons, levers or joysticks. Sian et
al., used a joystick to map commands to corresponding tasks,

but a variety of task mappings and more intuitive interface

for the user were expected [1].

For more complicated and various tasks, human motion

capture equipments are used as a control input device for

the humanoid teleoperation. The inertial measurement units

(IMU) are used for NASA Robonaut [2], and the flexible

sensor tube (FST) is used for Wakamaru by Mitsubishi [3] for

teleoperation of upper body motions. An exoskeleton system

is another type of the motion capture equipment, which used

in teleoperation of Sarcos [4], [5].

Unlike other input devices such as a joystick, the mo-

tion capture equipment can give human-like motion, and

thus the motion capture equipment is one of promising

motion/command input devices in spite of its weakness in

portability and installation.

Locomotion and manipulation are the essential parts in

humanoid teleoperation, and are definitely based on self-

balancing ability. Due to this balancing problem, it is hard

to imitate human walking motion. HRP-2 developed in
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AIST executed a mobile manipulation task with whole-body

balancing, according to the user’s command by a joystick

[6]. There was another attempt of offline walking motion

imitation by remixing human’s motion data adequately for a

humanoid [7].

Because a human and a humanoid have different kine-

matic and dynamic characteristics, the humanoid motion may

become deviated from the original human walking motion.

With this confliction between balance and imitation, online

walking imitation is not attempted so far.

This paper is organized as follows: section II briefly

explains the full procedure of the walking motion imita-

tion we are studying, and section III explains the footprint

imitation scheme of the human walking. Section IV and

V describe online walking motion detection scheme and

restoration of walking motion for a humanoid, respectively.

In section VI, the experimental results are discussed, and

section VII concludes this paper.

II. WALKING IMATATION PROCEDURE

In order to imitate human’s walking motion, two major

problems occur: 1) a structural gap and 2) a control scheme.

Due to the structural gap between a human and a humanoid,

walking speed, step size, and so on are quite different

from each other, and it is hard to imitate human’s walking

motion thoroughly. Instead, a humanoid can imitate a relative

walking motion of a human within its structural limitation.

In addition to the classical motion imitation problem, a

control scheme for guaranteeing the balance needs to be

considered, since human and humanoid are contacting the

ground with their feet in most cases. A contact situation of a

human is very complicated, and the most contact situations,

such as walking with high heels, dancing motion, etc., are in

partial contact. Even in a normal walking motion, foot uses

a partial contact of heel and toe. These contact situations

cannot be transferred to a humanoid by the simply mirrored

motion only, since the contact is highly dependent on the

balance, and in most cases a humanoid cannot guarantee

the balanced motion with a partial contact. Moreover, most

walking control schemes developed so far do not give

walking motion with the knees straightened because of the

singularity, except a few humanoids [8]. If the walking

motion is imitated with joint angle relations with usual

motion imitation methods, the leg shape can imitate a human

leg motion well, but the contact situation or balance cannot

be guaranteed. With these control problems, it is hard to

imitate a walking motion in real time.
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In order to achieve this online walking motion imitation,

we are studying it in two ways. One is to imitate footprints.

Footprint imitation:
1) (imitation) foot motion detection and restoration in

the step wise: The footprints are imitated, and thus a

humanoid can follow the human’s steps.

2) (imitation, control) foot motion detection and restora-

tion by tracking the swinging foot: A swinging foot

motion is imitated.

3) (control) walking control with a straight knee: A

humanoid can walk with a straight knee, and then

the footprint imitation can give more natural imitative

walking motion.

With this footprint imitation, it is easy to guarantee the

balanced motion, but is hard to imitate the leg motion.

The other way is to imitate leg motion with joint relations.

Leg shape imitation:
1) (imitation, control) leg shape imitation with joint

angles under a predefined contact: A leg shape is fully

imitated and the contact situation is limited to the

predefined contact situation.

2) (control) leg shape imitation with joint angles under a

natural contact: A leg shape is fully imitated and the

contact situation is not predefined.

With this leg shape imitation, a human leg shape can be

imitated well, but it is hard to guarantee the balanced motion

of a humanoid. In order to imitate the human walking motion

thoroughly, these two approaches are needed to be developed

simultaneously, as shown in Fig. 1. Currently, this paper

deals with the online footprint imitation, which is the first

step of the walking motion imitation.
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Fig. 1. Overall procedure of the walking motion imitation

III. FOOTPRINT IMITATION SCHEME

Footprint imitation is mainly composed of three processes:

walking motion detection from human’s motion capture data,

walking motion parameterization for step-wise motion, and

walking motion resotration in the humanoid to walk, as

shown in Fig. 2.

a) Walking motion detection process: Motion capture

data of feet poses are investigated first. This process detects

supporting/swinging status of each foot, current stance, walk-

ing period, swinging foot height. One step is detected after

a human finishes his step, and thus time delay of one step

at least occurs for humanoid’s walking motion.

b) Walking motion parameterization: If the stance is

detected to be changed, the walking motion parameterization

process is conducted. Normalized Walking Motion Parame-

ters (NWMP) are defined as follows:

NWMP = (ηSSL,ηFSL,θ ,ηFH ,ST N,Tperiod) (1)
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Fig. 2. Procedure of the footprint imitation

where ηSSL and ηFSL are normalized sagittal and frontal step

length, θ is foot angle of swing foot, ηFH is normalized

height of swing foot, ST N is stance and Tperiod is current

step period, respectively. With this normalized parameters,

the foot motion can be restored within the limit of a target

humanoid hardware. In order to represent a walking motion

with these six parameters, it is assumed that the swing foot

has a sinusoidal motion, not an arbitrary motion in the air.

c) Walking Motion Restoration: In the humanoid, by

reverse mapping of the NWMP according to the humanoid’s

ability, the footprint is restored. However, this footprint may

not be adequate for the robot due to the discrepancy between

the human and the robot. Thus, the restored footprint is

modified to guarantee the balance of a robot.

IV. HUMAN WALKING DETECTION

A. Supporting Foot Detection

Supporting Foot Detection (SFD) is in charge of checking

supporting/swinging state of each foot for every motion

capture data. The result of SFD is used in Stance Estimation

(SE) to decide the current stance is left-support, right-support

or double-support [9].

There would be an argue about what feature of data is

the most suitable. Since IMU sensor has accumulative drift

error, foot position and orientation themselves are not quite

reliable. Thus, it is better to use relative than to use absolute

values. In SFD, the norm of linear foot velocity, i.e. foot

speed, is used as a feature.

The essence algorithm of SFD is described in Algorithm 1,

which is already introduced in [9]. xi denotes 3D foot

position vector at time i, Δt is sampling period, sspp is

maximum supporting foot speed, tspp is minimum supporting
time, and n is supporting time counter.

Let X(i) = {xi−nthr , · · · ,xi} be a sequence of foot position,

and V (i) = {si+1−nthr , · · · ,si} be a sequence of foot speed.
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Algorithm 1 Supporting foot detection

if ‖xi−xi−1‖
Δt ≤ sspp then

n ← n+1

else
n ← 0

end if
if n≥ nthr =

[
tspp
Δt

]
then

Foot State ← Supporting
else

Foot State ← Swinging
end if

Note that Δt is a constant value, which is 10 ms in imple-

mentation, and foot speed, si, is the mean speed for interval

Δt. Provided that Foot State is Supporting at time i, (2) is

satisfied.

sk ≤ sspp f or ∀sk ∈V (i), k = i+1−nthr, · · · , i (2)

Then, interval mean speed, s̄i, for interval tspp satisfies (3).

s̄i =
si+1−nthr + · · ·+ si

[tspp/Δt]
≤ sspp (3)

In the aspect of analysis process, s̄i in (3) is more tractable

than sk in V (i) in (2). Since (3) is a necessity condition of (2),

the design of SFD using (3) would give more conservative

classification rule for (2). Thus, analysis hereafter regards

only s̄, not sk in V (i).
As shown in (3), there are two design parameters in the

algorithm, i.e. sspp and tspp. In order to determine these

values, statistical analysis using practical data is prerequisite,

since IMU sensor data are sensitive to experimental environ-

ment such as magnetic field disturbances and sensor mount

condition.

B. Statistical Design of Supporting Foot Detection

Statistical characteristics of human’s walking motion are

investigated with motion capture data. Elementary walk-

ing motions in sagittal and frontal directions are used for

analysis. Each motion is composed of ten steps, and the

walking speed is about 0.5 m/s. In order to obtain statis-

tical characteristics of supporting state and swinging state,

respectively, foot states of all sampling data are classified

manually. Supporting state class and swinging state class are

denoted by Sspp and Sswg, respectively.

With an assumption that s̄ is a random variable of Gaussian

distribution, two-class statistical decision making method is

applied to determine the design parameters[10].

The analysis process is as follows:

1) compute s̄ for different interval length, i.e. tspp
2) obtain probability density function (PDF) of s̄
3) compare PDFs of Sspp and Sswg
4) find the intersection point, s̄d , i.e. sspp

PDFs of Sspp and Sswg have the same probability at s̄d ,

which is called discriminant value. This means that s̄ less

than s̄d is probably in different state class with s̄ larger than

s̄d . Thus, s̄d can be used as classification threshold, i.e. sspp,

and of course, the corresponding interval is tspp.

s̄d can be obtained from (4), where μ and σ stand for the

mean and the standard deviation, and (·)spp and (·)swg imply

supporting state and swinging state.

P(Sspp)
1

σspp
√

2π
e−

1
2

(
s̄d−μspp

σA

)2

= P(Sswg)
1

σswg
√

2π
e−

1
2

(
s̄d−μswg

σB

)2

(4)

The analysis for four different tspp is conducted and

presented in the followings. In Fig. 3, PDFs of s̄ are depicted.

s̄ of Sspp has high probability at zero, while that of Sswg has

almost even probability in wide interval speed region.

In Table I, μ and σ for each tspp have been computed.

It is found that σspp is getting smaller as tspp increases up

to 100 ms, because the sensor noise is filtered off by longer

interval length. However, for 200 ms interval window, there

would be overlapped region with supporting and swinging

foot, so that σspp has rather larger value.
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(b) 20 ms interval
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(c) 100 ms interval
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Fig. 3. Velocity of supporting foot (red) and swinging foot (blue)

TABLE I

MEAN AND STANDARD DEVIATION

Interval Length (tspp) [ms] 10 50 100 200
Supporting Mean (μspp) [mm/s] 31.0 30.1 29.8 30.3

State Std.dev. (σspp) [mm/s] 1.2 1.1 1.0 1.2
Swinging Mean (μswg) [mm/s] 315.6 310.4 303.2 286.3

State Std.dev. (σswg) [mm/s] 47.5 44.7 42.3 36.5

According to the analysis results, the design parameters

of SFD are determined. In order to find the most suitable

parameter values, detection accuracy is measured for each

interval length as depicted in Table II. The detection accuracy

test shows that 36.7 mm/s of sspp with 100 ms of tspp are

the most suitable design parameters.
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TABLE II

DETECTION ACCURACY

Min. spp. time (tspp) [ms] 10 50 100 200
Min. spp. time count (nthr) 1 5 10 20

Max. spp. ft. speed (sspp) [mm/s] 38.7 37.5 36.7 39.0
Supporting State [%] 74.2 74.4 75.5 74.7
Swinging State [%] 99.2 99.3 99.3 98.8

C. Walking Motion Parameter Normalization

The detected walking motion is not adequate for a hu-

manoid to walk, since human individuals have various

patterns of walking, and the robot has its own walking

capability which is much inferior to those of humans. Thus,

walking motion parameters are normalized with respect to

the human’s walking pattern, and restored in the humanoid

according to its own specifications.

The parameters concerned in the normalization process

are sagittal step length (LSSL), frontal step length (LFSL), and

height of swinging foot (LFH ). Statistical data of normal step

length (LNSL) and normal swinging foot height (LNFH ) are

found in [10], [11].

LNSL has a correlation with ages and heights, respectively.

In order to estimate LNSL for a human, mapping function

from age and height to LNSL is built as in Fig. 4. Since the

data set is quite limited, spline interpolation is used to build

this mapping function.
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Fig. 4. Mapping of normal step length with respect to age and height

LNFH varies in wide region according to walking situations

such as obstacles. In the normalization process, LNFH is set

as 31.1 mm, which is obtained from young adults of middle

heights.

If preliminary information about the human is provided,

LNSL and LNFH are estimated, and the normalized walking

parameters (η) are obtained as follows.

ηSSL = LSSL/LNSL (5)

ηFSL = LFSL/LNSL (6)

ηFH = LFH/LNFH (7)

V. RESTORATION OF IMITATED FOOT PRINT

In this section, we explain the method used for restoring

walking motion from NWMP. The restored footprints are not

implemented directly by the robot, but by considering their

geometrical difference between human and robot. A proper

swinging foot position will be decided through the elliptic

adjustment and collision detection procedure. Fig. 5 shows

the overall block diagram for walking motion restoration.

Fig. 5. Overall block diagram for restoring walking motion from NWMP

A. Reverse Parameter Mapping

As mention above, NWPM is normalized data from human

walking. A data is restored by considering robot’s mechan-

ical constraints, because every humanoid has a different

mechanical specification. The regeneration can represented

as following:

lSSL = ηSSL · lSSLmax (8)

lFSL = ηFSL · lFSLmax (9)

lFH = ηFH · lFHmax (10)

where the terms on the left side mean walking parameters

used for a humanoid. The first terms on the right side mean

the normalized walking parameter from NWPM. And the

second terms on the right side of equations are obtained by

the robot mechanical limit.

B. Elliptic Boundary Adjustment

The restored parameters lSSL, lFSL in (8), (9) consist of

the position of swinging foot. But the position should be

checked from the workspace’s point of view. If two positions

are combined, the foot position can be outside the workspace.

To overcome this problem, the swinging foot positions are

constrained inside a specific area, for example, an ellipse.

The elliptic area in Fig. 6 is constituted with maximum SSL

and maximum FSL. In Fig. 6, superscript ‘ori’ describes the

original foot position and superscript ‘mod’ represents the

modified foot position by the elliptic area.

The center of ellipse is the swinging foot position if it is

standstill as the first initial position. The ellipse is represented

by

x2

lSSLmax
2
+

y2

lFSLmax
2
= 1 (11)

where x and y describe position values about swinging foot

with respect to the center of the ellipse.

If the foot position is inside the ellipse, the foot posi-

tion can be implementable for walking pattern. If the foot

position is outside the ellipse, however, the foot position

must be modified inside the ellipse, because this elliptic area

represents the reaching area by swinging foot including the
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Fig. 6. Selecting foot position applied to elliptic area

robot kinematical constraints. The modified position can be

obtained by the intersection point between the ellipse and

the line which passes from center to the the ellipse.
The modified position of swinging foot is represented like

xi
mod =

lSSLmax · lFSLmax · xori
i√

(lFSLmax · xori
i )2 +(lSSLmax · yori

i )2
(12)

yi
mod =

lSSLmax · lFSLmax · yori
i√

(lFSLmax · xori
i )2 +(lSSLmax · yori

i )2
(13)

This modified foot positions satisfy the robot’s kinematic

limit and human walking intent properly.

C. Foot Collision Detection
Unlike human’s walking motion, a robot should not collide

inside its body. In our case, the foot collision needs to be

avoided. Fig. 7 shows the collision examples inside each foot.

We assume each foot of the robot is regarded as a rectangle

for simplification. To detect the collision of feet simply and

quickly, four corners of each foot are inspected whether any

corner of one foot is inside the other foot area and vice

versa, as shown in Fig. 8 (b). In the case that the collision

is detected, the swinging foot is shifted by the predefined

distance from the supporting foot as shown in Fig. 8 (c).
In the case that the collision is detected, the swinging foot

is shifted to some distance from the supporting foot as shown

in Fig. 8 (c) to avoid the collision.

Fig. 7. Collision examples between swinging foot and supporting foot

Fig. 8. Checking the collision and modifying swing foot position (in the
case of left foot swinging)

D. Generating the Walking Pattern

In order to generate a walking pattern from the restored

foot position, a feedforward and a feedback controller for

a humanoid walking are utilized as shown in Fig. 9 [12].

Firstly, the feedback controller stabilizes the linear inverted

pendulum model more. For this purpose, the pole place-

ment method is used as feedback controller. Secondly, the

feedforward controller improves the tracking performance.

Especially this feedforward controller reduces the effect of

the the unstable zero which is located out of unit circle in

Z domain. We utilize the advanced pole-zero cancelation

by series approximation(APZCSA) controller. This controller

can approximate the inverse of a unstable zero by using the

series approximation. The steady state error can be reduced

by adding to 1/(zNorder
u −1) as shown in Fig. 9. The stable

patterns of the ZMP and the CoM are generated by these

two controllers.

The obtained pattern the ZMP and the CoM are transmitted

to a humanoid robot.

Fig. 9. Block diagram for generating walking pattern with APZCSA

VI. EXPERIMENTAL RESULT

To validate the proposed online footprint imitation method,

experiments are conducted with MAHRU-R, a humanoid of

KIST. MVN System of Xsens Technologies B.V., is used for

the IMU motion capture system [13]. It has 16 IMU sensors

on the sensor suit, and offers human’s full-body motion data

which are anatomically reconstructed based on raw data from

the IMU sensors. The resolutions of IMU are 0.05 deg. in 3D

orientation, 2 mg in acceleration, 0.6 deg/sec in gyroscope.

The maximum streaming rate is 120 Hz.
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Fig. 10. Online footprint imitation experiment

(a) position in transversal plane (b) position in sagittal direction

(c) height of swinging foot (d) foot angle

Fig. 11. Experiment of footprint imitation for forward walking

Fig. 10 shows the practical experiment for the footprint

imitation. In the experiment, the human subject is asked to

walk in three sequential motions: forward walking with short

and long periods, marking time with low and high swinging

heights, and forward walking with wide and narrow foot

angles.

Fig. 11 shows the experimental results of footprint imita-

tion. In Fig. 11(a), locomotion of the human and the robot is

depicted. Due to the difference of walking capabilities, the

walking paths do no match. In order to compare the shape

of walking paths, human’s footprints are scaled down. The

scaled path is similar to the robot’s path, except the end of

paths near (0.6 m, 0.1 m) in the figure. The reason is that the

robot’s footprint is modified to avoid foot collision, because

the human’s footprints are too close. Note that the robot’s

motions are delayed about one step, because of the foot step

detection.

In Fig. 11(b), (c), and (d), foot position in the sagittal

direction, height of swinging foot and foot angle are shown

with respect to time. All variations in the walking motion

are well reflected to the robot’s walking motion.

In the aspect of stability, the result is more admirable.

As shown in Fig. 11(b), there is backswing in the human’s

walking data. This is because the the IMU motion capture

device are influenced by magnetic field disturbance and drift

error. However, footprint detection is quite robust despite the

data distortion, and the resultant robot’s walking imitation

does not cause any stability problems.

VII. CONCLUSION

Online footprint imitation with walking motion parame-

terization is proposed as the first step of walking motion

imitation. The footprint imitation, composed of walking mo-

tion detection, parameterization and restoration, is explained

focusing on several essential processes. Experiment validated

the proposed method that human foot motion in step length,

foot angle, swinging foot height and walking period.
As further works, swinging foot trajectory, which is as-

sumed to be sinusoidal in this paper, should be imitated

online. The issue on swinging foot trajectory is how to re-

move sensor disturbance and extract stable trajectory motion.

Leg motion imitation control with a straight knee would be

the final goal. It requires a humanoid to walk with its knee

straightened and to maintain balance while fully imitating a

human’s leg motion. In the near future, we would improve

our method with stability as well as joint imitation, and

finally develop online leg shape imitation.
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