
Interconnected Performance Optimization in Complex Robotic Systems

Florian Rohrmüller, Omiros Kourakos, Matthias Rambow
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Abstract— The overall performance of a robotic system is
commonly expressed by a single scenario-specific metric which
is supposed to be optimized. However, the metric describing
the performance of a single subtask within a scenario may
be different. Nevertheless, the scenario performance is most
likely dependent on the subtask performances but a mutual
transformation is not straightforward in general, especially
in complex robotic systems. This leads to what we call the
common pricing problem, i.e. the problem to determine the
functional relationship among a set of different performance
criteria and then account for this relationship in the various

optimizations throughout all system layers. In this paper we
present an approach to first learn a probabilistic model of
the metric interdependencies, and thereafter utilize this model
for performance estimation and optimal task parameterization
during planning and execution respectively. The proposed
method is validated in a simulation.

I. INTRODUCTION

Nowadays the diversity of available robotic hardware is

growing rapidly leading to robotic systems with stronger

heterogeneity. Accordingly, robots become more and more

functional resulting in a larger variety of performable tasks

and in increasing multi-tasking capabilities.

While this enables a wide scope of possible robotic

applications, it also poses strong demands to the respective

control framework. To really exploit its available capabili-

ties and maximize the overall system performance, a robot

needs to possess an operational framework that enables an

efficient resource allocation and task execution. The system

performance is in general scenario specific and can for

example be the completion time as in the DARPA Grand

Challenge [1] or the number of scored goals as in the

RoboCupSoccer [2]. While such scenario criteria represent a

mean to measure the global performance, respective local

performance criteria may be entirely different when con-

sidering the specific subtasks the robot needs to perform

in order to fulfill the overall task. The performance of a

localization subtask for example is commonly measured by

the uncertainty of its pose estimate [3]. Especially in mobile

robots the localization performance indirectly influences the

global metric [4], such as completion time or the number

of scored goals. Another case are subtasks with conflicting

goals. The obstacle-avoidance subtask may have a negative

influence on the overall performance, but it is crucial for the
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system safety. As a result, there exists an interdependency

between the performance metrics of each module as well

as the overall system performance metric. Another domain

where these interdependencies are apparent are multi-robot

systems. In these systems a complex task can be decomposed

in many simpler highly diverse tasks where each might

have a different performance criterion. However, a common

single scenario metric is required in order to solve the task

allocation problem [5].

Incorporating these metric interdependencies into the vari-

ous optimizations occurring throughout the system is usually

not straightforward. One possibility is to formulate a multi-

objective optimization problem and solve it by identifying the

Pareto-optimal frontier. Evolutionary algorithms are a com-

mon approach to this problem [6], [7], but they usually are

computationally expensive. Additionally, these algorithms

assume that the functional relationship among the different

objectives is given, which is not the case in general. An

analytic relation between the different metrics might be hard

to identify or too complex to model. A straightforward and

frequently used approach to model this relationship is to

simply combine the metrics by a subjective choice of weights

from the designer [8]–[10]. Thereby these approaches re-

duce the problem to a single-objective optimization problem

whose solution is biased by the chosen weights. There exist

recent approaches that incorporate estimation methods for

those unknown functions [11], but they concentrate only

on identifying the Pareto-optimal set and not on explicitly

determining the functional relationships.

In this paper we address both the problem of how to

model the functional interdependencies between the various

performance metrics throughout the system and how to use

this model during system operation to optimize the perfor-

mance. We call this problem the common pricing problem

and we tackle it using a probabilistic approach. First, a

probabilistic model of the interdependencies is learned. The

generation of the model is based on [4] which provides a

quantitative determination of the interdependencies within

a set of arbitrary metrics through the usage of Bayesian

Networks (BN). Furthermore, a method to tightly connect

the planning with the task execution of a robotic system

is proposed. The probabilistic model is used to provide a

performance estimation of the common global performance

metric to the planning part and optimal task parameterization

to the task execution part. The presented approach provides a

generic solution to the common pricing problem that allows

for a modular task-oriented system design.

The remainder of the paper is organized as follows: In

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4113



Section II the problem setting is presented, followed by the

learning mechanism for the performance interdependencies

in Section III and the performance estimation and task

parametrization in Section IV. Section V presents simulation

results for a box-pushing scenario.

II. PROBLEM SETTING

In order to cope with the complexity robotic systems are

commonly composed of various modules responsible for

different types of tasks. Each module i is parameterized

to optimize some module-specific objective ci. In general

those modules share common variables, which can be the

mutual input/output but also some system state or parameter.

From this sharing of information results a dependence of the

performance c j of module j on the performance ci of another

module i. This leads to a performance interdependence

throughout the system which needs to be taken into account

during performance optimization. More specifically, let the

vector c = (c0(), . . . ,cl())
T be the combination of all l + 1

performance criteria in the system. The performance ci(Θ,c′i)
of a module i is dependent on a vector Θ = (θ1, . . . ,θm)T

of m adjustable system parameters θ and on the vector

c′i = (c0(), . . . ,ci−1(),ci+1, . . . ,cl())
T of all other performance

criteria.

Optimizing c represents a multi-objective optimization

problem. A solution that minimizes all ci, i ∈ {0, . . . , l},

can not be found in general, but it is rather given by the

optimization of one criteria under constraints k = [k1, ..,kl ]
on the others:

min
Θ

c0(Θ,c′0)

subject to c j(Θ,c′j) ≤ k j, ∀ j ∈ {1, . . . , l}.
(1)

In case the analytic forms of ci(Θ,c′i) are known for all i,

the metric interdependencies, at least part of them, could be

simply removed by substitution. However, a major problem

of complex robotic systems is that this functional relationship

is often hard to determine or too complex to be modeled. In

other words the relationship ci(Θ,c′i) is usually not known;

so its derivation is the first core problem addressed in this

paper.

The mapping of global and local performance metrics to

the indices i is not fixed but rather dependent on the current

operational phase of the system. This leads to the second

major problem in our focus, namely how to utilize a derived c

during the planning and execution phases of the system.

In order to address these problems, we utilize the prob-

abilistic approach, shown in Fig. 1 on the right, to learn c

from experimental data (Sec. III). This learned functional

interdependence is thereafter utilized during system opera-

tion, shown in Fig. 1 on the left, to solve the multi-objective

optimization. The latter is split into a planning step (Sec. IV-

A) and an execution step (Sec. IV-B), which differ with

respect to the ordering of the criteria and the used constraints.

III. LEARNING OF THE PERFORMANCE DEPENDENCIES

As mentioned above an exact description of the interde-

pendence between different metrics is in general not known.

Consider for example a mobile robot that is supposed to

push a box along a marked path. For this it needs to track

the path as well as the box with a camera. Assume the

global performance metric is the distance reached within a

specified time. In contrast, the performance of a tracking

module is commonly expressed by the accuracy of its pose

estimate. The reached distance is likely to be dependent on

the achieved tracking accuracy, but to model this relation is

certainly not straightforward. Therefore a method is required

to obtain the functional relationship ci(Θ,c′i) for all i within

a set of arbitrary metrics c.

In this respect, we utilize the probabilistic system inter-

dependence analysis described in [4] to learn a probabilistic

model of the metric interdependencies. First a set of perfor-

mance metrics needs to be specified for each task the robot

can perform. During system operation these criteria are per-

manently computed and logged. The collected performance

data serve as input for the performance interdependence

analysis. The metric values are first discretized and then

a Bayesian Network (BN) structure, which best reflects

the interdependencies between the metrics, is searched. As

proposed in [4], a combination of a Markov Chain Monte

Carlo [12] and K2 [13] search is used to identify the best

structure. As quality measure the Bayesian Information Cri-

terion (BIC) [14] is used. The BIC evaluates the likelihood of

the data being generated by the given structure, penalized by

the complexity of the structure. The structure with the highest

BIC value is chosen and then trained with the gathered metric

data by sequential parameter update.

The number and size of the intervals used for the dis-

cretization of the metric values should not be too small, in

order to maintain the contained information. However, in

case they are set too large, the respective probability dis-

tributions become too flat what makes the determination of

mutual interdependencies hard, as well. A possible solution

to select the intervals is for example to use an entropy-based

approach, such as [15].

While the BN indicates only the qualitative interdepen-

dence between the metrics, a quantitative evaluation is

obtained using information-theoretic analysis based on the

relative mutual information

η(X ,Y ) =
I(X ,Y )

H(X ,Y )
, (2)

where I(X ,Y ) is the mutual information of X and Y and

H(X ,Y ) their joint entropy. The relative information entropy

η(·, ·) satisfies the requirements of a distance metric and

thus can be used to identify and compare the strength of the

interdependencies among all pairs within a set of metrics.

The BN is subsequently used during system operation as

described next.

IV. PERFORMANCE ESTIMATION AND TASK

PARAMETERIZATION

After the offline learning and training of the BN, inference

can be applied to it to determine how a change of one metric

affects the state of another one. This is used online for the

performance estimation and task parameterization.
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Fig. 1. Overview of the presented approach: the performance estimation and task parameterization utilizes the metric interdependencies of the performance
interdependence analysis [4] to (i) provide a performance estimate to the planning module and (ii) optimize the task parameters of the execution.

A. Performance Estimation

During the planning phase the robot aims to determine

from a set of possible plans the one which yields in the best

achievable performance. The respective criteria is scenario

specific and commonly reflects the progress of the overall

global mission. In the following it is referred to as global

cost cg and w.l.o.g. we set c = (cg,cT ) with cg = c0 the

global metric and cT = (c1, ...cl) the local ones.

For the estimation of cg inference on the trained BN is

used. The conditional probabilities Pr(ci = ui | Θ = zk,c j =
u j) for a metric ci given metric c j and parameters Θ

are calculated. This is done for all values ui and u j the

metrics and values zk the parameters can take according to

their discretization. In the following Ci denotes the discrete

probability distribution of a discretized metric ci.

These distributions are used to derive the performance

estimate

ĉg = min
Θ

E [Cg | Θ,CT (Θ)] , (3)

where ĉ = E [C] is the expected value of a probability distri-

bution C. Equation (3) is a special case of (1) with c0 = cg

and equality constraints kT = E [CT (Θ)] for T ∈ {1, . . . , l}.

Based on ĉg the planning module derives the best plan and

forwards it to the execution modules.

B. Optimal Task Parameterization under Global Metric Con-

straints

After the planning phase is completed, the planner assigns

the task to the task execution. In this section it is assumed

that the planner has generated a plan that requires a global

performance cg that is no worse than cg,max in order to

classify the task as successful.

During the execution phase all modules required to per-

form a task are active. If the metric interdependencies are

neglected, then each module will try to optimize their specific

cT . This optimization represents another case of (1) with a

different ordering compared to Sec. IV-A. However, neglect-

ing the metric interdependencies and directly optimizing cT

may likely result in an exceedance of the worst case global

performance metric cg,max. In consequence, to ensure that the

previous worst case global performance requirement is met,

the system interdependencies are taken into account and an

inequality constraint kg = cg,max > ĉg according to (3) is set.

An additional reason to set a worst case global performance

constraint is to improve robustness by allowing room for

local optimization when external disturbances are apparent.

Continuing with the previous example of the box-pushing

robot, cg corresponds to the negative distance the box has

been pushed after a specified time. The negation is only used

for simplification to have a consistent cost character of the

metrics. Let us further assume that the task is classified as

successful as long as the robot manages to push the box

farther than a threshold smin. Then the planning module sets

a bound cg,max = −smin what loosens the constraints for the

tracking module, since the best cg is no longer needed to

be achieved while still ensuring that the task is completed.

Thereby the tracking module of the robot is able to take

means to improve its pose estimate as long as ĉg ≤ cg,max is

ensured.

The used parameters ΘT are adjusted in order to optimize

the expected cT while satisfying the global constraint kg.

Thereby the dimension of the frontier of Pareto-optimal

solutions c∗ is reduced from R
l+1 → R

l .
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During the task execution the set

Λg =
{

Θ | Pr(cg > cg,max | Θ) < ε
}

(4)

of parameters, for which the probability that cg will exceed

cg,max is smaller than a threshold ε , is derived. The threshold

ε ∈ [0,1] is chosen by the designer. Λg defines the feasible

set of values that satisfy the global cost constraint. From

this parameter set Λg the best parameters Θ that optimize

the local costs must be chosen. This is a multi-objective

optimization problem. One approach to determine a single

Pareto-optimum for this problem, is by iteratively optimizing

the local costs based on some specified priority or by

iteratively calculating Λi for i ∈ {0, . . . , l −1}:

Λi = {Θ | Θ ∈ Λi+1 ∧Pr(ci > ki | Θ) < ε} . (5)

This is sequentially reduced until a single task metric c0

is left. Among all Θ ∈ Λ0 the parameter set

Θ∗
0 = argmin

Θ∈Λ0

E [C0 | Θ] (6)

which yields the best task performance c0 is chosen. Thereby

a unique point on the frontier of Pareto-optimal solutions is

determined.

With (3) and (6) the required performance estimation and

task parameterization are given respectively. The proposed

approach considers the system interdependencies as black-

box functions which need to be approximated. The structure

learning of the Bayesian Network results in a model that

captures the most important interactions between the vari-

ables while trying to keep the modeling complexity low. As

a result even complex relations can be modeled. This makes

the proposed approach very flexible, especially for modular

design of robotic tasks. However, the learning of the structure

of Bayesian Network is computationally expensive and can

only be performed offline. The presented approach has been

validated in a simulated box-pushing scenario, as explained

in the next section.

V. VALIDATION IN SIMULATED BOX-PUSHING

One important aspect of the performance estimation and

task parameterization, presented in Sec. II, is the interac-

tion between the planning and the execution modules. We

highlight the efficacy of our concept for cost determination

through a box-pushing scenario which is used by several

research groups in the field of multi-robot task allocation

and coalition formation as a benchmark, e.g. [5], [16]. The

next section describes the scenario setup followed by the

results.

A. Box-Pushing Scenario

In our specific setup the target is to push a rigid box as

far as possible along a straight line within a specified time

without introducing any rotational or translational errors in

the box pose Fig. 2. For this purpose, two separate tasks,

which try to minimize the rotational and translational error

respectively, are considered. Each task calculates a force F

that will be exerted on the longitudinal side of the box
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Fig. 2. Example box trajectory: the horizontal axis (y = 0) is the desired
trajectory, the dot indicates the box center and the arrow the applied force,
here shown for a single robot.

in order to affect the box position and orientation. For

simplification of the robot strategy the forces are applied

perpendicular to the face of the box, and can be applied to a

pre-specified fixed number of contact points. The magnitude

of F depends on the robot’s maximum speed vmax, the robot’s

maximum force Fmax and the current box velocity vbox and

is modeled as

F =

{

(

1− vbox
vmax

)

Fmax , if vbox ≤ vmax

0 , otherwise.
(7)

Note that vmax and Fmax belong to the set of parameters Θ

of the tasks. The desired point of contact is calculated at each

time instant based on the current translational and rotational

errors yerr = y∗− ŷ(t) and φerr = φ∗− φ̂(t), respectively. Here

y∗ = 0 and φ∗ = 0 are the desired translational and rotational

values of the center of mass of the box; ŷ(t) and φ̂ (t) are the

measured translational and rotational values differing from

the true value y(t) and φ(t) by zero mean Gaussian noise

ntrans(t) and nrot(t) with the corresponding variances σ2
trans

and σ2
rot , i.e.

ŷ(t) = y(t)+ ntrans(t) and

φ̂(t) = φ(t)+ nrot(t).

If the desired contact point differs from the actual point,

the robot decides to change its position and no force is

exerted, otherwise it keeps pushing. In the multi-robot case,

an additional criterion for choosing the desired point is

whether it is already occupied by another robot or not.

For the evaluation of our approach we compare a single-

robot system with a coalition of two less capable robots in

terms of maximum force Fmax. All robots have the same

task knowledge, which from the perspective of the execution

module means that the task plans for the box-pushing task

are implemented the same way on all robots. The box

is modeled as a rigid body with equally distributed mass

and a velocity proportional friction. The mass and friction
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σ2
rot [degree] σ2

trans[m] Fmax ∗nrRobots[N] vmax[
m
s
]

5 0.1 4 0.4
10 0.3 8 0.7
15 0.5 12 1

TABLE I

SIMULATION PARAMETERS

coefficient are kept constant. Additionally, the robots always

stay in contact with the box. All the parameters settings used

for the simulations are shown in Table I. For each possible

parameter/noise configuration we run 100 simulations with

a runtime of tsim = 100 seconds each. After each simulation

run we record the average translational error

ctrans =
1

tT

∫ tT

0
‖y∗− ŷ(t)‖2

dt, (8)

and the average rotational error

crot =
1

tT

∫ tT

0

∥

∥φ∗− φ̂(t)
∥

∥

2
dt, (9)

which together form the task-specific cost vector

cT =

(

crot

ctrans

)

. (10)

In addition, we measure the distance the box manages

to travel within the fixed simulation time. We define the

common global performance metric cg as the negative dis-

tance. Thus, minimizing the global cost cg is equivalent to

maximizing the distance x(t = tsim) traveled within the fixed

simulation time

cg = −x(t = tsim). (11)

In case φ̂(t = ti) >
π
2

the run is considered as failed and

a penalty of cg = 30m is assigned.

As a further cost metric the resource ratio ρ is introduced,

which is the number of not actively pushing robots divided

by the number of robots allocated to the task. In other words,

frequent position switching results in a higher value of ρ .

As stated in Sec. III, the metrics need to be discretized for

the search and training of the Bayesian Network. Here five

discretization levels are chosen.

B. Performance Interdependence Analysis

In order to obtain the mutual interdependence between

the gathered metrics retrieved during the simulation runs,

the system interdependence analysis of Sec. III is applied.

Fig. 3 shows the learned BNs for the single-robot and the

two-robot case, from which the dependencies between the

parameters Θ = (Fmax,vmax)
T and the performance metrics

crot , ctrans and cg are identified qualitatively. In both BNs

Fmax as well as the vmax are the root nodes and influence

all other metrics. This indicates the suitability of the two

parameters for the system control. The main difference for

the two-robot case in Fig. 3(b) compared to the single-robot

case in Fig. 3(a) is the more intense relation of ctrans to the

other metrics.

cg

ρ ctrans

crot

Fmax vmax

η = 0.15
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0.08 0.24

0.04
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crot

Fmax vmax

0.002
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0.33

0.4 0.03

0.14

0.26

0.35

0.35

(b) Two Robots

Fig. 3. Learned Bayesian Networks.

C. Performance Estimation and Task Parameterization

Table II and Table III present the results obtained by

applying the Performance Estimation (PE) and the Task

Parameterization (TP) described in Sec. IV-A and IV-B to

the box-pushing scenario. For the task parameterization,

ε = 0.9 was set and the worst case global performance

bound cg,max was chosen equal to −3m and −6m for the

single-robot and two-robot task, respectively. The proposed

methods are compared with two alternative approaches. In

the first approach the dependencies are not considered at all,

i.e. the Bayesian Networks are not used (No BN). In the

second approach the task specific performance metric crot is

optimized without any constraint on cg, i.e. min
Θ

E [Crot | Θ],

denoted as TO, Task Optimization. The columns of the tables

give the expected values of the performance metrics given

the set of task parameters Θ∗ = (F∗
max,v

∗
max)

T that are optimal

with regard to the respective criteria. An exception is the first

row, where the expectation is taken over all observations

independent of Θ, i.e. E [Ci], since the dependencies of the

metrics upon the task parameters are not known.

In the single-robot case, the performance estimation mod-

ule estimates a cg that is 461% smaller than the estimated cg

in the TO approach where crot is optimized. This indicates

that neglecting the interdependencies and only optimizing

the local task metrics might have a negative impact on the

global performance metric, as already mentioned in Sec. IV-

B. Of course optimizing over cg comes at the expense of

the task specific performance metrics crot and ctrans which
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E [Cg | Θ∗] E [Crot | Θ∗] E [Ctrans | Θ∗] F∗
max v∗max

No BN −9.2833 0.0049 0.0068 * *

TO −3.0002 0.0040 0.0060 4 0.4

PE −16.8400 0.0090 0.0075 8 1

TP −3.400 0.0040 0.0060 4 0.7

TABLE II

PERFORMANCE ESTIMATES AND OPTIMAL PARAMETER SET FOR ONE

ROBOT.

E [Cg | Θ∗] E [Crot | Θ∗] E [Ctrans | Θ∗] F∗
max v∗max

No BN 5.2141 0.1318 0.2041 * *

TO −6.0010 0.0072 0.0068 2 0.7

PE −12.4100 0.0192 0.0075 4 0.7

TP −6.3500 0.0072 0.0068 2 1.0

TABLE III

PERFORMANCE ESTIMATES AND OPTIMAL PARAMETER SET FOR TWO

ROBOTS

increase by 125% and 25% respectively. Accordingly, for

the two-robot case, the cg is 106% smaller, while crot and

ctrans deteriorate by 166.6% and 10.2%, respectively, when

comparing the PE to the TO approach. From these examples,

the trade-off between global task performance and local

task performance metrics is clear. When the proposed task

parameterization (TP) is applied, the estimated cg signifi-

cantly increases compared to the PE approach for both the

single-robot and two-robot cases. However, the worst case

of cg,max being equal to −3m and −6m, respectively, is

guaranteed with a probability of 90%. Additionally, the task

specific costs are much smaller than in the PE approach.

While the performance estimation module offers the planner

the best achievable global performance estimate, the task

parameterization allows the system to trade-off between local

and global task performances.

In the approach where no dependencies have been learned

(No BN), the robot is not aware of the relation between

the performance metrics and the task parameters. If the task

parameter choices have a significant impact on the global

performance, then a bad estimate is computed. For example,

in the two-robot case, if the task parameters are chosen

aggressively, i.e. very high values of both Fmax and vmax,

then there is a high failure rate of the task. This high failure

rate results in a very high value of the estimated global

performance metric. As a result, a planning module would

deduce that using two robots to complete the pushing task

is much worse than using a single robot. However, if the

dependencies are taken into account, in the two-robot case a

better worst case performance cg,max = −6 than the single-

robot case cg,max =−3 (TP in Table III and II, respectively)

can be guaranteed.

VI. CONCLUSION

The paper addresses the problem of achieving coher-

ence among the various performance optimizations occur-

ring throughout the subtask modules of a complex robotic

system. A probabilistic approach is presented, that handles

the problem by learning the interdependencies among the

performance metrics from gathered system data. Thereafter,

the learned model is used to tightly couple the optimiza-

tions in the planning and execution layers of a robotic

system by solving a multi-objective optimization. This is

achieved during system operation by inferring a global cost

and by optimizing task parameters while still guaranteeing

performance bounds of higher prioritized tasks. The method

is systematic in the sense that it can combine metrics of

different units without requiring any subjective intervention

of the system designer.

Future work will focus on investigating the scalability

of the method and the use of incremental learning of the

parameters of the Bayesian Network.
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