
A Probabilistic Action Duration Model for Plan Selection and
Monitoring

V. A. Ziparo, L. Iocchi, M. Leonetti, and D. Nardi

Abstract— The execution of tasks for a robotic agent em-
bedded in a dynamic environment brings about several chal-
lenges, due to unpredictable (or unobservable) events, and
to inaccurate perception. Moreover, the agent can perform
multiple tasks and each task can be achieved by applying
different plans, therefore the decision about which strategy is
the most convenient, given the current situation of the world,
is important for assessing an intelligent overall behavior of
the agent. This paper tackles the problem of on-line execution
monitoring in a novel way with respect to previous work, since:
1) it considers uncertainty in the duration of actions with
a probabilistic model of action duration; 2) it evaluates the
cost of each possible plan at run-time in terms of probability
of successful termination within a desired expected time. The
approach has been evaluated both in a robotic soccer and a
surveillance scenario.

I. INTRODUCTION

There are great demand and expectations for the new
intelligent robots. Unfortunately, while the specific features
of robots are improving at a good pass, the embodiment of
intelligent behavior is still achieved in very ad hoc ways. The
AI symbolic approaches to Cognitive Robotics, although in
principle targeted towards robotic systems, often fail to show
substantial improvements when they are experimentally eval-
uated on robots (truth to be told, not very often). We believe
that this state of affairs is caused by a mismatch between
planning and robot control. Robots’ plans are often simple,
but rather tricky to formalize in terms of conditions and state
properties that must be verified by the perceptive system.
Robot control, at the level of behaviors, does not suitably
scale to complex intentional goals that require to look-ahead
in order to successfully pursue intelligent objectives.

The relationship between planning, or reasoning about
actions, and robot control is usually defined in the so-
called execution monitoring component of a deliberative
architecture [1], [2]. There is a whole spectrum of approaches
in the design of execution monitoring, ranging from the
simple “select next action in the chosen plan until a failure is
reported”, to “on-line planning”, where a new plan is devised
at each step and the first action in the plan is executed. While
the former approaches are applicable when the environment
allows a correct and successful execution of robot’s actions,
the latter are often not practical since they can easily become
computationally infeasible.

A key issue in the design of cognitive robots, that has
been extensively addressed by the researchers, is the duration

The Authors are with the Department of Computer and Sys-
tem Sciences, Sapienza University of Rome, 00185 Rome, Italy
{lastname}@dis.uniroma1.it

of actions, which seems to be needed in order to face the
uncertainties that are typical of the execution of actions by
robots. The explicit representation of time, however, typically
involves a too fine level of description [3], which is not well
suited for the abstractions that are used to devise plans that
involve high level actions or behaviors. Moreover, estimating
the duration of actions at planning time is often implausible.

Based on the above considerations, we propose an ap-
proach for execution monitoring which uses a probabilistic
representation of the duration of actions, in order to properly
evaluate the chance of a successful execution of a plan
within a given time limit. Unlike the previous approaches
for planning under temporal uncertainty and with continu-
ous resources, the actions’ duration is considered only at
execution time, when a library of plans is assumed to be
available and designed or generated off-line. A temporal
analysis of the utility of plans allows for on-line estimation
of the probability of successful plan execution, based on the
robot perception of the environment.

The proposed model does not require a specific action
representation, nor an ad hoc planning approach; rather, it
is inspired by a BDI (Belief Desires Intentions) architecture
[4], where a set of plans are available for on-line plan selec-
tion. More specifically, we devise an execution monitoring
algorithm that, in order to choose the next action to be
executed, evaluates the cost of each possible plan in terms
of the probability of successful termination within a desired
expected time.

II. RELATED WORK

Execution monitoring is an essential activity for robust
action execution in robotics due to the intrinsic uncertainty
of the real world. Uncertainty stems from different sources
among which: partial observability, sensor noise, actuator
failures and unpredictable exogenous events (e.g. caused by
other agents).

Traditionally, monitoring methods can be categorized as
either model-based or model-free. In model-based methods,
expectations about the future state of the environment are
generated from a model which can be analytical [5], [6] or
knowledge-based [7]. Model-free approaches, on the other
hand, compute statistics by directly exploiting data [8].
The present paper is more concerned with model-based
methods monitoring at the action or plan level, rather than
the analytical approaches developed in control theory.

Execution monitoring has been investigated within the
framework of both planning [1] and cognitive robotics [2].
We specifically address the temporal knowledge about the

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4716

duration of actions, in order to enrich the capabilities of
the system to predict the successful and timely evolution
of the plan execution. On the other hand, we do not want
to introduce an explicit representation of time [3], since it
requires a very fine level of description that is difficult to
achieve a priori. There has been some work in modeling
durative actions with continuous change [9], although the
approach assumes deterministic duration of actions. Given
the uncertainty associated with the duration of robotic com-
plex actions, we argue that this aspect should be modeled by
a probabilistic representation.

Regarding probabilistic time models and computation of
a probability density function for plan durations, some work
has been developed in the framework of MDPs [10]. The
computation, however, is carried out off-line and there is no
execution monitoring process.

Time is generally not explicitly addressed by behaviour-
based approaches, but it is implicit in some notions that
are used to model the activity of robots. In particular,
impatience and acquiescence in ALLIANCE [11] are used
to detect failures, and switch behaviors, by taking duration
into account. While the aim is very closely related to
execution monitoring, time is not explicitly represented and
the approach is obviously focused on behaviors.

Execution monitoring is also addressed by the work on
deliberative architectures, which specifically deals with the
problem of selecting goals to be pursued and plans to
achieve them. Plans are typically not generated during the
execution, but available in a plan library. In particular, in
BDI architectures [4], intention pursuing is a process that
needs to be monitored in order for the agent to realize when
an intention is not achievable: in this case, it must reconsider
desires and commit to a different one. The problem of
checking execution progress and, if necessary, drop some
intentions is a key aspect of BDI and is known as intention
reconsideration [12], [13]. The proposed solutions to this
problem span over different degrees of boldness: from a
bold agent that never reconsiders its intentions until it fulfills
them, to caution agents that reconsider the intentions after
every action. In the cited work by Kinny and Georgoff,
that was later extended by Schut and Wooldridge [14], it is
argued that the need for intention reconsideration depends
on the dynamics, observability, and stochasticity of the
environment.

Considering the relevant literature on execution monitor-
ing, our approach generalizes the previous work by providing
a framework to deal with on-line uncertainty about the
duration of actions, that is completely decoupled from (i.e.,
does not pose any constraint on) the underlying planning
formalism.

III. PROBABILISTIC REPRESENTATION OF ACTION
DURATION

In this section, we describe a probabilistic representation
of the duration of actions. The duration of an action α is
denoted by a χ2 probability distribution [15] starting at time

t0 and with σ degrees of freedom:

χ2(t−t0|σ) =
{ 1

2σ/2Γ(σ/2)
x(σ/2)−1e(t0−t)/2 for t > t0

0 for t ≤ t0
where Γ(·) denotes the Gamma function. Figure 1 shows
some examples of χ2 distributions.

Fig. 1. Examples of χ2 distributions, when t0 = 0 and σ varies from 3
to 6.

The motivation underlying the choice of the χ2 distribution
for modeling action durations is manifold:
• it can model the fact that the execution of an action

for a robot requires at least some minimum time (i.e.,
t0), which is a strictly positive quantity. This marks an
important difference with the Normal distribution that
would assign a non-zero probability to an unrealistic
negative time;

• most of the distribution can be found in a small range
of time values, depending on σ, which describe the
duration of the action under normal conditions;

• the distribution has a tail for t → ∞ which captures
the duration of the action under abnormal conditions:
actions can take, with low probability, a long time if
things go wrong.

Moreover, χ2 distributions have nice computational prop-
erties, which allow to implement the procedures described
in the following in a very efficient way. In particular, they
are closed under convolution, they can be described by
two parameters, and have a closed form for computing
convolution and cumulative distribution functions.

As described in the next sections, the evaluation of the
probability distribution of the action duration will be per-
formed on-line, during the execution of the plan. Thus, the
parameters σ and t0 are determined on-line, at the beginning
and during the execution of the action itself, depending on
the current situation perceived by the robot.

A. Probabilistic evaluation of plan duration

Given a temporal characterization of action duration, we
would like to infer the probability that a plan terminates
within a given deadline Tmax from the current time tc.
The probabilistic evaluation of plan duration is obtained by
combining the probability distributions of action duration
with the plan operators. In this paper, we consider plans

4717

only as sequences of actions, although the formalism can
be extended to consider more complex structures, such as
conditional plans with sensing actions.

The duration of a plan is, thus, computed by combining
the duration of the actions in the sequence. The probability
distribution of the duration of a plan can be defined as
follows. Given a plan Πi of a plan library Π and an action
α, the probability distribution of the plan {Πi;α} (i.e., the
sequence of Πi and α) is computed with a convolution of
the two probability distributions associated to Πi and α:

p(t|Πi;α) = p(t|Πi) ∗ p(t|α)

The probability distribution χ2 is closed under convolu-
tion, thus, the distribution describing a plan duration is again
a χ2 distribution. In particular, given two χ2 distributions
χ2(t − t1|σ1) and χ2(t − t2|σ2), their convolution can be
easily, and efficiently, computed as χ2(t− t1 − t2|σ1 + σ2).

This probability distribution can be used to evaluate the
probability of successful termination of the plan starting from
current time tc to a deadline Tmax:

P (tend(Πi, tc) < Tmax) =
∫ Tmax

tc

p(t|Πi)dt (1)

where tend(Πi, tc) is the random variable denoting the time
of termination of the plan Πi starting from the current
time tc. Computing Equation 1 amounts to compute the
cumulative distribution function (cdf) of p(t|Πi). Given that
we know that p(t|Πi) is a χ2 pdf, its cdf is computed as
follows:

cdf(tc, σ) = Γr((t− tc)/2, σ/2)

The function Γr is known as the regularized Gamma function
and is available in tabular form in many statistical packages.

Note that the desired maximum execution time for a
plan Tmax depends both on the goal achieved by the plan
GΠi and on the current situation in which the robot is,
represented by its current execution state Sc. Such a state
will be much richer than the corresponding state in the plan,
because it will include information gathered at execution
time. Therefore, we write this term as Tmax(GΠi , Sc) and
define the probability of successful termination of plan Πi

from the current execution state Sc as:

Λ(Πi, tc, Sc) = P (tend(Πi, tc) < Tmax(GΠi , Sc))

IV. UTILITY OF A PLAN

In this section, we present a method to derive an expected
utility of a plan, which depends on the execution state of the
robot and the expected duration of the actions of the plan. In
particular, we want to define the utility of a plan to achieve
a goal by considering two terms:

1) U(GΠi , tc, Sc): the utility of achieving the goal GΠi ,
given the robot’s execution state Sc at time tc;

2) Λ(Πi, tc, Sc): the probability of successfully terminat-
ing the plan within a given deadline Tmax, given the
robot’s execution state Sc at time tc.

It is important to notice that these two terms depend on both
the current time tc and the robot’s execution state Sc; hence,

they vary during plan execution either because the execution
state changes or just because time flows.

The expected utility of executing plan Πi, given S, is
defined as:

U(Πi, tc, Sc) = U(GΠi , tc, Sc) · Λ(Πi, tc, Sc)

During the execution of the robot task, and consequently
the evolution of the current state Sc, utility values of all
the plans in the library vary because of changes in the time
variables tc and Tmax, as well as in the parameters of the
χ2 function regulating the actions in the plans. This is an
important feature of our approach, and special care must be
taken when applying this computation to the plan that is
currently under execution, because for the current plan we
want to measure also its progress towards the goal. Therefore
a different utility function is needed for the current plan: it is
denoted with U∗(Πk̄, tc, Sc) and is computed by considering
time variables, but not updating the χ2 functions for the
actions under execution. In this way the evaluation of the
current plan takes also into consideration its progress towards
the goal.

Example Consider a soccer robot r which is facing an
opponent o. The ball is between the two robots, and r
has to evaluate if it is worth to pursue an attack goal.
For example, the utility of attacking at some time tc = 0
U(GAtt, 0, 〈go, gr〉) could be: the difference of goals scored
by the two teams (i.e., go−gr). The utility function tells the
robot that the more he is losing, the more he should attack
(if he is winning he should rather defend). The plan attack
could be a sequence of two actions/behaviors:

1) goToBall which moves the robot towards the ball.
Given the current distance of r from the ball db, the
average speed of the robot sr, the estimated duration of
the action is computed as follows: t0 = ct0 · dbsr and σ =
cσ ·db, where ct0 and cσ are two parameters, which can
be automatically learned or empirically determined.

2) kick, which kicks the ball towards the goal when
the robot reaches it. Given that the kick action takes
more or less the same amount of time in any situation,
we can characterize its duration by the two constants:
t0 = ct0 and σ = cσ .

Now, consider the case in which the robot r is losing 2 to
1 and it estimates at time tc = 0 that the opponent will
reach the ball in Tmax = 30s. Moreover, his moving speed
is of 1m/s and the ball is 10m away. For simplicity, also
assume that all the ct0 constants have a value of 1, and the
cσ constants have a value of .5. In this case, the utility of
Attacking is

U(Att, 0, s) =

U(GAtt, 0, 〈2, 1〉) ·
∫ 30

0

χ2(t− 10|5) ∗ χ2(t− 1|.5) =

∫ 30

0

χ2(t− 11|5.5) = Γr(5.5/2, 11/2) = 0.93174

4718

Fig. 2. Example of an early plan switch.

V. ON-LINE EXECUTION MONITORING

The on-line execution monitoring method described in
this paper is based on a probabilistic representation of
action duration, and on evaluation of the utility of plans
by considering both the utility of goal achievement and the
probability to successfully complete the plan within a desired
maximum time. The probability distribution of the duration
of a plan is continually evaluated on-line by the robot, based
on the current robot execution state, and does not require any
re-planning or plan repair procedure. Thus, during execution,
we monitor the utility of plans in order to dynamically decide
which plan must be executed.

We assume the system to be composed of at least two
modules, running in different threads: the plan monitor
and the plan executor. The plan executor by default runs
the empty plan ∅, which has a utility U(∅, ·, ·) = −∞
independently of the robot’s execution state. Asynchronously
and continually, the plan monitor checks the plan library
Π to select the most appropriate plan for execution, and
communicates it to the plan executor. Given a non-empty
plan, the plan executor selects the next action in the plan
and activates the corresponding behavior. During execution,
it checks for action termination until it can move to the next
action or until it receives a new plan from the execution
monitor. Notice that the knowledge represented by the robot’s
execution state is collected asynchronously, with respect to
the plan executor and the plan monitor.

Algorithm 1 describes in detail the plan execution monitor.
The procedure keeps checking the internal state S of the
robot (line 3), in order to find the set of executable plans
Π?(line 4), i.e. the plans which are applicable given the
current execution state. Then, it computes the utility of each
plan and selects the one with the highest utility (line 5).
Notice that this step requires to recompute the parameters t0
and σ of the χ2 distribution according to the execution state
of the robot. The computation of the parameters depends
on the implementation of the actions, and it is, in general,
domain dependent. Once the best plan is found, if this is not
the current one, a further step is required: checking whether
it is worth to switch from the current plan Πk̄ to another
plan Πbest in the current situation S, considered the cost
(CS(Πk̄,Πbest, S)) of changing plan (line 6). If it is worth
to change the plan, then the current plan is updated with the
new plan (line 7), which is then communicated to the plan

Algorithm 1 PLAN EXECUTION MONITOR
Variables:

Π :plan library
Πk̄ ∈ Π :current plan being executed
tc :current time
Sc :current state of the robot

procedure PlanMonitor(Π, tc)
1: Πk̄ = ∅
2: while True do
3: Sc = getCurrentState(tc)
4: Π? = getExecutableP lans(Π, Sc)
5: Πbest = argmaxΠk∈Π?∧k 6=k̄ U(Πk, tc, Sc)

6: if U(Πbest, tc, Sc) − CS(Πk̄,Πbest, Sc) >
U∗(Πk̄, tc, Sc) then

7: Πk̄ = Πbest

8: setCurrentP lan(Πk̄)
9: end if

10: end while

executor (line 8).

VI. EXPERIMENTAL EVALUATION

In this section we provide an experimental analysis of our
execution monitor, using a simulated robotic environment
implemented with the Player/Stage simulator. For each sce-
nario, we will describe the experimental setting, an example
used to highlight some features of the proposed method,
and some experimental results on the use of our method in
the mentioned robotic scenario. The execution times are not
reported because these are always negligible. De facto, the
computation amounts to a linear (in the length of the plan)
number of sums and multiplications. This is possible because
the χ2 distribution allows for closed form computations.
Such low computational costs guarantee an effective real-
time monitoring.

A. Robotic soccer scenario
As a first scenario, we consider two simulated soccer

robots that compete for reaching the ball and kicking it in
the opponent goal. We consider two plans, Π1 (Attack)
and Π2 (Defend):

1) Π1= {goToBall; grab;
rotateTowardsOpponentGoal; shoot}.

4719

Match 1 Match 2 Match 3 Match 4 Match 5
Ball distance [m] 0.74 - 0.79 0.89 - 0.93 0.94 - 1.14 1.07 - 1.21 0.89 - 1.06
Ball possession [%] 58 - 42 49 - 51 53 - 47 47 - 53 54 - 46
Opponent half [%] 40 - 60 83 - 17 75 - 25 88 - 12 78 - 22
Kicks 80 - 11 109 - 16 162 - 32 122 - 37 133 - 29
Score 4 - 3 8 - 2 11 - 3 9 - 8 10 - 3

TABLE I
RESULTS OF 5 TPEM VS. OTHER SIMULATED SOCCER MATCHES.

2) Π2= {goBetweenBallAndOwnGoal;
standInDefensivePosition }

The robots use the same set of actions with the same param-
eters, and they differ only in the plan execution monitoring:
one agent (the blue robot) uses the temporal plan execution
monitoring, while the other (the red robot) uses an execution
monitoring based on utility functions not depending on time.

a) Example: early plan switch: We consider the situa-
tion in which the two robots are both approaching the ball
from different directions (see Figure 2). Although the blue
robot is closer to the ball, it is slower than the red one (but it
does not know it). The temporal plan execution monitoring is
used to evaluate whether and when it is the case to interrupt
the Attack plan, because it will not reach the ball before
the opponent, and to switch to the defensive plan, in order
to save the goal. The utility of the two plans is shown in
the lower graph in Figure 2. We repeated this experiment in
two cases: 1) using the temporal plan execution monitor; 2)
using a static utility function based only on ball and opponent
player distances, but not on time. Notice how the blue robot
is able to promptly understand that it is more convenient
to switch to the plan Defend, because of the combined
effect of the dynamic update of the deadline Tmax and the
monitoring of elapsed time. In this experiment, we have
measured that the temporal plan execution monitor allows
for detecting the utility of switching plans 3 seconds before
the standard method. Therefore, in this case, a robot not using
an appropriate plan execution monitoring can understand too
late that attacking is not as effective as defending, losing in
general the opportunity of saving a goal.

b) Experiment: one vs. one soccer match: In order to
provide also a quantitative analysis of the results obtained
with the temporal plan execution monitoring, we have de-
vised some performance metrics for the soccer task and
we repeated the experiments several times to measure such
variables. In particular, we simulated a one vs. one soccer
match in our experimental setting with two robots: one
making use of temporal plan execution monitoring, and one
with a fixed non-temporal monitor. Each simulated game was
run for 10 minutes and we have measured for each robot:
1) the average distance to the ball, 2) the percentage of
ball possession, 3) percentage of time with the ball in the
opponent half, 4) the number of kicks, 5) the score.

Table I presents the results of 5 experiments, i.e. five 10
minutes matches. The results clearly show a slight advantage
of the robot using the temporal analysis in ball distance, ball
possession, and opponent half, that is justified by the fact

that the two robots were performing the same actions with
the same parameters; but also a significant improvement in
the number of kicks (and in the score) that shows that even
a small amount of time gained to take the right decision can
result in a significant improvement in the robot performance.

B. Robotic surveillance scenario

In robotic surveillance robots operate in an environment
in order to monitor it and to detect interesting events. In this
scenario, we consider a robot that can receive a set of target
points with different priorities in a known environment and
can reach these points for taking some information (e.g.,
photos) to be reported to some human surveillance center.
Nevertheless, the robot has a limited battery time and may
require more time than expected to complete tasks, because
of unpredicted events (obstacles, such as chairs in the way) or
navigation failures. In this case, plans are considerably longer
than the previous case study. In practice, they are paths of an
(internal) topological representation of the environment. The
Player/Stage environment simulation is depicted in Figure
3(a).

c) Example: identifying failure: Let’s consider a situa-
tion where a robot, while approaching a high valued target,
finds an obstacle (for example, something that blocks its
wheels) on its way, but it cannot detect the obstacle with its
on-board sensors. The plan execution monitoring continually
evaluates the utility of the plans (shown in Figure 3(b)),
and is able to understand that it is making no progress. The
green line shows how the utility of the most valuable target
decreases over time, until the utility values become smaller
than the ones of the secondary target (red line). Thus, in this
case, the monitor correctly identifies that the current plan
is making no progress and switches to a target with lower
utility, but with higher chances of success. It is important to
observe that, without sensing the failure situation or without
an appropriate temporal plan execution monitoring, a robot
would not be able to solve this situation and to escape from
the stall.

d) Experiment: multi-target surveillance: In order to
provide quantitative data we compare our approach with
a greedy selection method which at any task completion
selects the target with the highest utility. In each episode,
the robot has two minutes to complete as many tasks as
it can obtaining the corresponding utility along the way.
Figure 3(c) shows a comparison of TPEM vs the greedy
approach, varying the number of target locations available.
The results measure the average ratio between the utility

4720

(a) (b) (c)

Fig. 3. (a) Surveillance scenario, (b) Recognition of no progress in a plan , and (c) Experiments on the domain, reporting the number of tasks accomplished
(y axis) over the given time (x axis).

actually gathered and the total utility available if all the tasks
were accomplished (y axis), for each number of locations
available (x axis). Two minutes are enough to complete any
couple of tasks, therefore both algorithms achieve the highest
possible result independently of the order in which those are
selected. However, as the number of locations increases, the
choice becomes more and more relevant and taking time into
account proves to be critical. The results clearly show that
time execution monitoring yields to consistent improvements
in the performance of the robot, especially as the time
constraint becomes tighter.

VII. CONCLUSIONS

The uncertainty associated with the execution of actions
by robotic platforms is very high and the clean, abstract,
representations of robot plans do not lead to satisfactory
performance.

In this paper, we have presented an approach to execution
monitoring that introduces a probabilistic representation of
action duration, specifically aiming at monitoring the suc-
cessful execution of robot plans. We have chosen to deal
with the temporal analysis of actions at execution time,
rather than at planning time, and therefore the approach
can be applied independently of a specific approach to
plan design/generation. Moreover, the proposed execution
monitoring can be embodied in a BDI architecture, where
it combines intention selection and plan selection. In this
respect, it specifically addresses some of the challenges
that have been raised in the dynamic reconsideration of
intentions.

The proposed approach can also be extended and gener-
alized in directions that are not investigated in the present
paper. One issue that might be considered is the choice of
the probability distribution for representing the uncertainty
of action duration. Another aspect that might be addressed
is the use of plan structures including hierarchical plans
or conditional plans. The proposed approach could also be
applicable to monitor the execution of tasks in multi-robot
systems, where the temporal analysis of the plan, chosen to
accomplish a given task, may be used to realize that one
robot can no longer effectively pursue the task assigned to
it, and cause a change in the task assignment. Finally, we

aim at addressing the use of learning techniques to produce
execution time estimation of action duration.

REFERENCES

[1] K. Z. Haigh and M. M. Veloso, “Interleaving planning and robot
execution for asynchronous user requests,” in Autonomous Robots,
1996, pp. 148–155.

[2] G. D. Giacomo, R. Reiter, and M. Soutchanski, “Execution monitoring
of high-level robot programs,” in KR, 1998, pp. 453–465.

[3] R. Reiter, “Sequential, temporal golog,” in Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixth International
Conference (KR’98), Trento, Italy, 1998, pp. 547–556. [Online].
Available: reiterkr98.pdf

[4] M. Bratman, Intentions, Plans, and Practical Reason. Harvard
University Press, 1987.

[5] R. Isermann, “Estimation of physical parameters for dynamic pro-
cesses with application to an industrial robot,” in Proceedings of the
American Control Conference, 1990, pp. 1396–1401.

[6] W. Dixon, I. Walker, D. Dawson, and J. Hartranft, “Fault detection
for robot manipulators with parametric uncertainty: a prediction-error-
based approach,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 6, pp. 689–699, Dec 2000.

[7] A. Bouguerra, L. Karlsson, and A. Saffiotti, “Semantic knowledge-
based execution monitoring for mobile robots,” Robotics and Automa-
tion, 2007 IEEE International Conference on, pp. 3693–3698, April
2007.

[8] O. Pettersson, L. Karlsson, and A. Saffiotti, “Model-free execution
monitoring by learning from simulation,” Computational Intelligence
in Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005
IEEE International Symposium on, pp. 505–511, June 2005.

[9] J. Claßen, Y. Hu, and G. Lakemeyer, “A situation-calculus semantics
for an expressive fragment of pddl,” in Twenty-Second Conference on
Artificial Intelligence (AAAI-07). AAAI Press, 2007.

[10] J. Marecki, Z. Topol, and M. Tambe, “A fast analytical algorithm
for Markov decision process with continuous state spaces,” in Pro-
ceedings of the Eight Workshop on Game Theoretic and Decision
Theoretic Agents (GTDT) held at the Fifth International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’06), May
2006, pp. 2536–2541.

[11] L. E. Parker, “Lifelong adaption in heterogeneous multi-robot teams:
Response to continual variation in individual robot performance,”
Autonomous Robots, vol. 8, no. 3, pp. 239–267, 2000.

[12] D. N. Kinny and M. Georgeff, “Commitment and effectiveness of
situated agents,” in In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91, 1991, pp. 82–88.

[13] M. Wooldridge and S. Parsons, “Intention reconsideration reconsid-
ered,” in Intelligent Agents V (LNAI Volume 1555. Springer-Verlag,
1999, pp. 63–80.

[14] M. Schut and M. Wooldridge, “Intention reconsideration in complex
environments,” in AGENTS ’00: Proceedings of the fourth interna-
tional conference on Autonomous agents. New York, NY, USA: ACM,
2000, pp. 209–216.

[15] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, ninth dover
printing, tenth gpo printing ed. New York: Dover, 1964.

4721

