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Abstract— In this paper, we address the problem of motion-
induced 3D extrinsic calibration based on different com-
binations of inter-robot measurements (i.e., distance and/or
bearing observations from either or both of the two robots,
recorded across multiple time steps) and ego-motion estimates.
In particular, we focus on solving minimal problems where
the unknown 6-degree-of-freedom transformation between the
two robots is determined based on the minimum number of
measurements necessary for finding a discrete set of, in general,
multiple solutions. In order to address the very large number of
possible combinations of inter-robot observations, we identify
symmetries in these problems and use them to prove that any of
the possible extrinsic robot-to-robot calibration problems can be
solved based on the solution of only 14 (base) minimal problems.
Finally, we derive analytical solutions to three of these base
problems, and evaluate their performance through extensive
simulations.

I. INTRODUCTION

Multi-robot systems (or mobile sensor networks) have

attracted considerable attention due to their wide range of

applications, such as search and rescue [17], target track-

ing [11], localization [14], and mapping [9]. In order to

accomplish these tasks cooperatively, it is necessary for the

robots to share their sensor information. Their measurements,

however, are registered with respect to each robot’s local

reference frame and need to be converted to a common

reference frame before they can be fused. This requires

knowledge of the robot-to-robot transformation, i.e., their

relative position and orientation (pose). Most multi-robot

estimation algorithms available today assume that this robot-

to-robot transformation is known. However, only few works

describe how this transformation can be determined.

One approach to estimating the relative transformation is

by manually measuring the relative position and orientation

between robots. This approach though has several drawbacks.

Besides being tedious and time consuming, it might not

provide sufficient accuracy and it is inefficient for large robot

teams. An alternative method is to use external references

(e.g., GPS, compass, or a prior map of the environment).

However these external references are not always available

due to environmental constraints (e.g., underwater, under-

ground, outer space, or indoors).

In the absence of external references, the relative robot-

to-robot transformation can be computed using inter-robot
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observations, i.e., robot-to-robot distance and/or bearing

measurements. For example, for the case of a static sen-

sor network, numerous methods have been proposed for

determining the locations of the sensors using distance-

only measurements between neighboring sensors [3], [15].

However, these approaches are limited to estimating only

the 2D positions of static sensors.

In order to estimate the 6-degree-of-freedom (DOF) trans-

formation, the robots will have to move and collect multiple

inter-robot measurements. Then the relative pose can be

determined using: (i) inter-robot measurements and (ii) the

robots’ motion estimates. This task of motion-induced ex-

trinsic calibration is precisely the problem addressed in this

paper. When compared to alternative approaches that rely on

external references, motion-induced calibration is more cost

efficient since no additional hardware is required, and can

be applied in unknown environments where no external aids

are available. Additionally, recalibration can be easily carried

out in the field when necessary.

In this paper, we focus on solving minimal systems

where the number of equations provided by the inter-robot

measurements equals the number of unknown parameters.

In particular, we consider the case where the robots are

equipped with different types of sensors, or record different

types of relative measurements over time due to environ-

ment constraints. Such minimal problems are formulated

as systems of polynomial equations which in general, have

multiple (complex) solutions. Even though we are only

interested in the unique solution that corresponds to the

true relative pose, the minimal solver is extremely useful in

practice, especially in the presence of outliers. Specifically,

using the minimal number of measurements minimizes the

probability of picking an outlier when generating hypothe-

ses within an outlier-rejection scheme such as Random

Sample Consensus (RANSAC) [5]. Moreover, the minimal

solver can also be used to initialize an iterative process

(e.g., nonlinear weighted least squares) for improving the

estimation accuracy when additional measurements become

available. In particular, a reliable initial estimate can be found

by (i) solving several minimal problems, (ii) performing

clustering to identify the most probable set of inliers, and

(iii) computing the least-squares solution using the inliners.

The main contributions of this paper are twofold:

• We identify 14 base minimal systems. All other prob-

lems with different combinations of inter-robot mea-

surements can be solved using the solutions of the base

systems.
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• We determine the number of solutions of three minimal

systems with mutual bearing measurements, and provide

analytic solutions.

The remainder of the paper is organized as follows:

After reviewing related work in Section II, we present the

problem formulation and the 14 base minimal systems in

Section III, and provide solutions for three of these systems

in Sections IV and V. The accuracy of the presented methods

is evaluated through extensive Monte-Carlo simulations in

Section VI, followed by concluding remarks and future work

in Section VII.

II. RELATED WORK

Previous work on extrinsic calibration of sensor networks

using sensor-to-sensor range measurements, has primarily

focused on static sensors in 2D with the limitation that

only their positions are determined. Provided that a few

anchor nodes can globally localize (e.g., via GPS), the global

positions of the remaining nodes can be uniquely inferred

if certain graph-rigidity constraints are satisfied [1], [4].

A variety of algorithms based on convex optimization [3],

sum of squares (SOS) relaxation [12], and multi-dimensional

scaling (MDS) [15] have been employed to localize the

sensor nodes in 2D. In 3D, flying anchor nodes have been

proposed to localize sensors, e.g., an aerial vehicle aiding

static sensor network localization [13], or a single satellite

localizing a stationary planetary rover [6]. However, all these

schemes only determine the positions of static sensors.

For many applications (e.g., localization, mapping, and

tracking), the knowledge of both relative sensor position and

orientation is required. Using a combination of distance and

bearing measurements to uniquely estimate relative poses in

static 2D sensor networks was recently shown to be NP-

hard [2]. For mobile sensors, the problem of relative pose

determination has only been studied thoroughly in 2D. The

ability to move and collect measurements from different

vantage points provides additional information for localizing

the sensors. This information has been shown to make the

robots’ relative pose observable, given inter-robot distance

and/or bearing measurements [10]. Specifically, it is known

that mutual distance and bearing measurements between two

robots from a single vantage point are sufficient to determine

the 3-DOF robot-to-robot transformation in closed-form [22],

[7]. However, when only distance or bearing measurements

are available, the robots must move and record additional

observations. Then the relative robot pose can be found by

combining the estimated robot motion (e.g., from odometry)

and the mutual bearing [10] or distance [23] measurements.

In contrast to the case of motion in 2D, very little is

known about motion-induced extrinsic calibration in 3D.

Few researchers have addressed the challenging problem of

determining relative pose using range-only measurements.

Interestingly, in the minimal problem setting, the task of

relative-pose estimation using only distance measurements

is actually equivalent to the forward-kinematics problem of

the general Stewart-Gough platform [16]. This problem has

40 (generally complex) solutions [21], which can be found

by solving a system of multivariate polynomial equations [8],
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Fig. 1. (a) Geometry of the robot trajectories. The odd (even) numbered
frames of reference depict the consecutive poses of robot R1 (R2). The
distance between the robot poses {i} and {j} is denoted by dij , i ∈
{1, 3, . . . , 2n − 1}, j ∈ {2, 4, . . . , 2n}. bi (bj ) is a unit vector pointing
from {i} to {j} ({j} to {i}) expressed in the initial frame {1} ({2}).
The problem is to determine the transformation between the robots’ initial
frames {1} and {2}, parameterized by the translation vector p and the
rotation matrix C. (b) Illustration of a bearing measurement expressed in
different frames of reference. The bearing b is a unit vector pointing from
o to j. When expressed in frame {i}, the angle between b and the x-axis
of frame {i}, ix, is iθ. When expressed in frame {1}, the angle between b
and the x-axis of frame {1}, 1x, is 1θ. Transforming the bearing from {i}
to {1} is done by multiplying with the rotation matrix 1

i
C: bi = 1

i
Cibj .

[19]. Moreover, in our recent work [20] we presented meth-

ods for estimating the robots’ relative pose when both robots

measure relative distance and bearing, or bearing only. How-

ever, to the best of our knowledge, no algorithms exist for

determining 3D relative pose using different combinations of

robot-to-robot distance and bearing measurements over time,

e.g., the robots can measure distance at the first time step,

bearing at the second time step, etc. This paper intends to fill

this gap. We start our discussion in the next section with the

problem formulation and the introduction of the 14 possible

minimal systems.

III. PROBLEM FORMULATION

In order to improve the clarity of presentation, we hereafter

describe the notation used in this paper.
ipj Position of frame {j} expressed in frame {i}.
i
jC Rotation matrix that projects vectors expressed in

frame {j} to frame {i}.
dij Distance between the origin of frame {i} and {j}.
bi The bearing from robot R1 to R2 when R1 is at

pose {i}, expressed in frame {1}.
bj The bearing from robot R2 to R1 when R2 is at

pose {j}, expressed in frame {2}.
sα Short for sin(α).
cα Short for cos(α).

Consider two robots R1 and R2 moving randomly in 3D

space through a sequence of poses {1}, {3}, . . . , {2n − 1}
for R1, and {2}, {4}, . . . , {2n} for R2 (see Fig. 1). Along

their trajectories, the robots can estimate their positions 1pi

and 2pj , i ∈ {1, 3, ..., 2n − 1}, j ∈ {2, 4, ..., 2n}, with
respect to their initial frames, as well as their orientations,

expressed using the rotation matrices 1
i C and 2

jC (e.g., by
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TABLE I

14 MINIMAL PROBLEMS.

t1 t2 t3 t4 t5 t6
1 d12,b1,b2 d34

2 b1,b2 b3

3 d12,b1 d34, b3

4 d12,b1 d34, b4

5 b1,b2 d34 d56

6 d12,b1 b3 d56

7 d12,b1 b4 d56

8 b1 b3 b5

9 b1 b3 b6

10 d12,b1 d34 d56 d78

11 b1 b3 d56 d78

12 b1 b4 d56 d78

13 b1 d34 d56 d78 d9,10

14 d12 d34 d56 d78 d9,10 d11,12

integrating linear and rotational velocity measurements over

time). Additionally, at time-step t when robots R1 and R2

reach poses {i = 2t − 1} and {j = 2t}, respectively,

each robot can potentially measure the range and/or bearing

towards the other robot. The range between the robots is

given by dij = ||ipj ||2, and the bearing is described by

a unit vector in the current local frame ibj for robot R1

and jbi for robot R2. Later we will also need these unit

vectors expressed in their initial frames for which we define

bi := 1
i C

ibj and bj := 2
jC

jbi. At each time step, the

two robots can measure a subset of these measurements:

{dij ,bi,bj}.
Our goal is to use the ego-motion estimates and the

relative pose measurements to determine the 6-DOF initial

transformation between the two robots, i.e., their relative

position p := 1p2 and orientation C := 1
2
C. In this paper,

we only focus on solving the minimal problems where the

number of measurement constraints equals the number of

unknowns. In what follows, we will show that only the 14

systems listed in Table I need to be considered, while all

other combinations of inter-robot measurements result into

problems equivalent to these 14.

A. All Possible Minimal Problems

We now describe the process to identify these 14 base

systems. Note that there are 7 possible combinations of

inter-robot measurements at each time step: {dij ,bi,bj},
{bi,bj}, {dij ,bi}, {dij ,bj}, {bi}, {bj}, {dij}, and at

most 6 time steps need to be considered if, e.g., only one

distance measurement was recorded at each time step. This

naive analysis will give us 76 cases. Fortunately, we can

reduce this number significantly by considering only the

minimal problems and using problem equivalence based on

the following lemma.

Lemma 1: One instance of the relative pose problem can

be transformed to an equivalent problem by the following

two operations:

1) Changing the order of the robots.

2) Changing the order of the measurements taken.

Proof: In order to establish problem equivalence, we

here demonstrate how to use the solution of the transformed

problem (i.e., when the order of the robots or measurements

has changed) to solve the original problem (i.e., determine
1
2
C, 1p2).

First, if we exchange the order of the robots, i.e., rename

robot R2 as R1 and vice versa, the solution of the trans-

formed problem is (21C, 2p1). Therefore, the solution of the

original system is computed from the inverse transformation:
1
2
C = 2

1
CT , 1p2 = −1

2
C2p1.

Exchanging the order of inter-robot measurements will

only make a difference to the problem formulation when

the swapping involves measurements recorded at the first

time step, since the unknown variables are the 6-DOF initial

robot-to-robot transformation. Without loss of generality,

assume that measurements taken at the first and second time

steps are swapped. Then the solution of the transformed

system is actually the transformation (34C, 3p4) between the

frames of reference {3} and {4} of the original system. The

solution of the original system can then be computed using:
1
2C = 1

3C
3
4C

2
4C

T , and 1p2 = 1p3 + 1
3C

3p4 −
1
2C

2p4.

Now we will describe why we only need to consider 14

minimal systems. First of all, we are looking for combina-

tions of measurements that provide 6 equations to determine

the 6-DOF transformation, since we are only interested in

minimal systems where the number of equations equals the

number of unknowns. A distance measurement provides one

equation, and a bearing measurement provides two. So we

will collect measurements until we accumulate 6 constraints.

To keep track of these combinations, we use an expansion

tree (see Fig. 2) and prune its branches using Lemma 1.

At the first time step, we can exclude {b2} and {d12,b2}
from the 7 combinations by changing the order of the robots.

Hence, we only need to expand 5 sets of measurements:

{d12,b1,b2}, {b1,b2}, {d12,b1}, {b1}, {d12}. We will

discuss each one of them in the following:

(a) Starting from {d12,b1,b2} we only need to include

{d34}, since all other choices are overdetermined sys-

tems [see Fig. 2(a)].

(b) From {b1,b2} we need to consider two cases: {b3},
and {d34}. Besides removing overdetermined systems,

we can also remove {b4} by exchanging the order of

the robots [see Fig. 2(b)]. Moreover, we only need to

keep {d56} from the possible expansions of {d34}, since
all other problems are overdetermined.

(c) From {d12,b1} we can exclude two second

level expansions from {d34} [see Fig. 2(c)],

since {d12,b1; d34;b5} and {d12,b1; d34;b6} are

equivalent to {d12,b1;b3; d56} and {d12,b1;b4; d56},
respectively, by changing the order of the

measurements.

(d) Similarly, from {b1} we can exclude two second level

expansions from {b4}, since {b1;b4;b5} is equivalent

to {b1;b3;b6} by changing the order of measurements,

and {b1;b4;b6} is also equivalent to {b1;b3;b6}
by first exchanging the order of the robots and then

changing the order of measurements. The other cases

{d34,b3,b4}, {b3,b4}, and {d34,b3} have already

been considered in the first three expansions (a)–(c)

as root nodes. {d34,b4} is also considered in (c) after

changing the order of the robots.
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(b) Expansion b4 is removed since it is equivalent to b3 by
exchanging the order of robots.
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(c) The two combinations {d12, b1; d34;b5} and
{d12,b1; d34;b6} are removed since they are equivalent
to {d12,b1;b3; d56} and {d12,b1;b4; d56} by changing the
order of measurements.
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(d) {b1;b4;b5} and {b1;b4;b6} are equivalent to
{b1;b3;b6} by changing the order of measurements, or by
changing the order of robots and order of measurements. Other
nodes: {d34,b3,b4}, {b3,b4}, {d34, b3} and {d34,b4},
are removed since they are considered in (a), (b), and (c) as
root nodes.

b bd34 3 4
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d11,12
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2
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(e) The only case we need is the distance-only case. All other
cases have been considered in previous expansions.

Fig. 2. Measurement expansion trees. The numbers on the left of each
graph denote the number of constraints provided by the measurements. Since
we are only interested in minimal systems, all nodes having more than
6 constraints are removed. The leaf nodes marked by “X” are the ones
removed. The nodes marked with red boxes are the 14 base systems. Note
that inside { }, the measurements recorded at the same (consecutive) time
step are separated by a comma (semicolon).

(e) Finally, for branches expanding from {d12}, we only

need to consider the distance-only case [see Fig. 2(e)],

since all other cases have also been considered before.

Adding all the cases together, we have a total of 14 minimal

systems listed in Table I.

Next, we will present algebraic solutions to Systems 1,

2, and 5 whose equations share some similarities. Due to

limited space, we omit the solutions for Systems 3, 4, and

6–10 and refer to [24] for details. For the remaining systems,

we should note that we have addressed System 14 in our

previous work [19], while we are currently investigating al-

gebraic and hybrid (numerical/algebraic) methods for solving

Systems 11–13.

IV. ALGEBRAIC SOLUTIONS TO THE MINIMAL PROBLEMS

OF SYSTEMS 1 AND 2

For System 1, we measure {d12,b1,b2; d34}, and for

System 2, we measure {b1,b2;b3}. Since the mutual bear-

ing measurements b1 and b2 appear in both systems, their

equations have similar structure and can be solved using

the same approach. In this section, we will first derive the

systems of equations for both problems, and then provide

their solutions.

A. System 1: Measurements {d12,b1,b2; d34}

For this problem, the relative position is directly measured

as p = d12b1. Therefore, we only need to compute the

relative orientation, parameterized by C.

From the mutual bearing measurements b1 and b2, we

have the following constraint:

b1 + Cb2 = 0 (1)

Additionally, by expanding the constraint from the distance

measurement d34, we have

3pT
4

3p4 = (p + C2p4 −
1p3)

T (p + C2p4 −
1p3) = d2

34

⇒vT C2p4 + a = 0 (2)

where v = 2(p− 1p3) and a = pTp+ 2pT
4

2p4 + 1pT
3

1p3−
2pT 1p3 − d2

34 are known quantities.

The problem now is to find C from equations (1) and (2).

This is described in Section IV-C.

B. System 2: Measurements {b1,b2;b3}

For this system, besides the mutual bearing constraint (1),

we have the following equation using b1 and b3, which is

the sum of vectors from {1}, {2}, {4}, {3} and back to {1}
(see Fig. 1):

p + C2p4 −
1

3C
3p4 −

1p3 = 0

⇒ d12b1 + C2p4 − d34b3 −
1p3 = 0. (3)

If the rotation C is known, the relative position can be

found by first determining the distance d12. To do this, we

eliminate d34 from equation (3) by forming the cross product

with b3, i.e.,

d12⌊b3 ×⌋b1 + ⌊b3 ×⌋C2p4 − ⌊b3 ×⌋1p3 = 0 (4)
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Fig. 3. Two sequences of rotations can satisfy the constraint b1 +Cb2 =

0. Let e1 = −b1, e2 =
b2×e1

||b2×e1||
, and e3 = e1×e2 be three orthonormal

rotation axes. Rotating around e2 by an angle β0, or first rotating around
e3 by π and then rotating around e2 by π − β0, aligns b2 with −b1.

where ⌊b3 ×⌋ is a 3×3 skew-symmetric matrix correspond-

ing to the cross product. Then d12 can be computed from (4)

by forming the dot product with ⌊b3 ×⌋b1, i.e.,

d12 =
(⌊b3 ×⌋b1)

T ⌊b3 ×⌋(1p3 − C2p4)

(⌊b3 ×⌋b1)T (⌊b3 ×⌋b1)
(5)

The relative position is then readily available as p = d12b1.

Next, we will show how to compute C.

The unknown distances d12 and d34 can be eliminated

from equation (3) by projecting it on to the cross product of

b1 and b3. Let v = b1 × b3, forming the dot product with

equation (3), then we have:

vT C2p4 − vT 1p3 = 0 (6)

If we define a scalar a := −vT 1p3, then it is easy to see

that equations (6) and (2) have identical structure.

C. Rotation Matrix Determination

We have shown that for both Systems 1 and 2, in order

to determine the rotation matrix C, we need to solve the

following system of equations:

b1 + Cb2 = 0 (7)

vT C2p4 + a = 0 (8)

The key idea behind our approach is to first exploit the

geometric properties of (7) which will allow us to determine

two degrees of freedom in rotation. The remaining unknown

degree of freedom can subsequently be computed using (8).

Note that in order to satisfy (7), we need to rotate b2

around a unit vector e2 perpendicular to both −b1 and b2

such that the rotated vector equals to −b1 (see Fig. 3). Given

that a rotation matrix has 3-DOF, we parameterize C using

the rotational angles α, β, and γ around axes e1 = −b1,

e2 = b2×e1

||b2×e1||
, and e3 = e1 × e2, respectively. Without loss

of generality, assume that e1, e2, and e3 are unit vectors

corresponding to the three principal axes,1 i.e., e1 = [1 0 0]T

1The solution to the general case where e1, e2, and e3 form any other
orthonormal basis is described in [24].

etc. Thus, we can write the rotation matrix as:

C = C(e1, α)C(e2, β)C(e3, γ)

=





1 0 0
0 cα −sα

0 sα cα









cβ 0 sβ

0 1 0
−sβ 0 cβ









cγ −sγ 0
sγ cγ 0
0 0 1



 (9)

Next, we will show how to determine the angles γ and β

from equation (7).

First, we multiply both sides of (7) with C(e1,−α) to

eliminate α:

C(e1,−α)b1 + C(e1,−α)C(e1, α)C(e2, β)C(e3, γ)b2 = 0

⇒ b1 + C(e2, β)C(e3, γ)b2 = 0 (10)

Note that b1 lies along the rotation axis e1, thus

C(e1,−α)b1 = b1.

Then, we form the dot product of both sides of (10) with

e2 ⊥ b1 to eliminate β:

eT
2 C(e3, γ)b2 = 0 (11)

where we have used eT
2 b1 = 0 and eT

2 C(e2, β) = eT
2 . Since

e2 = [0 1 0]T , and it is perpendicular to b2, it must be

b2 = [b2x 0 b2z]
T . Substituting these vectors into (11), and

employing the structure of C(e3, γ) in (9), we have

sγb2x = 0 (12)

Generally2 b2x 6= 0, therefore sγ = 0, and thus, γ = 0 or

γ = π. For general configurations, if γ = 0 then the angle

we need to rotate around e2 to align b2 with −b1 is β0 (see

Fig 3). Since these vectors have unit length, cβ0 = bT
2
e1

and sβ0 = bT
2 e3. On the other hand, if γ = π, then after

rotating b2 around e3 by π, the angle between the rotated

vector and e1 is π − β0.

In summary, for general configurations, we have two

solutions for γ and β

γ =

{
0
π

, β =

{
β0

π − β0

cβ0 = bT
2
e1

sβ0 = bT
2
e3

(13)

Next, we will determine the rotation angle α. We first

consider the case when γ = 0 and then follow a similar

process to solve for the case when γ = π. It turns out that

both cases lead to identical solutions for C.

For γ = 0 and β = β0, substituting the expression for C

[see (9)] into (8), we obtain a linear equation in cα and sα.

0 =vT C(e1, α)2p′
4
+ a

=(vyp′y + vzp
′
z)

︸ ︷︷ ︸

l1

cα + (vzp
′
y − vyp′z)

︸ ︷︷ ︸

l2

sα + vxp′x + a
︸ ︷︷ ︸

l3

⇒cα = −
l2sα + l3

l1
(14)

where v = [vx vy vz ]
T , and 2p′

4 = C(e2, β0)
2p4 =

[p′x p′y p′z]
T .

Finally, substituting (14) into the trigonometric constraint

cα2 + sα2 = 1, we get a quadratic polynomial in sα.

m0sα
2 + m1sα + m2 = 0

2If b2x = 0, it becomes a singular configuration and we cannot determine
the value of γ.
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where m0 = l21 + l22, m1 = 2l2l3, and m2 = l23 − l21. Back

substituting the two solutions for sα into equation (14), we

get two solutions for cα.

sα1 =
−m1 + △

2m0

, sα2 =
−m1 −△

2m0

(15)

cα1 =
l2(m1 −△)

2l1m0

−
l3

l1
, cα2 =

l2(m1 + △)

2l1m0

−
l3

l1
(16)

where △ =
√

m2
1
− 4m0m2.

For γ = π and β = π − β0, following the same steps, we

again have a linear equation in cα and sα:

−l1cα − l2sα + l3 = 0 ⇒ cα = −
l2sα − l3

l1
(17)

Similarly, substituting the above expression for cα into cα2+
sα2 = 1, we have

m0sα
2 − m1sα + m2 = 0 (18)

Hence, we have another two solutions for sα and cα which

only have a sign difference compared to the first two solu-

tions.

sα3 = −sα2, sα4 = −sα1 (19)

cα3 = −cα2, cα4 = −cα1 (20)

Therefore, α3 = α2 − π, and α4 = α1 − π.

Given the relations (19)-(20), the third solution for the

rotation matrix C is:

C(e1, α3)C(e2, π − β0)C(e3, π)

=C(e1, α2 − π)C(e1, π)C(e2, β0)

=C(e1, α2)C(e2, β0)C(e3, 0) (21)

which is equal to the rotation matrix corresponding to the

second solution. One can easily show that the rotation matrix

corresponding to the first and fourth solutions are also

identical. Therefore, there exist two distinct3 solutions for

the transformation between frames {1} and {2}. In summary,

we have the following lemmas for the Systems 1 and 2 (see

Table I), respectively.

Lemma 2: Given a pair of mutual bearing measurements

(b1 and b2) and a distance measurement (d12) recorded at

the first location, and an additional distance measurement

(d34) between two robots at a different location, there exist

two solutions for the 6-DOF robot-to-robot transformation.

Lemma 3: Given a pair of mutual bearing measurements

(b1 and b2) at the first location, and an additional bearing

measurement at a different location (b3), there exist two

solutions for the 6-DOF robot-to-robot transformation.

V. ALGEBRAIC SOLUTIONS TO THE MINIMAL PROBLEM

OF SYSTEM 5

In this case,4 the available measurements are {b1, b2;

d34; d56}. Using the mutual bearing measurements b1 and

b2, we can again determine the two rotation angles γ and

3In case △ = 0, these two solutions collapse to one.
4Due to space limitation, we hereafter provide only an outline of the

solution. Detailed derivations are presented in [24].

β [see (13)]. The remaining unknowns α and d12 can be

computed from the two distance constraints:

(d12b1+C2p4−
1p3)

T (d12b1+C2p4−
1p3) = d2

34 (22)

(d12b1+C2p6−
1p5)

T (d12b1+C2p6−
1p5) = d2

56 (23)

After expanding the above two equations, we have a linear

system in cα and sα. In the case of γ = 0 and β = β0, the

linear system is

l11cα + l12sα + l13 = 0 (24)

l21cα + l22sα + l23 = 0 (25)

where l11, l12, l21, l22 are constant, while l13 and l23 are

quadratic in d12. Note that (24) and (25) do not contain

the cross terms d12 · cα and d12 · sα, because b1 lies on

the rotational axis of C(e1, α) and thus d12b
T
1
C(e1, α) =

d12b
T
1 .

This separation of variables allows us to solve for cα and

sα which are again quadratic in d12:
[
cα

sα

]

=
−1

l11l22 − l12l21

[
l22 −l12
−l21 l11

] [
l13
l23

]

(26)

Substituting these solutions for cα and sα into cα2 + sα2 =
1, we arrive at a 4th order univariate polynomial in d12.

By back-substitution, each of the four solutions of d12

corresponds to one solution for cα and sα [see (26)].

In the case of γ = π and β = π − β0, following the

same procedure as before, yields the same four solutions.

Specifically, expanding (22) and (23) we have

−l11cα − l12sα + l13 = 0 (27)

−l21cα − l22sα + l23 = 0 (28)

Hence,
[
cα

sα

]

=
1

l11l22 − l12l21

[
l22 −l12
−l21 l11

] [
l13
l23

]

(29)

Compared to (26), they only differ in sign. Invoking the

trigonometric constraint cα2 + sα2 = 1, we arrive at the

exact same 4th order univariate polynomial in d12, since the

sign does not make a difference after taking squares. Hence,

we have the same four solutions for d12. Back-substituting

in (29), the solutions for cα and sα will be the negative of

the first four solutions. However, the first and second set of

four solutions will yield the same rotation matrices [cf. (21)].

In summary, we have the following result for System 5.

Lemma 4: Given a pair of mutual bearing measurements

(b1 and b2) recorded at the first location, and two distance

measurements (d34, d56) recorded at two other locations, the

maximum number of solutions for the 6-DOF relative robot-

to-robot transformation is four.

VI. SIMULATION RESULTS

We have evaluated the performance of our algorithms in

simulation for different values of inter-robot measurement

noise variance. We omit tests on noise in the robots’ ego-

motion estimates, since the effect of perturbing the robots’

egomotion estimates is very similar to that of perturbing the

inter-robot measurements.

The data for our simulations are generated as follows.

First, we generate random robot trajectories, with the two
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robots starting at initial positions 1 m ∼ 2 m apart from

each other, and moving on an average of 3 m ∼ 6 m between

taking distance and/or bearing measurements. We perturb the

true bearing direction to generate the bearing measurements.

The perturbed bearing vectors are uniformly distributed in a

cone with the true bearing as the axis. The angle between

the true vector and the boundary of the cone is defined as

σb. The noise in the distance measurement5 is assumed zero-

mean white Gaussian with standard deviation σd = 10σb m.

We conduct Monte Carlo simulations for different settings

of the values of σb, and report the averaged results of 104

trials per setting for Systems 1, 2, and 5. In all these three

systems, we report the error in position as the 2-norm of

the difference between the true and the estimated position6.

To evaluate the error in the relative orientation, we use a

multiplicative error model for the quaternion corresponding

to the rotation matrix. In particular, true orientation, q̄,

estimated orientation, ˆ̄q, and error quaternion, δq̄ are related

via [18]:

q̄ = δq̄ ⊗ ˆ̄q (30)

where δq̄ describes the small rotation that makes the esti-

mated and the true orientation coincide. Using the small-

angle approximation, the error quaternion can be written as

δq̄ ≃
[
1

2
δθT 1

]T
⇔ C ≃ (I3 − ⌊δθ×⌋)Ĉ (31)

and the 2-norm of δθ is used to evaluate the orientation error.

Fig. 4(a) and Fig. 4(b) show the orientation error and posi-

tion error as a function of the bearing noise σb, respectively.

The curves depict the median of the error in the 104 trials,

and the vertical bars show the 25 and 75 percentiles. As

expected, the error increases as the noise increases. We also

see an asymmetric distribution of the error around the median

for all systems except the position error of System 1. The 75

percentiles are growing much faster than the 25 percentiles.

This indicates that the probability of having larger error in

the relative pose estimate increases dramatically with the

variance of the measurement noise. However, the distribution

of the position error of System 1 remains symmetric because

it is directly measured from the distance d12 and bearing b1.

Finally, we see that in the absence of measurement noise, we

can recover the relative pose perfectly.

Fig. 5 shows the frequency (percentage) of the number of

real solutions out of the 104 trials. We can see that when there

is no noise, Systems 1 and 2 always have two real solutions.

Because complex solutions appear in pairs for polynomials

with real coefficients, if one solution (the one corresponding

to the true) is real, then the other must also be real, which

is the case when the noise is moderate. However, as the

noise variance increases, complex solutions start appearing.

This means that perturbing the coefficients may make the

real solutions become complex. Also for System 5, when

5Without loss of generality, we assume that only one of the robots records
range measurements at each location. If both robots measure the same
distance, the two measurements can be combined first to provide a more
accurate estimate of their distance.

6Since we focus on assessing the accuracy of the minimal problem solver,
out of the 2 (or 4) possible solutions, we choose as estimate the one closest
to the true value.

there is no noise, about 25% of the time, there are four real

solutions, and 75% of the time, there are two real solutions.

But as the noise increases, we start to see cases where no

solutions are real. In such cases, we have to discard this set

of measurements or take the real part of the complex roots

as an approximate solution.

Finally, in all cases the solutions of the minimal problems

should be used in conjunction with RANSAC to perform

outlier rejection followed by nonlinear least squares so

as to improve the estimation accuracy using all available

measurements [23].
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Fig. 4. Orientation and position errors as functions of the bearing-
measurement noise. The plots show the median and 25–75% quartiles in
104 random trials.

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of computing relative

robot-to-robot 3D translation and rotation using inter-robot

measurements and known robot motion. We have shown

that there exist 14 base minimal systems which result from

all possible combinations of inter-robot measurements. Fur-

thermore, we have presented closed-form algebraic solutions

to three systems involving mutual robot-to-robot bearing

measurements: System 1: {d12, b1, b2; d34}, System 2: {b1,

b2; b3}, and System 5: {b1, b2; d34; d56} (see Table I). In

particular, we have shown that Systems 1 and 2 have two
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Fig. 5. The frequency (percentage) of cases with 0, 2, or 4 real solutions out of 104 trials. Note that for the noise free case, there exist 2 real solutions
for Systems 1 and 2, and there exist 2 or 4 real solutions for System 5.

solutions, while System 5 has four solutions for the robot-

to-robot transformation. Solutions to some of the remaining

problems (Systems 3, 4, 6–10, and 14) are presented in [24]

and [19], while solving Systems 11–13 is part of our future

work. Finally, we plan to optimize the robot motion such

that the uncertainty in the robot-to-robot transformation is

minimized. Specifically, our objective is to determine the

sequence of locations where the robots will collect the most

informative measurements. Following such motion strategies,

the time required to achieve the desired level of accuracy will

be minimized.
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