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Abstract— In this paper, we study the safe navigation of a
mobile robot through crowds of dynamic agents with uncertain
trajectories. Existing algorithms suffer from the “freezing
robot” problem: once the environment surpasses a certain level
of complexity, the planner decides that all forward paths are
unsafe, and the robot freezes in place (or performs unnecessary
maneuvers) to avoid collisions. Since a feasible path typically
exists, this behavior is suboptimal. Existing approaches have
focused on reducing the predictive uncertainty for individual
agents by employing more informed models or heuristically
limiting the predictive covariance to prevent this overcautious
behavior. In this work, we demonstrate that both the individual
prediction and the predictive uncertainty have little to do with
the frozen robot problem. Our key insight is that dynamic
agents solve the frozen robot problem by engaging in “joint
collision avoidance”: They cooperatively make room to create
feasible trajectories. We develop IGP, a nonparametric statisti-
cal model based on dependent output Gaussian processes that
can estimate crowd interaction from data. Our model naturally
captures the non-Markov nature of agent trajectories, as well
as their goal-driven navigation. We then show how planning
in this model can be efficiently implemented using particle
based inference. Lastly, we evaluate our model on a dataset
of pedestrians entering and leaving a building, first comparing
the model with actual pedestrians, and find that the algorithm
either outperforms human pedestrians or performs very simi-
larly to the pedestrians. We also present an experiment where
a covariance reduction method results in highly overcautious
behavior, while our model performs desirably.

I. INTRODUCTION

Navigation in cluttered, dynamic environments is a chal-
lenging problem whose solution would have numerous ap-
plications. In particular, assistive robots [22] in crowded
environments (malls, cafeterias, and libraries are obvious
examples) would benefit from a navigation algorithm which
could operate safely amidst moving agents in close prox-
imity to one another. Unfortunately, classical algorithms for
navigation in static or dynamic environments typically ignore
uncertainty [15], and thus do not generalize well to situations
where the behavior of the environment is stochastic. Current
approaches, such as [23], [2], [10], [14] develop human
motion models to augment the prediction, in the hope that
good prediction will lead to good navigation. Similary, in
[27], more informed prediction is achieved by collecting
large amounts of pedestrian data in an office space, and then
modeling the goal-directed trajectories of pedestrians using
maximum entropy inverse optimal control.
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What these approaches have in common is that each
agent is modeled independently of the others1; because of
this modeling assumption, what always occurs, given dense
enough crowds, is something colloquially known as the
“freezing robot problem” (FRP). Intuitively, the FRP occurs
when the robot believes the environment to be unsafe, i.e.,
every path is expected to collide with the an agent in the
crowd due to massive uncertainty. Thus, the robot either
makes no forward progress, or takes extreme evasive action
to avoid collisions within the crowd.

One intuitive strategy to mitigate the FRP would be to
use “more informed” models, i.e., those that attempt to limit
the predictive uncertainty about the crowd motion to allow
identification of feasible paths that are unlikely to lead to
collisions. In fact, [6] goes one step further, (heuristically)
holding the individual agent predictive covariance constant at
a low value as a surrogate for near perfect prediction (in the
hopes that as the robot gets close to the dynamic agents, the
prediction will be good enough for safe navigation to occur).
However, perhaps surprisingly, in Section II, we show that
even under perfect prediction, i.e., each agent’s trajectory is
known to the planning algorithm, the FRP still occurs if the
crowd density is high enough. Thus, obtaining more accurate
predictive models for individual behavior alone cannot be
expected to solve the FRP.

Given this observation, how is it possible that people can
safely navigate through crowds (see, for example, Figure 1
showing pedestrians safely navigating past each other on a
crowded sidewalk)? The key insight is that people typically
engage in joint collision avoidance (called the social forces
model in [8], [9], [7]): they adapt their trajectories to each
other to make room for navigation. Further evidence from
the multi-robot coordination community and specifically the
work of van den Berg et al. ([26], [25]), show that robots
programmed to jointly avoid each other are guaranteed
to be collision free and show improved efficiency at joint
navigation tasks.

This joint collision avoidance criteria has been exploited to
improve the data association and target tracking of individ-
uals in human crowds ([18], [19], [16]). To our knowledge,
however, it has not been utilized to improve navigation
in human crowds. Thus, our central idea is to explicitly
model the interactions among the agents and between the
robot and the crowd, for the purpose of navigation. To
this end, we develop interacting Gaussian processes (IGP),
a principled statistical model, based on dependent output

1The recent work of [11] does not assume independence since the cost
function is learned from (simulated) crowd interaction data.
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Gaussian Processes. IGP describes a probabilistic interaction
between multiple navigating entities. Furthermore, efficient
planning is naturally implemented in this model using a
particle based approximate inference scheme.

Fig. 1. Crowded street scene

We evaluate our model on real world pedestrian data (see
Figure 2 and Section V-B). Our results show that IGP leads
to better (shorter and safer) paths than those taken by the
observed pedestrians.

In summary, our main contributions are
• the formalization of the FRP, which is fundamental to

navigation in cluttered, dynamic environments,
• the insight that modeling cooperative collision avoid-

ance is required to solve the FRP,
• the development of a novel model for interaction based

on coupled output Gaussian Processes (GPs), called
Interacting Gaussian Processes,

• the development of an approximate inference algorithm
for prediction and navigation of the IGP, and

• the demonstration of the effectiveness of this model
under real world crowd conditions.

II. THE FREEZING ROBOT PROBLEM
A. Formalizing the FRP
We now formalize the FRP. Fix an agent i, where the index
i can take values in the set {R, 1, 2, . . . , n}, and i = R
indicates the robot. Suppose we have a prior distribution
p(f (i)) over the agent’s trajectory

f (i) = (f (i)
1 , . . . , f

(i)
T )

over T timesteps, where each f
(i)
t = (xt, yt) ∈ R2 is

the planar location of agent i at time t. We also have a
likelihood function p(z(i)

t | f (i)
t ) for our observations. In

the following, we will assume that the observations do not
depend on the robot’s actions.

After obtaining the first t observations z(i)
1:t, we can per-

form Bayesian inference to calculate the posterior p(f (i) |
z(i)
1:t). Assuming all agents behave independently of each

other, we have a factorizable prior joint distribution over
trajectories

p(f (1), . . . , f (n)) =
∏
i

p(f (i)).

Thus, the posterior remains independent

p(f (1), . . . , f (n) | z1:t) =
∏
i

p(f (i) | z(i)
1:t),

and z1:t =
{
z(i)
1:t

}n
i=1

is the set of observations about all
agents.

Our goal in dynamic navigation is to pick a policy π that
adaptively chooses a path f (R) for the robot based on its
observations. The policy π is typically specified by stating
which next location f

(R)
t+1 the robot should choose given

observations z1:t.
Thus, for any complete sequence of observations z1:T , the

robot can potentially end up choosing a different path f (R) =
π(z1:T ). The cost J(π) of a policy π is the expected cost

J(π) =
∫
p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz1:T ,

(II.1)

where, for a fixed robot trajectory f (R), the cost function
c(f (R), f (1), . . . , f (n)) models the length of the path plus
penalties for colliding with any of the agents. We use the
shorthand notation f = (f (1), . . . , f (n)).

Unfortunately, even if the observations z1:T do not depend
on the robot’s actions2, solving for the optimal policy π
requires solving a continuous-state Markov Decision Process
(MDP), where the dimensionality grows linearly with the
number of agents, which is intractable.

The intractability of such MDPs is fairly common; in
the path planning community, a state of the art, tractable
approximation to the MDP is a method called Receding
Horizon Control (RHC). RHC proceeds in a manner similar
to MDPs, albeit online: as observations become available,
RHC calculates, based on some cost function, the optimal
non-adaptive action (i.e., fixed path) to take at that time.
Indeed, if we let J(f (R) | z1:t) be the objective function
which calculates the “cost” of each path f (R) based on the
observations z1:t, that is

J(f (R) | z1:t) =
∫
c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

(II.2)

where f (R) is the trajectory of the robot, then RHC finds
f∗t , where

f∗t = arg min
f (R)

J(f (R)|z1:t). (II.3)

As each new observation zτ arrives, for τ > t, a new path f∗τ
is calculated and executed until another observation arrives.

Unfortunately, for crowded environments, J(f (R)|z1:t)�
0 for any path f (R). Depending on the density of the
crowd, J(f (R)|z1:t) can become arbitrarily large, causing
the navigation algorithm to either freeze or take unnecessary
evasive action. This is the Freezing Robot Problem (see
Figure 2(d) for an illustration).

2If the observations depend on the actions, the problem becomes a
continuous state-space POMDP which is even more intractable.
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Fig. 2. (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current position) over gray lines are pedestrians moving down,
and black circles are the area of interest. In (a), the blue pedestrians have not yet seen the green person; their projected trajectories (in gray) are very narrow.
In (b), green dots with red encircling are current position of the pedestrian moving up, and all of the pedestrians have adjusted their trajectories to create
space—notice how wide the gray prediction has become. It is this joint collision avoidance behavior which we capture in this paper. (c-e) Illustration
of FRP. Dynamic crowd agents in red traveling downward, robot we are trying to control in blue. The multiple dots indicate multiple points along one
trajectory. (c) Uncertainty explosion due to uncorrected prediction. (d) Even with perfect prediction, room for robot navigation may not exist. (e) Modeling
cooperative collision avoidance remedies the FRP.

B. Approaches for solving the FRP

In order to fix the FRP, one state of the art approach
[6], called partially closed loop receding horizon control
(PCLRHC), anticipates the observations (effectively hallu-
cinating that a certain measurement sequence of the entire
trajectory sequence has already taken place at time t < T );
ultimately, the approach is motivated by the assumption that
the culprit of the FRP is an uncertainty explosion, illustrated
in Figure 2(c). The claim is that if you can control the
covariance, then you can keep the value of J(f (R)|z1:t) low
for some (short path length) trajectories f (R), and thus solve
the FRP (other approaches, which incorporate more accurate
agent modeling, are similar in motivation to PCLRHC, since
better dynamic models would reduce predictive covariance as
well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from freezing robot
behavior. This is because we can lower bound the optimal
MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )], (II.4)

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot actions. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

This analysis suggests that the planning problem as in-
troduced above is ill-posed. We thus revisit our probability

density,

p(f (1), . . . , f (n) | z1:t), (II.5)

and remark that a crucial element is missing—the agent mo-
tion model is agnostic of the navigating robot. One solution
is thus immediately apparent: include an interaction between
the robots and the agents (in particular, a joint collision
avoidance) in order to lower the MDP cost in equation II.4.
We additionally remark that the illustration in Figure 2(b), the
crowd experiments catalogued in the research of [8], [9], [7],
the multi-robot coordination theorems of [26], [25], and the
tracking experiments of [18], [19], [16], all corroborate the
argument that autonomous dynamic agents utilize joint col-
lision avoidance behaviors for successful crowd navigation.
We thus consider methods to incorporate such an interaction.

A naive approach to modeling interaction would be to
model a conditional density p(f | z1:t, f (R)), that encodes
assumptions on how the agents react to the robot’s actions,
i.e., the idea that all agents will “give way” to the robot’s
trajectory. The problem with this approach is that it implicitly
assumes that the robot has the ability to control the crowd.
Thus, this approach would not only create an obnoxious
robot, but an overaggressive and potentially dangerous one
as well. This method is unsuitable for crowded situations.

The other alternative, which we advocate in this paper,
is to consider a robot action as an agent action (i.e., the
robot is modeled as one of the agents) and to model a joint
distribution describing their interaction:

p(f (R), f |, z1:t). (II.6)

This distribution encodes the idea of cooperative planning,
and joint collision avoidance. Planning then corresponds to
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computing p(f (R) | z1:t), i.e., inferring what the robot should
do given observations of the other agents. In effect, the
dynamic agents and the robot cooperate to simultaneously
achieve the best (safest and shortest) paths. This idea is
illustrated in Figure 2(e). Section III formalizes the density
p(f (R), f | z1:t).

III. INTERACTION GP (IGP) MODEL

A. Gaussian process models for trajectories

A Gaussian process (GP) [20] is a distribution over (typically
smooth) functions, and thus arguably well-suited to model
trajectories. Formally, a GP is a collection of Gaussian
random variables indexed by a set, in our case, the set of
time steps {1, . . . , T}, and parameterized by a mean function
m (typically taken as zero without loss of generality) and
covariance (or kernel) function k. The kernel parameterizes
the smoothness of the functions, and can be learned from
data. In a sense, GPs generalize linear models such as
Kalman filters by replacing the Markov assumption with a
(more general) smoothness assumption. This fact alone leads
to less diffuse predictions than standard Kalman filters.

We start by modeling each agent’s trajectory as an inde-
pendent sample from a GP, f (i) ∼ GP (0, k). For simplicity
of notation, we formalize the model for one-dimensional
locations only – multiple dimensions are easily incorporated
by modeling each dimension as a separate GP. Given the ob-
servations z(i)

1:t through time t, we can calculate the individual
posterior as p(f (i) | z(i)

1:t) = GP (f (i),m
(i)
t , k

(i)
t ), where

m
(i)
t (t′) = ΣT

1:t,t′(Σ1:t,1:t + σ2I)−1z(i)
1:t, (III.1)

k
(i)
t (t1, t2) = k(t1, t2)− ΣT

1:t,t1(Σ1:t,1:t + σ2I)−1Σ1:t,t2 .
(III.2)

Hereby, Σ1:t,t′ = [k(1, t′), k(2, t′), . . . , k(t, t′)], and Σ1:t,1:t

is the matrix such that the (i, j) entry is Σi,j = k(i, j) and
the indices (i, j) take values from 1 : t. Lastly, σ2 is the
measurement noise (which is assumed to be Gaussian).

B. Incorporating goal information

An advantage to the GP formalism is that it estimates
the entire trajectory in a non-Markovian way. Indeed,
this allows us to incorporate goal information (either
probabilistic or exact) in a principled way, such that the
resulting distribution over trajectories reflects the full impact
of the additional data. Implementation-wise, we merely treat
the goal information as a measurement on the final step of
the trajectory, i.e., observing z(i)

T to be the perceived goal.
By varying the amount of noise in the measurement, we can
encode how certain we are about the goal. For z(R)

T , i.e.,
the robot’s goal, we set the noise very small. Furthermore,
waypoints along the trajectory could be easily encoded in
the same manner. Compare this with a Kalman filter, which
has no way of naturally incorporating such information.
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C. Interaction GP (IGP) model for cooperative navigation

Our key modeling idea is to capture the dynamic interactions
by introducing dependencies between the GPs. We begin
with the independent GP priors

p(f (R) | z1:t), p(f (1) | z1:t), . . . , p(f (n) | z1:t),

and couple them by multiplying in an interaction potential

ψ(f (R), f) = ψ(f (R), f (1), . . . , f (n)),

so that

pIGP(f (R), f | z1:t) =
1
Z
ψ(f (R), f)

n∏
i=R

p(f (i) | z1:t). (III.3)

The product
∏n
i=R is meant to indicate that the robot is

included in the calculation. In our experiments, we choose
the interaction potential as:

ψ(f (R), f) =
n∏
i=R

n∏
j=i+1

T∏
τ=t

(
1− α exp

(
− 1

2h2
|f (i)
τ − f (j)

τ |
))

(III.4)

where |f (i)
τ − f

(j)
τ | is the Euclidean distance at time τ

between agent i and agent j. The rationale behind our choice
is that any specific instantiation of paths

f (R)
k , f (1)

k , f (2)
k , . . . , f (n)

k

(where the subscript k indicates a point in path space, so that
f (i)
k ∈ R2T for all i) becomes very unlikely if, at any time
τ , any two agents i and j are too close. Furthermore, the
parameter h controls the “safety margin” of the repulsion,
and α ∈ [0, 1] the strength of the repulsion.

The parameter h was chosen to be the closest approach of
two navigating pedestrians (out of the entire video sequence,
approximately 10 pixels), while α was chosen such that h =
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10 was enforced the vast majority of the time. See Figure 3
for an illustration.

IV. COOPERATIVE PLANNING AND INFERENCE

A. The Navigation Density

Our model pIGP(f (R), f | z1:t) immediately suggests a natural
way to perform navigation: at time t, find the maximum a-
posteriori (MAP) assignment for the posterior

(f (R), f)∗ = arg max
f (R),f

pIGP(f (R), f | z1:t), (IV.1)

and then take f (R)∗
t+1 as the next action in the path (where

t+ 1 means the next step of the estimation). At time t+ 1,
we receive a new observation of the agents and the robot,
update the posterior to pIGP(f (R), f | z1:t+1), find the MAP
assignment again and choose f (R)∗

t+2 as the next step in the
path. We repeat this process until the robot has arrived at its
destination.

B. Importance sampling for approximate inference in IGP

While in GPs exact, efficient inference is possible, the
introduction of the interaction potential makes the posterior
pIGP(f (R), f | z1:t) non-Gaussian and thus approximate
inference is required. Standard approaches to approximate in-
ference in models derived from GPs include Laplace approxi-
mation [3] and Expectation Propagation [17]. These methods
approximate the non-Gaussian posterior by a Gaussian which
has the same mode, or which minimizes the Kullback-Leibler
divergence respectively. These methods are most effective if
the posterior is unimodal (and can be well-approximated by
a Gaussian). In IGP, however, the posterior is expected to
be multimodal: In particular, for two agents moving towards
each other in a straight line, evasion in either direction is
equally likely. This is akin to people walking towards each
other, flipping from one “mode” to the other while attempting
to not collide.

To cope with the multimodality, we use an approxi-
mate inference technique based on importance sampling, a
well understood approximate inference method for Bayesian
statistics (for an introduction see [1], [4], [21], [24]; for a
more detailed, up to date analysis of the method see [5],
[13]). We implement importance sampling (see chapter 4 of
[12] for a discussion of importance sampling) for estimation
of the navigation density as follows:

• For all agents i, sample independent trajectories of agent
i from the prior (see [20] for a discussion of sampling
functions from a GP):

(f (i))k ∼ p(f (i)|z1:t), (IV.2)

where p(f (i) | z1:t) is the sampling density (GP) for
agent trajectory i.

Fig. 4. Path length versus safety over 10 runs. IGP outperforms pedestrians
in both safety and path length, while PCLRHC is inappropriate for this
application.

• Evaluate the weight of each sample (f (R), f)k using the
rules of importance sampling:

wk =
pIGP((f (R), f)k | z1:t)∏n
i=R p((f (i))k | z1:t)

(IV.3)

=
ψ((f (R), f)k)

∏n
j=R p((f

(i))k | z1:t)∏n
i=R p((f (i))k | z1:t)

(IV.4)

= ψ((f (R), f)k). (IV.5)

• The posterior is then approximated by the empirical
sampling distribution,

pIGP ≈
N∑
k=1

wkδ[(f (R), f)k − (f (R), f)], (IV.6)

where δ[(f (R), f)k − (f (R), f)] is the delta function
centered at sample (f (R), f)k.

As we let the number N of samples grow, we approximate
pIGP to arbitrary accuracy, based on how much computation
we are willing to dedicate. Note that all samples are indepen-
dent of one another. Thus, the technique can be parallelized.

In practice, we found that as few as 100 particles were
sufficient for navigation and was computable in about 0.1
seconds in Matlab. We found that solutions did not really
improve beyond about 5000 particles, which took about
5 seconds to run in Matlab. Thus, our approach could
realistically be run in real time on a robot.

V. EVALUATION

A. Experimental setup: crowded pedestrian data

We evaluate our approach on a data set of over 8 minutes
of video recorded from above a doorway of a university
building at ETH (see [18] for more details of the video collect
and how to access the data). This data set exhibits high
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Fig. 5. (a) Crowded still from the ETH data sequence. Near the center of the group is a subgroup of about 6 people moving upwards (red arrows) through
a crowd of about 10 people moving down (cyan arrows). Experiments were run on this particular scenario, with IGP performing (in terms of safety and
path length) about the same or slightly better than the actual pedestrians, and greatly outperforming state of the art methods, such as seen in [6]. (b-d) The
blue squares over the gray lines are the agents traveling downward (lowest dot is current position), the cyan diamond over the green line is the pedestrian
walking upwards through the crowd; IGP is red circles on top of blue prediction line, and PCLRHC is blue prediction line. In (b) PCLRHC chooses an
overcautious path because the crowd is too dense. In (c) and (d), IGP follows nearly the same path as the pedestrian in green, validating the model. This
set of figures illustrates the free space created by the pedestrian walking through the crowd—this is the interaction we capture with the IGP model.

TABLE I
NAVIGATION RESULTS: IGP VERSUS PEDESTRIAN

Run `ped sped `IGP sIGP `PCLRHC sPCLRHC
1 343 13 341 12 353 22
2 343 14 344 18 349 8
3 316 71 305 26 317 73
4 383 12 358 21 420 18
5 361 12 363 42 409 65
6 337 21 321 22 330 23
7 439 16 439 23 489 26
8 428 19 423 20 466 11
9 416 20 402 18 448 24
10 415 11 407 24 445 13

crowd density, i.e., people frequently pass by one another
fairly closely). As an example, see Figure 5 for one frame
of the data sequence in which the crowds are dense. In this
frame, a number of pedestrians are heading down towards
the doorway (cyan arrows) while a few other people (red
arrows) head into and through the crowd.

We test the IGP algorithm on variations of just these
types of scenarios (one crowd or person intersecting an-
other crowd); our task is to utilize the navigation den-
sity in combination with the particle filtering inference
method to do navigation through these crowds. Videos
demonstrating the navigation performance are available at
http://www.cds.caltech.edu/∼trautman

Given the type of data that we are going to be experi-
menting with, we now explain our performance metric: For
navigation, we are interested in two quantities: path length

(the euclidean path distance in x−y space taken by the robot
from start to finish), and safety margin (the nearest distance
that the robot ever came to another pedestrian during a run).

We measure both these quantities in pixel values, because
transforming back to “real” distances (meters, for instance)
would be too inaccurate. Importantly, we have baselines for
the two metrics in pixels. For path length, we tended to
see pedestrians take paths which ranged from about 350-390
pixels. For the safety margin, we often observed pedestrians
within 11-12 pixels of one another, although never any closer.
So we take as “safe” any separation distance above 13 pixels.
Furthermore, we can roughly estimate 13 pixels to be about
the width of a person from shoulder to shoulder.

An experimental explanation is in order. True validation
of the IGP algorithm demands “live” interaction—that is, in
order to test the concept of joint collision avoidance, a robot
must actually interact with human beings. Unfortunately,
conducting such an experiment was infeasible at this time
(see Section VI for details on future experiments).

Instead, we conducted what we felt was the next best
experiment. First, we used a dataset of human crowds, rather
than simulated dynamic agents. Second, in order to test joint
collision avoidance, we gave IGP and PCLRHC the same
start and goal states as a human navigating through a crowd,
and ran the algorithms simultaneously with the human. In
other words, the person created space, and we tested the
algorithms to see if they would anticipate that space. The
fact that IGP took nearly identical paths to the humans and
PCLRHC chose highly conservative paths justified, to some
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extent, our approach. Furthermore, examinations of planned
paths at early stages in the experiment showed IGP expecting
the opening in the crowd, while PCLRHC expected no such
event.

B. Navigation performance
We begin this section with anecdotal evidence of how our
algorithm performs in comparison to both pedestrians and
PCLRHC, in Figure 5. Note that for all 10 experiments we
ran, this behavior was typical: IGP performed similarly or
better than the pedestrian, and PCLRHC took evasive action,
usually going to the far outside to avoid the crowds.

Figure 4 is the main experimental result of this paper.
In Figure 4, we present the results of our algorithm over
10 experiments. Each box surrounding the colored dots
represents the standard error bars over the 10 experiments.
IGP (green dot) had a mean safety of around 22 pixels, with
standard error ranging over 2 pixels, and mean path length of
around 362, with standard error around 12. Table I presents
details for the 10 individual experiments. Columns labeled s
refer to safety (in pixels), ` refers to path length (pixels).

Figure 4 shows IGP outperforming pedestrians in
both safety and path length by a fairly large margin.
Furthermore, PCLRHC is, as theoretically demonstrated
earlier, inappropriate for very dense crowds—PCLRHC
almost always takes evasive maneuvers (long path length)
in an effort to avoid the crowds (large safety margin).

VI. CONCLUSIONS
In this paper, we studied the Freezing Robot Problem

(FRP), a phenomenon where planning algorithms exhibit
overcautious or evasive behavior due to anticipated collisions
with stochastically moving agents. While most existing tech-
niques for dealing with the FRP focus on more informed (or
less uncertain) models, we show that the FRP can occur even
with perfect prediction, and that the key to safely navigating
through dense crowds is to capture the cooperative collision
avoidance inherent in real world behavior. We develop IGP,
a nonparametric statistical model based on dependent output
Gaussian processes, coupled through a nonlinear interaction
potential. We show how navigation in this model is naturally
cast as an inference task, which can be approximately solved
using importance sampling. Lastly, we demonstrated the
efficacy of this algorithm on real world pedestrian data. Our
results show that IGP leads to paths which are both safer and
shorter than those taken by actual pedestrians and existing
state of the art path planning algorithms.

Finally, we mention that work is currently underway
on a live experiment in the student cafeteria at Caltech
(see http://www.cds.caltech.edu/∼trautman for details). An
overhead camera has been mounted in the style of the
experiments of this paper, and the plan is to have a small
nonholonomic robot robot attempt to navigate through hu-
man crowds at lunch time.
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