
  

  

Abstract—This paper presents a vision tracking system to 
achieve high recognition performance under dynamic 
circumstances, using a fuzzy logic controller. The main concept 
of the proposed system is based on the vestibulo-ocular reflex 
(VOR) and the opto-kinetic reflex (OKR) of the human eye. To 
realize the VOR concept, MEMS inertial sensors and encoders 
are used for robot motion detection. This concept turns the 
camera towards a selected target, counteracting the robot 
motion. Based on the OKR concept, the targeting errors are 
periodically compensated, using vision information. The fuzzy 
logic controller uses sensor data fusion to detect slip or collision 
occurrences. To calculate a heading angle of the camera 
accurately, the output of the fuzzy logic controller and the vision 
information from the camera are combined, using an extended 
Kalman filter. The proposed vision tracking system is 
implemented in a mobile robot and evaluated experimentally. 
The experimental results are obtained as the tracking and the 
recognition success rate using a mobile robot. The developed 
system achieved the excellent tracking and recognition 
performance during slip or collision occurrences under dynamic 
circumstances. 
 

I. INTRODUCTION 
HE last decade has seen changing trends in the robot 
industry ranging from industrial robots to military, 

service and entertainment robots. Being utilized in a wider 
field, the robots require advanced sensors and control 
technologies to implement various functions. Indoor mobile 
robots, such as cleaning robots or service robots, require 
precise navigation systems and vision systems to perform 
various tasks. 
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There are two position estimation methods applied in 
navigation systems, absolute and relative localization. The 
relative localization is realized through measurements 
provided by sensors measuring internal variables of the 
vehicle. The incremental encoders are the typical internal 
sensors. These sensors are placed on the wheel axis which 
represents the rotation axis of the vehicle. The disadvantage 
of this method is that errors of each measurement are 
accumulated. This heavily degrades the estimation of the 
position and the orientation of the vehicle, especially for long 
and winding trajectories [1]. However, the absolute 
localization is based on the sensors measuring parameters of 
the environment in which the robot is operating. These 
sensors, which are sonar and Infrared sensors, are also widely 
utilized for the guidance of autonomous vehicles with 
obstacle avoidance in unknown environment [2-3]. The major 
disadvantage of the absolute localization is their dependence 
on the environmental parameters [4]. 

The vision information is important for object recognition. 
In the vision tracking area, especially, the vision information 
from fixed observers is only used to track a target. There are 
algorithms to analyze the vision information in the vision 
tracking. The smallest univalue segment assimilating nucleus 
(SUSAN) and features from accelerated segment test (FAST) 
algorithms recognize objects by feature point extractors, 
while the normalized cross-correlation (NCC), scale invariant 
feature transform (SIFT), and speeded up robust feature 
(SURF) algorithms recognize objects by similarity of feature 
points. These algorithms strongly recognize various objects, 
but if there are obstacles in front of an object, the vision 
tracking systems fail to track the target. Also, in order to 
handle the more image information, Also, in order to handle 
more image information, the system with higher performance 
is necessary [5-9]. 

The VOR is a reflex of an eye movement that stabilizes 
image on the retina during head movement by producing an 
eye movement in the opposite direction to head movement, 
thus preserving the image on the center of the retina. The 
OKR allows an eye to follow objects in motion when the head 
remains stationary. The VOR concept is implemented using 
micro-electro-mechanical systems (MEMS) inertial sensors 
and mobile robot encoders, while the OKR concept is 
implemented by using vision information from a camera 
which is mounted on the mobile robot. 
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 Recently, the fuzzy control system is extensively used for 
multi-sensor data fusion for navigation systems. The 
FLEXnav system uses data from fiber optic gyroscopes, 
Coriolis gyroscopes and accelerometers [10]. The fuzzy 
expert system uses data from accelerometers, gyroscopes and 
digital compass to estimate robot attitude [11]. The fuzzy 
logic adaptive Kalman filter (FLAKF) and the fuzzy 
modeling using a global positioning system (GPS) and 
MEMS inertial measurement unit (IMU) are proposed to 
obtain location information of robots [12-13]. 

This paper proposes a VOR-based vision tracking system 
using the fuzzy control. The proposed system is applied with 
the navigation system and the vision-based tracking system. 
The mobile robot navigation system is derived from the 
vestibulo-ocular reflex (VOR), and the vision-based tracking 
system is derived from the opto-kinetic reflex (OKR) of the 
human eye. And this paper also introduces a sensor fusion 
method for slip detection using the fuzzy logic. The main 
purpose of our system is to keep the range of the sight fixed to 
the target, even when there are slip or collision occurrences 
during robot motion. The proposed system is developed, and 
evaluated to show the stable and the robust tracking and 
recognition performance during slip or collision occurrences 
under dynamic circumstances.  
 

II. SYSTEM CONFIGURATION 
The proposed VOR-based vision tracking system is shown 

in Fig. 1. It consists of a mobile robot, an artificial vestibular 
system (AVS) sensor cluster such as the artificial vestibular 
organ to sense linear and rotation motion of the robot, a 
camera for vision information, an actuator module to rotate 
the camera, and a host PC to run algorithms locating a target 
in the center of the image plane of the camera. It also 
describes how each part of the system communicates with the 
host PC.  

 The robot moves in accordance with the received 
commands from the host PC through the USB interface. The 
mobile robot’s encoder and the MEMS accelerometer and the 
gyroscope signals represent the motion information of the 
mobile robot, and are sent to the host PC by RS232 
communication. The target position information at the image 
plane obtained by the camera is transferred to the host PC 
through the USB interface. The relative position of the robot 
and the camera error angle are calculated by the AVS sensor 
cluster signals and vision information of the camera in the 
host PC. The host PC transfers the control signals to the 
actuator module to locate the target at the image plane of the 
camera by RS232 communication. 

The mobile robot (Mobile Robot, Customer & Robot Co., 
LTD.) for the VOR-based vision tracking system is a 
commonly used platform. The mobile robot has two wheels 
with encoders. The AVS sensor cluster consists of an 
accelerometer (kxps5-3157, Kionix, Inc), a gyroscope 
(ADIS16255, Analog Devices, Inc.), a microcontroller 
(Atmega162) for signal processing, and data communication 
chip (MAXIM233) for RS232 communication. In addition, a 

single camera (SPC 520NC, PHILPS) is attached to a DC 
motor (Series 2619, MicroMo Electronics, Inc.) on the center 
of the robot. Finally, A Windows based visual C++ 2005 
program is developed to realize the VOR-based vision 
tracking system. 
 

III. VOR-BASED VISION TRACKING SYSTEM 

A. VOR-Based Vision Tracking Principle 
The block diagram of the proposed system is shown in Fig. 

2. It is derived from the VOR and OKR of the human eye 
reflex. The developed system receive the feedforward data of 
the robot motion information from the AVS sensor cluster, 
and the vision information of the camera, which is the 
differential pixel information between the center of the image 
plane and the center of the target image, is used as a feedback 
data to rotate the camera. Based on the VOR and OKR 
concepts, the DC motor is used to rotate the camera to locate 
the target in the center of the image plane. 
 

B. Camera Heading Angle Using Robot Motion 
In the indoor navigation system, a camera heading angle 

for locating a target at the center of an image plane is 
calculated on the basis of robot motion information. The 
motion and location information of the mobile robot are 
depicted using the Cartesian coordinate system, which is 
shown in Fig. 3. The symbols used are presented below. 

 
Fig. 1.  VOR-based vision tracking system 

 
Fig. 2.  Block diagram of VOR-based vision tracking system 
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OXY : Global coordinate system 

1 1 1k k kO X Y− − − : Reference coordinate system of k-1 step 

k k kO X Y : Reference coordinate system of k step 

1kP − : Robot position of k-1 step w.r.t OXY  

kP : Robot position of k step w.r.t OXY  

T : Target position w.r.t OXY  

1kr − : Heading vector of k-1 step w.r.t 1 1 1k k kO X Y− − −  

kr : Heading vector of k step w.r.t k k kO X Y  

dΔ : Moving distance of the robot during tΔ  
 
The vector kr  is  

cos sin
( )

sin cos
k k

k o k
k k

r r P
θ θ
θ θ

⎡ ⎤
= − ⋅ ⎢ ⎥−⎣ ⎦

            (1) 

where, 

1 1k k kP P d− −= + Δ                     (2) 
 
The camera heading angle kr∠  to locate the target at the 

center of the image plane is calculated from the vector kr . 
 

, ,1

, ,

( ) sin ( ) cos
tan

( ) cos ( )sin
x k k y k k

k
x k k y k k

X p Y p
r

X p Y p
θ θ

θ θ
−
⎛ ⎞− − ⋅ + −

∠ = ⎜ ⎟⎜ ⎟− + −⎝ ⎠
  (3) 

 
The moving distance 1kd −Δ is calculated by using the 

accelerometer and encoder data, respectively. The mobile 
robot moving distance from the point

1kO −
 to kO  during tΔ is 

given below. 
 

2
, 1 , 1 , 1

1
2a k a k a kd v t a t− − −Δ = Δ + Δ                   (4) 

, 1 , , 1e k e k e kd d d− −Δ = −                  (5) 

where, 

, 1a kd −Δ : Moving distance calculated by accelerometer  

during tΔ  

, 1e kd −Δ : Moving distance calculated by encoder during tΔ  
 

The moving angle 1kθ −Δ  is calculated using the gyroscope 
and encoder data. The moving angle 1kθ −Δ  is given below. 

, 1 , 1 , 1( )g k g k g k tθ ω− − −Δ = Ω + Δ                  (6) 

, 1e k
RINC LINC

D
θ −

−Δ =                 (7) 

where, 

, 1g kθ −Δ : Rotating angle during tΔ calculated from  
gyroscope data 

, 1e kθ −Δ : Rotating angle during tΔ calculated from encoder  
data 

RINC: Right wheel increment 
LINC: Left wheel increment 
D: Distance between right wheel and left wheel 
 

C. Camera Heading Angle Using Camera Image  
The camera heading angle to locate the target image at the 

center of the image plane is calculated using the vision 
information of the camera. The SURF algorithm is used to 
recognize the target, and the camera angle error is calculated 
using the pin-hole model. The angle error between the center 
of the image plane of the camera and the center of the target in 
image plane is used as a feedback signal for the controller as 
shown in Fig. 2. 

The angle error is shown in Eq. (8), and pin-hole model is 
shown in Fig. 4. 
 

1tan The distance from image center to target center
focal lengthkε − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

   (8) 

 
Fig. 3. Cartesian coordinate system for vision tracking system 

 

 
 

Fig. 4.  Pin-hole model to calculate camera heading angle error 
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IV. SENSOR FUSION METHO

A. Sensor Fusion Concept 
The block diagram for sensor data fusi

controller part of the proposed system, is sh
the controller part, the encoder signal (33 H
signal (169 Hz) are synchronized with the en
are used to calculate the moving distance 
mobile robot, which serve as the fuzzy logi
at the encoder cycle. The moving distance
the encoders and accelerometer using Eq
combined using the fuzzy logic rulebase
distance. The moving angle, calculated from
gyroscope using Eq. (6) and (7), is also com
fuzzy logic rulebase for the moving ang
rulebase is obtained from the experiments of
occurrences. The output from the fuzzy lo
weighted value for the encoders and the 
Weighted sum, the state input for the extend
is given below.  

(1
weighted sum d weighted value

weighted va
Δ = × Δ

+ −

(1
weighted sum weighted value

weighted valu
θΔ = × Δ

+ −
The camera angle error between the center

the center of target in the image plane is used
update. Finally, the camera heading angle to
in the center of the image plane is obtained
the extended Kalman filter.  

B. Fuzzy Slip Detection Modeling 
The mobile robot moving in indoor enviro

in dynamic circumstances and undergoes 
occurrences. In these environments, if

Fig. 5. Fuzzy logic controller for sensor 

             (a) ∆d Rulebase         (a) ∆θ R
NB: negative big,              AO: accelerometer only     GO
NM: negative medium      AM: accelerometer medium    GM
Z: zero                                AE: both          GE
PM: positive medium   EM: encoder medium,       EM
PB: positive big      EO: encoder only        EO
 

Fig. 6. The designed fuzzy logic ruleb

OD 

ion, which is the 
hown in Fig. 7. In 

Hz) and the sensor 
ncoder cycle, and 
and angle of the 

ic controller input 
e, calculated from 
q. (4) and (5), is 
 for the moving 

m the encoders and 
mbined using the 
gle. Each of the 
f slip and collision 
ogic controller is 

inertial sensors. 
ded Kalman filter, 

)
enc

acc

d
lue d
Δ

× Δ (9)

)
enc

gyroue
θ

θ
Δ

× Δ   
(10) 

r of the image and 
d as measurement 
o locate the target 
d by the output of 

onments is placed 
slip or collision 

f only encoder 

information is used, the location info
is not correctly obtained. When iner
long term duration, it causes accumu
and two-step integration. 

The proposed solution for this p
detection model. The output of the fu
is weighted sum of the inertial senso
is used as input of the extended Kalm
and (5) show the moving distance, 
from the encoder and accelerometer
cycle ∆t, respectively. The equati
moving heading angle, ∆θ, of the
encoder and gyroscope data durin
respectively. Each of the rulebase 
experiments. 

Once the inputs and the outputs ar
the relationship between them mu
Mamdani algorithm is used for the
The general "if-then" rule structure o
is given in the following equation: 

iR : IF ix  is iA and ... THEN y  is 

where k is the number of rules, 

 
 fusion 

 
Rulebase  
O: gyroscope only 
M: gyroscope medium 
E: both 
M: encoder medium 
O: encoder only  

base 

Fig. 8. ∆d Membership

 
Fig. 9. ∆θ Membership

Fig. 10. ∆d, ∆θ weighted value M

 
Fig. 7.  Block diagram of controller 

 

ormation of mobile robots 
tial sensors are used over 

ulative errors by bias drift 

problem is the fuzzy slip 
uzzy slip detection model 

or and encoder data which 
man filter. The equation (4) 
∆d, of the mobile robot 

r data during the encoder 
ion (6) and (7) are the 
e mobile robot from the 
g the encoder cycle ∆t, 
has been obtained from 

re identified and defined, 
ust be established. The 
 fuzzy inference system. 

of the Mamdani algorithm 

iB  (for i=1, 2, ..k)   (11) 

ix  is the input variable 

   
p function 

   
p function 

   
Membership function 

 
part for sensor fusion
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(antecedent variable) and y  is the output variable 
(consequent variable). 

For the fuzzy logic controller, we translated our knowledge 
base into the fuzzy logic rulebase shown in Fig. 6. The 
membership functions used as the input and the output of the 
system are shown in Fig. 8, 9 and 10. 

 

C. Sensor Fusion Using Extended Kalman Filter 
In this section the heading angle of the camera on the 

mobile robot is estimated by inserting the output of the fuzzy 
logic controller in the input of the discrete time extended 
Kalman filter. The measurement of the actual heading angle 
of the camera is obtained by adding the angle from the DC 
motor encoder and the error angle from the image processing 
of  the feedback signal. 

The state model predicts the coordinates of the state state
x . 

( ) ( ) ( ) ( )
T

x yx k p k p k kθ⎡ ⎤= ⎣ ⎦ , ~ (0, )k Qω  (12) 

where, 
( )xp k : Mobile robot x-coordinate 

( )yp k : Mobile robot y-coordinate 

( )kθ : Mobile robot heading angle 
 

The state x is induced from the input u  which consists of 

the weighted sum dΔ and θΔ . The input u is the output of 
the fuzzy logic controller. 

 

[ ]( ) Tu k d d θ= Δ Δ Δ              (13) 

( ) ( 1) ( ( 1) ( 1)) cos( ( 1))x xp k p k d k k kω θ= − + Δ − + − −   (14) 

( ) ( 1) ( ( 1) ( 1))sin( ( 1))y yp k p k d k k kω θ= − + Δ − + − −   (15) 

( ) ( 1) ( ( 1) ( 1))k k k kθ θ θ ω= − + Δ − + −        (16) 
 
The mobile robot’s x-coordinate, y-coordinate and heading 
angle are shown in Eq. (14), (15) and (16). It is updated every 
0.03 s (33 Hz), which is the wheel encoder cycle. 

The measurement model updates the coordinates of the 
state vector x . The measurement of the actual heading angle, 

kz , of the camera is obtained by Eq. (3) with ~ (0, )kv R . 
The partial derivative matrix is obtained from Eq. (14), 

(15), (16), and (3). 
 

1

1 1 1
1

1 1 1 1
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0 1 ( ) cos
0 0 1k
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x
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                 (20) 

 
Fig. 11 shows the operation of the extended Kalman filter. 

The filter estimates the process state x  at time k and estimate 
the covariance P  of the error in the estimate. The filter then 
obtains the feedback from the measurement. Using the 
Kalman filter gain K  and the measurement z , it updates the 
state x  and the error covariance P . This process is repeated 
as new measurements come in, and the error in estimation is 
continuously reduced [14]. 
 

V. EXPERIMENTAL RESULTS 
To evaluate the proposed vision tracking system, the 

experimental environment was setup as shown in Fig. 12. The 
driving velocity and the rotation velocity of the mobile robot 
mounted on our system are 0.2 m/s and 30 deg/s, respectively. 
The initial position of the mobile robot is 1.8 m away from the 
target. In the recognition test, the SURF based recognition 

 
 

Fig. 12.  Experimental environment 

 
 

Fig. 11. Operation of the extended Kalman filter 
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program is used. In the case of accurate tracking and 
recognition, the target appears in the image of the camera, and 
a red square is formed on the edge of the target.  

To verify the basic performance of the system, we 
experimented with linear and rotational motion. For the linear 
motion, the robot move forward by 0.4 m, backward by 0.8 m, 
and forward by 0.4 m to initial position. For the rotational 
motion, the robot rotates clockwise by 90 deg, anticlockwise 
by 180 deg, and finally clockwise by 90 deg to come to initial 
position. The tracking success rate is 100 %, and the 
recognition rate is above 95 % for the both motion scenarios. 
Due to the blurring effect, the target in some images cannot be 
recognized successfully. 

Since the main purpose of our system is to keep the range 
of the sight fixed to the target under the dynamic 
circumstances, we generated the intentional collision and slip 
by keeping an obstacle near the robot as shown in Fig. 12. The 
obstacle is placed 0.1 m away from the robot in the forward 
direction. The mobile robot moves forward by 0.1 m, collides 
with the obstacle, and suffers slip while the robot keep 
moving by 0.4 m. After that the mobile robot moves 
backward by 0.5 m, and then forward by 0.4 m to initial 
position. In the slip test using our system, the tracking success 
rate is 100 % and the recognition rate is above 90 %. When 
compared with the slip test using the encoder only, the 
tracking success rate and recognition rate of our system are 
remarkably high. The evaluation results, the tracking success 
rate and recognize rate, are shown in Table 1. 

 

VI. CONCLUSIONS 
In this paper, we developed the VOR and OKR based 

vision tracking system for the mobile robot using the robot 
motion information and vision information. The main 
purpose of our system is to keep the range of the sight fixed to 
the target, even when there are slip or collision occurrences 
during robot motion. In the control scheme, the fuzzy logic 
controller is used in detecting slip or collision occurrences, 
and uses sensor data fusion. To calculate the rotation angle of 
the camera accurately, the extended Kalman filter estimates 
the robot motion information using the output of the fuzzy 

logic controller and the vision information from the camera. 
The proposed system is developed, and experimented by 
mounting it on the top of the indoor mobile robot. The 
experiment results show the stable and the robust tracking and 
recognition performance during slip or collision occurrences 
under the dynamic circumstances. 
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TABLE I 
EXPERIMENTAL RESULTS 

Robot trajectory Tracking success 
rate Recognition rate 

Translational motion 
(±0.4 m) 

 
100 % 98.5 % 

Rotational motion 
(±90 deg) 

 
100 % 96.7 % 

Slip circumstance 
(Proposed system) 

 
100 % 91.2 % 

Slip circumstance 
(Encoder) 73.6 % 73.6 % 

Tracking success rate (# of successful tracking / # of image frame) 
Recognition rate (# of successful recognition / # of image frame) 
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