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Abstract— This paper presents the sensor deployment
method to design a RFID sensor network for the mobile robot
localization using evolutionary approach. For this purpose, we
employ the differential evolution (DE), which is well-known for
promising performance. We propose two variation methods,
the direct optimization strategy for the maximum usage of
initial information intuitively and the full coverage optimization
strategy for the dense coverage for the surveillance and the
security. In that case, the proper tuning of parameters of DE
is essential. We experiment sensor deployment in two maps
for providing guidance about parameter tuning. The experi-
mental results show better sensor deployment result according
to guided parameter setting. The full coverage optimization
strategy also shows proper result using guided parameters from
the standard DE case.

I. INTRODUCTION

The mobile robot localization using RFID sensors in
indoor environment has been researched recently. [1] Most
localization method is that RFID tags are attached or installed
in the floor and RFID antenna is attached on the mobile
robot. However, for the localization of multiple mobile
robots, RFID tags are attached on the robot, instead antenna
and RFID antennas are installed in the environment [2]-[4].
In this paper, the optimal RFID sensor deployment problem
is appeared.

Most common sensor deployment way is to place sen-
sors manually by means of expert’s intuition or experience.
Experts arrange sensors coarsely in interest area considering
coverage and interference among sensors, and then rearrange
sensors by trial and errors. Another approach is a mathemat-
ical way. The exact deployment solution is also calculated in
a simple environment using a minimum sum of radii cover
[5] or a polynomial time approximation scheme [6]. The
last method is to define a sensor deployment problem as
a meta-heuristic search problem. The sensor deployment is
formulated as a search problem to minimize the number
of turning on sensors as well as to maximize the total
coverage of sensors as in the mathematical approach. For
this purpose, various search algorithms, such as tabu search,
generic search [7], [8], simulated annealing [9], [10], swarm
based algorithm [11], and so on, are applied to sensor
deployment problems.

However, above researches are not less related with sensor
deployment for indoor mobile robot localization, since there
are no specific consideration for reducing computational
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cost and time. In this paper, we propose optimal sensor
deployment in complex indoor environment using differen-
tial evolution(DE). In addition, in order to get reasonable
solutions with initial set similar with expert’s trial and
direct evolution, we also proposed the direct optimization
strategy with DE. The parameter study of DE with new
strategy also is considered, due to optimization performance
dependency on control parameters of DE. For the strict
mobile robot localization, full coverage optimization strategy
is also proposed since there are little dead zone by sensors
in the perspective of surveillance and security.

The reminder of this paper is organized as follows. We
introduce main components of the optimal sensor deploy-
ment problem with DE in Section II. Overview, detail and
procedure of proposed sensor deployment using the DE,
the direct optimization strategy and the full coverage op-
timization strategy are introduced in III. Section IV shows
experimental results that our proposed sensor deployment
solutions are reasonable by composing network system with
RFID antennas and tags before we conclude the paper in
Section V.

II. SENSOR DEPLOYMENT WITH DIFFERENTIAL
EVOLUTION

In this section, optimal sensor deployment problem is
briefly described.

A. Indoor environment

Indoor Environment can be divided into 2 regions. One
is an user interest region. Many places including rooms,
corridors and halls can be selected as a user interest region
according to aims of each mobile robot system. All UIR
should be covered by minimum number of sensors attached
from the ceiling or wall, outside the robot.

Other is an obstacle region. If some obstacles are placed
in specific region, then a mobile robot can’t be located that
position. In other word, the unreachable place for a robot is
not required to cover by sensors. In fact, the coverage of that
place of sensors cannot be meaningful to user. Thus in order
to use minimum number of sensors as much as possible, the
effort spent on covering obstacle region of sensors should be
decreased.

B. Sensor representation

To solve sensor deployment problem, the common prop-
erty of a sensor is represented by control variables. Needless
to say, there exist distinct features for sensor types. Thus,
common features, the sensor’s position, detection range and
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on/off state are only used to represent information of sensors
in this paper.

The position of ith sensor is represented as xi1 ,xi2 , a point
located in the xy-plane. In other words, it assumes that the
height of all sensor location is fixed or the detection range of
each sensor is adjusted for the height of sensors, respectively.

The detection range level of sensor is represented as xi3 . In
the xy-plane, the detection range is defined as a radius of a
disk centered on the position of ith sensor xi1 ,xi2 . It assumes
that user can adjust the detection range of each sensor.

The ’on/off’ state of a sensor is represented as xi4 . The ’on’
state of a sensor means that sensor will be installed according
to the position and the detection range level, whereas the
’off’ state means that sensor will be eliminated. For the use
of minimal number of sensors, sensors with the ’off’ state
should be increased in the map. Finally, ith sensor among i =
1,2, ...,Ms, where Ms is a maximum number of sensor from
geometric solution, is represented as xi = {xi1 ,xi2 ,xi3 ,xi4}.

C. Differential Evolution

DE is a stochastic search algorithm that is originally
motivated by the mechanisms of natural selection. The DE is
a population-based stochastic function optimizer that is very
effective for solving optimization problems with non-smooth
objective functions. Also simple yet powerful and straight-
forward features make DE very attractive for optimization.
Compared as other EAs, DE uses a rather greedy and less
stochastic approach to problem solving. In order to get a final
solution, DE combines simple arithmetical operators with the
classical operators of recombination, mutation, and selection
to evolve from these randomly chosen initial points [13],
[14].

In this experiment, the DE/rand/1/bin is used as a
standard DE. rand indicates the method for selecting the
parent chromosome randomly, 1 indicates the number of
difference vectors used to perturb the base chromosome, bin
indicates the binary recombination mechanism to create the
offspring population.

III. PROPOSED RFID SENSOR DEPLOYMENT STRATEGY
WITH DIFFERENTIAL EVOLUTION

In this section, the organization and procedure of sensor
deployment algorithm using DE are presented. In order to
apply DE in sensor deployment problem, it is essential
for defining and organizing fitness assignment, perturbation
operators, initialization process, and parameter settings of
DE. These topics are presented as following subsection.
In addition, not only the DE itself, but also additional
optimization strategies with DE are also described.

A. Aggregation of fitness functions

Three objectives are considered in this optimal sensor
deployment problem.

1) Coverage Rate: The coverage rate is the portion between
the region covered by all sensors with ’on’ state and whole
user interest regions. The coverage rate, Rc, is calculated as
follows.

Rc = Nc/(Nc +Nu)% (1)

, where Nc is the interest region covered by sensors and
Nu is unavailable region covered by sensors. When whole
user interest region is covered by all sensors with ’on’ state,
coverage rate indicates 100%.

2) Interference Rate: The interference rate is the portion
between the overlapped regions by two or more sensors. The
interference rate, Ri, is calculated as follows.

Ri = Ni/(Ni +Nu)% (2)

, where Ni is the overlapped region except the obstacle
region. The interference rate means the waste of effort
of each sensor. High interference rate can be reduced by
decreasing the number of sensors.

3) Number of Sensors with ’on’ State: The number of
sensors with ’on’ state, Ns. Previous objective functions are
continuous function over 0 to 100, whereas this objective
function is given by integer function. Ns affects directly cost
composing overall system. The number of sensors is integer,
thus the influence is stronger than the interference rate, but
the freedom of degree is lower than the interference rate.

In the weighted sum approach, we use uncovered rate,
which is defined as f1 = 100−Rc, rather than coverage rate
itself. The interference rate is used directly, f2 = Ri. The
normalized number of sensors is represented as the portion
of the number of sensors with ’on’ state over geometrical
solutions for the unconstraint condition, which is defined as
f3 = Ns/Ms. Thus the final form of fitness is F = w1 f1 +
w2 f2 +w3 f3.

B. Additional optimization strategies with DE

In addition to the standard DE, additional optimization
strategies are provided as follows. One is the direct opti-
mization strategy for reduction of computational cost with
initialization process and the direction of evolution of stan-
dard DE. The other is the full coverage optimization strategy
for mobile robot localization.

1) Direct optimization strategy: The DE such as other
evolutionary algorithms, which usually shows a good opti-
mization performance, seem to be have a lot of computational
cost and time to get solutions from scratch. If possible, to
reduce cost and time without significant interference for mo-
bile robot localization is useful. Considering computational
cost and time, the selection of initial population can be
an issue. In addition, to push the initial population toward
optimal direction may lead to reduce computational cost
and time, the direction of evolution seems to be important
required. The DE also has parameters for controlling the
degree of evolution and the trade-off between exploration
and exploitation. For the mobile robot localization, the direct
optimization strategy is proposed as follows.

First of all, the Rc, one of the objective functions, is con-
sidered for evolution with the strong effect of the population
of initial and early stage. The purposes of the first stage are
to decrease the computational steps. The other purpose is to
decrease the computational cost by neglecting the Ri . The
Rc is calculated easily by the difference of all user interest
region, thus no matter how much sensors are located in a
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map, and one calculation is enough to find the Rc. However,
the Ri is calculated by overlapped region which should be
considered not only uncovered region, but also the region
that is covered by sensor just once, so more computational
cost and time is required. When an individual with above
90% Rc appears, the first stage is finished and the second
stage starts.

In the second stage, a DE tries to reduce Ri which doesn’t
optimize at all in the first stage. The system not allowing
switching ’off’ state into ’on’ state of sensors during the
second stage, the number of sensors with ’on’ switch can
be decrease but not increase. Changing detection range and
moving the position of sensors, the system reduces the Ri .
When Ri reaches 20%, the last stage is operated.

The last stage is free optimizing stage without any more
constraint over the standard DE. During previous two stages,
the system tries to find the individuals and compose the
population as reasonable solution candidates.

2) Full coverage optimization strategy: The cost-effective
sensor deployment seems to be important for compos-
ing sensor networks. However, considering the purpose of
surveillance or security, full coverage by sensor becomes
most important priority of all. This strategy is different
from previously mentioned strategies, in the perspective of
full coverage by sensors. In order to minimize the cost
composing sensor network, the Ns should be reduced. It
must lead to lose coverage in user interest region. This
strategy emphasizes the whole user interest region should
be covered by sensors regardless of cost and the Ns, whereas
the previous strategies lead to compose cost-effective sensor
network. In the whole evolution process, if the Rc is below
99% then, a lot of penalty is given to each individual.
Therefore only full coverage individuals survive for a long
time among population. The Ri and the Ns are relatively
neglected compared as the Rc. This may lead to deploy
more sensors in the map, thus increasing the overall cost
composing sensor networks. However, there is little dead
zone in the user interest region to cover by sensors, then
the mobile robot localization performance for surveillance
and security is better than the standard DE and the direct
optimization strategy.

C. The framework of the proposed sensor deployment system

* indicates the direct optimization strategy
** indicates the full coverage optimization strategy

Step 1) Initialization of an individual population
Initialize a population of individuals with random
values generated according to a uniform probability
distribution in the dimensional problem space.
* Initialize sensors with random position, but max-
imum detection range and ’on’ state.

Step 2) Evaluation of the individual population
Evaluate the fitness value of each individual.
* 1st stage : Only Rc is considered.
* 2nd, 3rd stage : Weight sum approach is used.

** Below 99% Rc, the penalty is imposed. Only
the Ri and Ns are considered.

Step 3) Mutation operation
Adds a vector differential to a population vector of
individuals according to the following equation:

zi(t +1) = xi,r1(t)+F [xi,r2(t)− xi,r3(t)] (3)

where i = 1,2, ...,Ms is the individual’s index of
population, j = 1,2,3,4, is the X,Y position, the
detection range and on/off state of each sensor,
respectively. The t is the generation. The r1,r2 and
r3 are randomly selected with uniform distribution
from the set {1,2,...,i-1,i+1,...,Ms}.
* 1st stage : Mutant vector is generated with a
random position, maximum detection range and
’on’ state.
* 2nd stage : Mutant vector is generated with
a random position, random detection range. State
transition into ’on’ is not allowed.
* 3rd stage : same as a standard DE.

Step 4) Recombination operation
Recombination generates a trial vector by replacing
parameters of the target vector with the correspond-
ing parameters of a randomly generated donor
vector. For each vector, zi(t +1), an index rnbr(i)∈
1,2, ...,n is randomly chosen using uniform dis-
tribution, and a trial vector, ui(t + 1) = [ui1(t +
1),ui2(t + 1),ui3(t + 1),ui4(t + 1)]T , is generated
with

ui j(t +1) =


zi j(t +1), if(randb( j) <= CR)

or( j = rnbr(i))
xi j(t), otherwise

(4)
Step 5) Selection operation

Selection is the procedure of producing better
offspring. If denotes the objective function under
minimization, then

xi(t +1)=
{

ui(t +1), if f (u(t +1)) < f (xqi(t))
xi(t), otherwise

(5)
Step 6) Verification of stop criterion

Set the generation number for t = t +1. Proceed to
Step 8 until a maximum generation Gmax is met.

Step 7) Stage change criterion
1st stage to 2nd stage : above 90% Rc
2nd stage to 3rd stage : below 20% Ri

IV. EXPERIMENTAL RESULTS

In this section, our sensor deployment performance is
verified by experiments. We carry out the sensor deployment
with the RFID antenna/tags. RFID system is widely used to
check tagged products in a wide area. Commonly, a RFID
reader is too expensive to install to cover a wide area.
Therefore, a measurement data of RFID antenna empirically
obtained from experiments and apply to deployment of a
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(a) (b)

Fig. 1. Commercial RFID sensors utilized in this paper. (a) IU 9003 readers
(LS Electronics) (b) UHF RFID antennas (LS Electronics)

multiple RFID antennas. The target robot of this experiment
is the entertainment mobile robot. The mobile robot is used to
check whether the location information of the mobile robot is
transferred via RFID antennas to RFID reader in user interest
region.

A. Experimental conditions

IU9003 (LS Electronics) is utilized as RFID reader and
antennas in this paper. Operating frequencies of IU9003
is respectively from 910MHz to 914MHz with a circular
polarization type. Antennas are installed on the ceiling, 2.5m
above the floor. 180074-001 is used as passive-type RFID
tags. Fig. 1 shows the equipment which provides sensing
data.

The RFID sensor deployment has been tested using enter-
tainment mobile robot equipped with the 2-axis differential
wheel. This robot already has a sonar sensor and a vision
sensor for navigation and object tracking, however, for com-
posing system for multiple mobile robot localization, built-in
sensors of robot are not used in this experiment. Fig. 2 shows
the mobile robot used in this experiment.

Fig. 2. The target entertainment mobile robot in the experiments

The experiments use two user maps: a hall and a corridor.
The maximum number of antenna Ms are 13 and 18 in the
Hall and Corridor, respectively. Fig. 3 shows the Hall and
Corridor type maps. The corridor type map is extracted by
CAD and the hall type map is extracted by user’s arbitrary
drawing map.

Deployment algorithms with a standard DE, the direct
optimization strategy and the full coverage optimization strat-
egy, three methods are used to experiment. To verify different
usage of parameters of DE, 9 pairs of difference amplification
factor and crossover rate is used in a standard DE and direct
optimization strategy. Full coverage optimization strategy
uses the best parameters from the experiment of a standard
DE case.

The specific parameter setting of a DE is as follows.
- Population size, Np =50

(a) (b)

Fig. 3. Maps for sensor deployment (a) the hall type map (b) The corridor
type map

- Maximum number of generations, Gmax = 20∗Ms
- Crossover rate, CR = 0.2, 0.5, 0.8
- Difference amplification factor, F = 0.2, 0.5, 0.8
- Second stage entrance condition, f1 = 90%
- Third stage entrance condition, f2 = 20%
- w1,w2,w3 = 0.735, 0.245, 0.02
Generally Rc is most required objectives in sensor deploy-

ment problem, thus determining 3 times of priority compared
with that of Ri . As previously mentioned, because Ns is
not continuous objective function, it can disturb optimization
in the weight sum approaches. By adjusting w3 is smaller
by 0.1 degree, Ns can affect the optimization result in later
generation, When Rc and Ri are small enough.

The experiments are performed on a computer with Intel
Core2Duo E4500 2.20GHz and 3.25GB of RAM in Visual
c++ 2008 under the Microsoft Windows XP SP3.

B. Parameter study of the standard DE and the direct
optimization strategy

Fig. 4. Fitness convergence property: The hall type map with the direct
optimization strategy

The Figures from Fig. 4 to Fig. 7 show the fitness conver-
gence property versus control parameters of the standard DE
and the direct optimization strategy in the hall and corridor
type map respectively. First of all, Fig. 4 shows fitness
converge property of optimization with a standard DE in a
Hall type map. The best performance comes out in CR=0.8,
F=0.2. This parameter set means higher CR and lower F
value are proper for the standard DE. Second and third rank
has same F value as the first rank and CR value are 0.2 and
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Fig. 5. Fitness convergence property: The hall type map with the direct
optimization strategy

Fig. 6. Fitness convergence property: The corridor type map with the
standard DE

0.5 respectively. As F value gets higher, performance gets
worse. When F value gets higher, in other words, difference
amplification affects much to generate mutant vector, thus
exploration is maximized. When CR value gets higher, a lot
of recombination chance is appeared. In a standard DE with
random initialization case, the mutant vector generated from
difference of vectors of current individual is helpful to search
global optimum. However, a mutant vector with a large
variation due to large F may lead to random search, because
the mutant vector changes too much from individuals of
previous generation. In summary, higher CR, which leads to
reflect the mutation vector much in evolution, helps to find
optimal solution, whereas higher F, which leads to change
the mutation vector from past information too much, interfere
the effect of selection for finding global optimum. Fig. 6 also
shows the best optimization result with higher CR and lower
F. In the Fig. 5 and Fig. 7, the fitness convergence property
of direct optimization strategy is shown. There are fitness
jump which is different property compared as the standard
DE, is due to change from first stage to second stage. As
previously mentioned, only the Rc is considered as fitness
function in first stage, and if the Rc is above 90%, then enter
the second stage which fitness comes back to the weighted
sum of the Rc, Ri and Ns. Thus, when stage changes, fitness
jump phenomenon is appeared. It seems that F=0.8, CR=0.2
shows good optimization performance, in fact, it is failed to
find 90% Rc solution, and then it is impossible to enter the
second stage. Large F interfere the convergence by similar

Fig. 7. Fitness convergence property: The corridor type with the direct
optimization strategy

reason with the standard DE. Other noticeable result is the
result of CR=0.8, F=0.2. This parameter leads to worse result
compared as the standard DE. Because the initialization of
the direct optimization strategy makes the initial population
gather near local optimum by turning on all sensors with
maximum detection range. Thus, small variation of current
solution is helpful, otherwise mutant vector follows current
population vector too fast. In other words, the diversity loss is
too fast with higher CR. In summary, lower CR, which leads
to small step size with careful search near the local optimum,
which is similar with expert’s trial and error intuitively and
lower F, which leads to the mutation vector related with
the current population vector is helpful for finding global
optimum.

(a) (b)

Fig. 8. Best sensor deployment solution for the hall type map (a) with the
standard DE (b) with the direct optimization strategy

(a) (b)

Fig. 9. Best sensor deployment solution for the corridor type map (a) with
the standard DE (b) with the direct optimization strategy

C. Best optimization results

1) The standard DE and the direct optimization strategy:
Fig. 8 and Fig. 9 illustrate the optimization results of sensor
deployment with the standard DE and the direct optimization
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(a) (b)

Fig. 10. Best sensor deployment solution with the full cover strategy (a)
for the corridor type map (b) for the hall type map

strategy in the hall and corridor type map, respectively. The
blue circles represent the detection range of each sensor
in last generation. The center of circle is the location of
installed sensor. The black regions represent the obstacle
regions and the green regions represent uncovered regions
among user interest region. The dark blue regions represent
the interference regions among two or more antennas. The
Rc is 96.3%, the Ri is 8.56%, and Ns is 7, whereas the Rc is
95.6%, the Ri is 7.05%, and the Ns is 12 with the standard
DE and the direct optimization strategy respectively in the
corridor type map. The Rc is 93.1%, the Ri is 7.34%, and the
Rs is 13, whereas the Rc is 95.8%, the Ri is 5.26%, and Rs is
12 with a standard DE with the standard DE and the direct
optimization strategy respectively in the corridor type map.
In fact, it seems to be no difference between the standard DE
and the direct optimization strategy. In the best parameter
setting of the standard DE and direct optimization strategy
respectively, both algorithm shows high-quality optimization
results.

2) Full coverage optimization strategy: Fig. 10 illustrates
the deployment result of sensors with the full coverage
optimization strategy in the hall and corridor type map. The
results show that more antennas are placed for covering the
whole user interest region densely compared as those of
the standard DE and the direct optimization strategy. The
Rc is 99.0%, the Ri is 27.3% and the Ns is 16 in the
corridor map with the full coverage optimization strategy.
Meanwhile, the Rc is 99.2%, the Ri is 29.4% and the Ns is
10 in the hall map with the same strategy. The results of
both case show the dense Rc in the mobile robot localization
for surveillance and security, whereas the Ns is increased by
30%. Since increment of the Ns directly lead to expensive
cost to compose sensor networks. In perspective of cost,
above results in each map can not be survived in the standard
DE and direct optimization strategy. However, if the priority
of overall Rc is important regardless of cost, then the full
coverage optimization method is more proper than previous
strategies.

V. CONCLUSION

This paper presents the sensor deployment method to cost-
effectively design a RFID sensor network for the mobile
robot localization. We employ the DE, which is well-known
for promising performance, and propose direct optimization
strategies for sensor deployment. We experiment sensor

deployment in two maps for providing guidance about pa-
rameter tuning with a mobile robot. Using guided parameter
setting in each algorithm, successful sensor deployment
optimziation solutions are obtained in two type of maps,
Corridor and Hall, with both algorithms in the case of the
standard DE, direct opimization strategy and full coverage
optimization strategy.

In our future works, we will extend to adopt this algorithm
for path planning and indoor navigation of mobile robots as
well as static sensor deployment.
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