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Abstract— The applicative field of activities of robots which
have only one locomotion strategy is limited. As a mean of
enhancing the mobile range, it is necessary to have various
locomotion modes. Therefore, we focus on dynamic transi-
tions between several kinds of locomotion modes adapting
to environmental changes. In this paper, we aim to realize
a stable locomotion along some unknown test courses with
transition between biped and quadruped walks. To achive
this transition, we propose a method to get environmental
information and internal conditions. Robot plans locomotion
based on recognition of test courses and estimate stability of
walking using Bayesian Network. The effectiveness of proposed
method is verified by experiments.

I. INTRODUCTION

Recently, robots which work in human society have been

developed, such as entertainment robots and lifestyle support

robots. These robots need to have greater locomotion adapt-

ability than industrial robots designed for a task, because

there are various terrains in human society, such as stairs

and slopes. Therefore, robots have to recognize terrain and

perform stable locomotion autonomously. In walking robots

need to estimate realization of performance and they have to

modify their gait depending it. Many studies on locomotion

adaptability have been carried out.

A leg-wheel robot which can move on unknown rough

terrains by using only information of internal sensors has

been developed [1]. This robot has an advantage that it can

use several locomotion modes adapting to various terrains.

The robot cannot obtain environmental information with only

internal sensors until it moves there. If external sensors are

also used for recognition, the robot can estimate terrain and

select locomotion mode in advance. As another example

of adaptation to environment, behavior transitions between

biped and quadruped walk based on gradient of slopes have

been demonstrated by using the bifurcation phenomenon

[2]. Aoi et al. developed a locomotion control scheme of

the gait change from quadruped to biped using nonlinear

oscillators and verified the performance of the proposed

control system experimentally [3], [4]. However, these works
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don’t have system which modify robot’s gait adjusted to

environment. Against this background, we have developed

Multi-locomotion robot [5] (Fig. 1). With this robot, we aim

to realize adaptive locomotion transition based on environ-

mental recognition. Therefore, this robot has several locomo-

tion modes such as biped and quadruped walk, climbing, and

brachiation. There have been proposals of control methods

for several locomotion modes [6]–[9]. Autonomous transition

between these locomotion modes based on environmental

recognition and evaluation of internal models is the current

task.

Then, we focus on making option on robot’s gait based

on both recognition of terrain and estimation of gait perfor-

mance. In this paper, we aim to realize robust locomotion in

unknown test courses, so robots recognize a slope or a step

and plan to locomotion. In the next place they need to know

whether they realize the plan or not. In robotics system there

is uncertainness. Since it influence on realization of perfor-

mance, we have to deal with uncertainty. This uncertainty

is classified into four categories. First one is the uncertainty

caused by motion. For example, it’s approximation of motion

algorithm. Most robots have models to simplify calculating

dynamics. So this gives robot systems uncertainty because

there are difference between a reality robot shape and a

robot model. Second uncertainty is about recognition is

accuracy of sensors, effective ranges of sensor or abstraction

of environment. Third uncertainty comes from controller

(software). If the controller is not good for robot motion, the

robot has a lot of error in moving. And fourth uncertainty

is about hardware. For example, reliance on consumption

of motor or breakdown of motor, and reliance on sensors

with noise have uncertainty. In this research, we propose the

way of estimation of uncertainty in robot system by use of

the Bayesian Networks. Uncertainty in robot system limits

robot locomotion modes. And robot can get adaptation to

environmental or conditions.
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Fig. 1. Concept of Multi-Locomotion Robot
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II. MULTI-LOCOMOTION ROBOT

A. Gorilla Robot III

Multi-Locomotion Robot [5] is a novel bio-inspired robot

which can perform in stand-alone several kinds of loco-

motion such as biped walking, quadruped walking, and

brachiation. We built and developed Gorilla Robot III as a

prototype of Multi-Locomotion Robot. Overview and link

structure of Gorilla Robot III is shown in Fig. 2. Its height is

about 1.0 [m] and weight is about 24.0 [kg]. The mechanical

structure is designed as follows: 6 DOF leg, 5 DOF arm,

2 DOF lumbar. Each joint is actuated by AC servo motor.

Computer, AD/DA board, counter board, and power are set

outside the robot.

As a sensor for recognition of slope, a laser range finder

is installed at the neck of the robot (see Fig. 3). Its angular

resolution is 0.36 [deg], scan angular range is 240 [deg],

scan time is 100 [ms], and maximum range of detection is

4.0 [m]. The rotation axes of motors are pitch and yaw axes.

In addition a web camera is also installed next to the laser

range finder.
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Fig. 2. Gorilla robot III

Fig. 3. Laser range finder
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Fig. 4. Robot modeled as 3D penulum

B. Locomotion mode

In biped walk, we model the robot as a 3D inverted

pendulum shown in Fig. 4, same as the work [10]. The

supporting point of the pendulum is assumed to be point-

contact. Then, only the heeling force f and the gravity act

on Center of Gravity (COG).

In this paper, we use crawl gait as a quadruped walking

[8]. In this gait, the idling leg changes, left rear leg, left front

leg, right rear leg, and right front leg, in that order (see Fig.

5). It is designed in order that three feet always contact the

ground, COG moves within the triangle which is formed by

the three supporting feet.

The transition from biped to quadruped posture is made

keeping static balance. Before transiting the posture between

biped and quadruped stance, the robot stops walking.

III. LOCOMOTION STABILIZATION

In this paper, locomotion stabilization is executed along

algorithm shown in Fig. 6

As prospection for locomotion, robots determine param-

eters about locomotion mode, walking velocity, direction

or numbers of paces. This robot has biped walking and

quadruped walking as locomotion mode, and on flat it travels

in biped walk because flat ground is easy to walk. If on slope

or rough ground it is impossible to move in biped state,

robots select quadruped walking to be more robust. In this

research, we propose recognition and planning using a laser

range finder. A laser range finder enable robot to recognize

slopes or steps. So robot modifies the position of landing or

COG position adapting to environmental.

As a feedback for locomotion, this stabilization scheme

has evaluation of stability based on internal condition. Robot

estimates a risk of falling down using parameters which have

uncertainty. If the risk of falling down is high, the robot

changes walking velocity or direction, or selects internal

models. But if still high, it changes locomotion modes. In

this paper, we propose the method of estimating the risk

of falling down using Bayesian Networks. In estimating

it, we set “Robot Model Reliability (Reliability of Internal

states)” and “Environmental Model Reliability (Reliability

of External dynamics)”. Reliability of a robot model shows

(1) (2) (4)(3)

Fig. 5. Crawl gait
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Fig. 6. Locomotion Stabilization Scheme
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how far difference between reality motion and locomotion

algorithm is, or physical abilities of robot. For example, if

the robot has motor trouble, this is low and the risk of falling

down is high. Reliability of an environmental model shows

how accurately a robot recognizes environment. If robots

move in dark, it does not get information of environment,

so this parameter is low and the risk of falling down is high.

In biped and quadruped walking, the robot evaluates both

reliabilities, estimate the risk of falling down and attain an

optimum gait adapting to the environments or the conditions.

IV. STABILIZATION BASED ON

EXERNAL INFOMATION

A. Recognition of ground

We propose the way of calculating a gradient of ground

which the robot directs to, and the boundary between two

planes (between a flat and a slope, a flat and a wall) using the

laser range finder. The gradient and the boundary determine

how the robot transfers from a start to a goal. Fig. 7 and

Fig. 8 are schematic showings that the robot measures an

unknown ground. The laser runs in parallel with the sagittal

plane. And the neck motor rotates around yaw axes, so the

robot can acquires infomation about 3D surface. Therefore,

we define the system of Cartesian coordinates so that their

origin is located at the point directly under the laser range

finder and design a method to recognize a landform in the x-

y-z 3D space. The robot need to get (xi, yi, zi) to estimate the

landform. In Fig. 7, αi is the angle of laser i to the downward

direction, and di is the distance between the center of the

laser range finder and the point on the ground surface. These

data are obtained from the laser range finder. In addition, h

is the height of the laser range finder. Then, a point on the

ground surface can be described as (si, zi). xi and yi are

caluculated from si using the angle ofthe neck motor, β (Fig.

8). β varies from -20[deg] to 20[deg] arranged to 5[deg].
{

xi = sicosβ

yi = sisinβ
, i = 1, 2, · · · ,m . (1)

The equation of the ground surface is extracted by least-

square method as z = ax + by + c. a, b, and c are fixed

numbers. Then, the robot modifies the position of landing

and the COG trajectory with this equation [11].
{

si = disinαi

zi = h− dicosαi

, i = 1, 2, · · · ,m . (2)
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Fig. 7. Measuring slope 1
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Fig. 9. Bayesian Network for locomotion Stabilization

V. STABILIZATION BASED ON

INTERNAL CONDITIONS

A. Estimation of Probability

The uncertainty shown in INTRODUCTION is involved

in robot’s stability of walking. In this research, uncertainty

in locomotion motion is dealt with to evaluate the stability.

There are many kinds of uncertain parameters which have

various dimensions, so it is difficult to deal with them

uniformly. Then, these parameters are integrated into the

risk of falling down as belief with Bayesian Network. The

Bayes theory assumes that parameters have distributions

individually, and posterior probability is induced formally

by conditional probability. Bayesian Network is the model

which describes relations among phenomenon using proba-

bility. We describe the causality between the risk of falling

down and the uncertain parameters.

In this research, Bayesian Network shown in Fig. 9 is used

to estimate the risk of falling down. First, Bayesian Network

estimates Robot Model Reliability “R” and Environmental

Model Reliability “E”. Reliability of a Robot Model R show

how ideal the robot motion is, and describes the capacity

of moving. Reliability of a Environmental Model E is a

index which shows how correctly the robot perceive the

dynamics between the environment and the robot. Secondly,

R and E are induced the risk of falling down “S”. “S = 1”

shows falling down, and “S = 0” shows not falling down.

Probability variables R and E have classes 0, 1, 2 in more

reliable order. Then conditional probability P (S | R,E)
reflects the performance of the robot, and the designer
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arranges this probability subjectively. The evaluating parame-

ters X1, X2, X3 shown below are observed at real time. Then

probability variables from 0 to 4 based on uncertainty which

the parameters have input the Bayesian Network. When

the probability variable is 0, the situation is most stabile.

The calculation of Bayesian Network uses the enumeration

method shown by (3).

P (S = 1) =

2
∑

R=0

2
∑

E=0

P (S = 1, R,E)

1
∑

S=0

2
∑

R=0

2
∑

E=0

P (S,R,E)

=

2
∑

R=0

2
∑

E=0

P (S = 1 | R,E)P (R | X1, X2)P (E | X2, X3)

1
∑

S=0

2
∑

R=0

2
∑

E=0

P (S | R,E)P (R | X1, X2)P (E | X2, X3)

(3)

The evaluating parameters X1, X2, X3 are always observed,

so each probability P (X1), P (X2), P (X3) is set 1.

1) COG trajectory Error X1: The position of the center

of gravity is measured by the force sensor which the robot put

on its four legs. In biped posture, outputs which come from

the sixth axis force sensor makes ZMP. In quadruped posture,

the center of gravity is calculated with the equilibrium of

moments. Then the errors between the desired trajectory and

the observed trajectory decides the probability variable X1.

2) Touchdown Timing X2: The touchdown timing shows

differences between the landing and the ground surface

actually. When the robot is thrown off balance, or when

the recognition is inadequate and the ground is higher than

measured point, then the touchdown timing is earlier than the

planed timing. In the robot moving, the probability variable

X2 is renewed at every landing.

3) Accuracy of Ground Recognition X3: This parameter

evaluates the performance of the recognition which the robot

has. This shows how much information the robot attain with

some sensors, and how abstracted the environmental model

which the robot has is. The laser range finder has effec-

tive ranges, so over this ranges there is much uncertainty.

Then the two-dimension recognition and the approximate

algorithm have the uncertainty.

B. Consideration of Stability Margin

The conditional probability P (S | R,E) describes the

influence which Reliability of a Robot Model R have with

the Risk of falling down S. Then when the stability margin

is enough large compared with the COG errors, the influence

is little even if R goes down. In reverse, when the stability

margin is small, R has a big influence on S. Therefore

P (S | R,E) is decided based on the stability margin. For

example, a stability margin in biped posture is smaller than

one in quadruped posture, so P (S | R,E) in biped posture

is bigger than in quadruped posture.
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Stop

V4
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(=0.3) (=0.7)

Fig. 10. Velocity - Risk of falling down

C. Shift of Locomotion Mode

The evaluating parameters X1, X2, X3 are observed at

real time, and the probability of falling down is estimated.

The conditional probabilities used in Bayesian Network

are arranged by the subjective judgments of the designer.

Therefore, when the robot falls down, the probability of

falling down is not always 1.0. So we pay an attention to the

fluctuation of the probability. That is, when the robot move

in biped posture and the risk of falling down increases, then

it has the transition motion from biped to quadruped posture

and go quadruped walking. Contrarily the risk decreases

in quadruped walking, the robot stands up and go biped

walking.

VI. EXPERIMENTS

A. Experimental Conditions

In this experiment, the robot measures the landform with

The laser range finder at starting point, and in walking, it

get the gait based on the risk of falling down estimated

by Bayesian Network shown in Fig. 10. When the risk is

more than β (0.7) in biped posture, the robot squats to get

quadruped posture. And when the risk is less than α (0.3)

in quadruped posture, it standups. Then the robot in biped

posture has three patterns of biped walking a1, a2, a3 which

have different efficiency. If the risk decreases, the robot

get more efficient gait. In this research, this efficiency is

the walking velocity, then a1, a2, a3 are respectively 8.67,

6.67, 4.67[cm/sec] acquired by stride widths changed and

the quadruped walking velocity is 3.00[cm/sec]. Both the

standup motion and the squat motion take 10[sec] to action.

Modifications of its gait are conducted in every walking cy-

cle. The robot aims at minimizing the risk and maximizeing

the efficiency all the time.

B. Experimental Result

By three experiments, we show the effectiveness of pro-

posed method.

1) Experiment 1 (Planning based on Recognition): In this

experiment, the robot walks from flat to upslope. This slope

is 15[deg] and impossible for the robot to walk in biped

posture. At first, it estimates the slope information in biped

posture at the starting point. Based on it, the numbers of steps

3375



in biped walking are decided. Then, the robot starts biped

walk and stops it at described steps to transit to quadruped

posture. Finally the robot climbs up the upslope in quadruped

posture. Fig. 11 is the slope information acquired by the

laser range finder. The gradient error is 1.5[deg]. Snapshots

of Experiment 1 are shown in Fig. 12.

2) Experiment 2 (Transition based on Risk): In experi-

ment 2, the robot walks in biped posture on flat. Fig. 13 is the

risk of falling down. The biped action a1, a2 or a3 is selected

by the average of the risk during one period (1.5[sec]) in

every step. We can confirm a1, a2 or a3 is adjusted by the

risk.
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3) Experiment 3 (Transition based on Risk): In this

experiment, the robot walks on rough ground. There are

inequalities which have the maximum height, 5[mm]. This

is not recognized by the robot on purpose. We confirmed

whether the robot in biped posture changes the gait to

quadruped mode because the risk increases.

Fig. 14 shows results about the COG trajectories come

from the force sensors. And the COG trajectories induce

X1 shown in Fig. 15. Fig. 16 describes the probability

variable X2. The numbers in these figures are the threshold

to apportion the probability variable. In this experiment the

node X1, X2 have 0, 1, 2, 3, 4 as the probability variables.

When the probability variable is 4, the robot almost falls

down. The node X3 is always 0 because the robot move

within the effective ranges of the laser range finder in this

experiment. Thus Fig. 17 is the risk estimated by Bayesian

Network. In the transition motion, the risk is 0.0. We can

see the transition caused by the risk increasing. Before the

robot conducts a squat, the risk is more than β (0.7). And

snapshots of Experiment 3 are shown in Fig. 18.
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VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we made following two propositions. The

first one was a method to recognize an unknown test course

with the laser range finder and to plan for locomotion. The

second one was the way of estimating the uncertainty as the

risk of falling down. And the robot decides its gait based

on the recognition and the risk. By experiments, we verified

the proposed methods can be applied to various cases, and

showed that stable locomotion with transition between biped

and quadruped walk have been realized.

B. Future Works

Although we dealt with only biped walk and quadruped

walk in this paper, we will deal with other locomotion

modes such as brachation and ladder climbing for transition.

Furthermore, we will add the Bayesian Network for the risk

of falling down to more parameters, and diagnose the causes

which give the robot system the uncertainty mainly.
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Fig. 18. Snapshots of Experiment 3
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