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Abstract— This paper presents a novel method for robust
dance motion structure detection. In the japanese folk dance
domain, teachers created illustrations of dance poses. These
poses characterize the most important movements of a dance.
So far there is no simple and reliable extraction method which
can extract all poses as shown in these drawings. We use these
poses for the Task Model (TM) in the context of Learning from
Observation (LFO). LFO which is a well known technique
for successful human to robot motion mapping, consists of
tasks (what to do) and skills (how to do). We propose a
novel approach, to extract special motions from a dance, called
turning motions useful for skill mapping in the LFO paradigm.
Furthermore, we use a modified version of this approach, to
detect all poses as shown in the drawings, called turning poses.
To achieve this we observe both forearms at the same time
and analyze their movement in different 2-D coordinate planes.
We evaluate the parameters with and without a weighting
function where we minimize acceleration, velocity and power.
We successfully demonstrate this novel method using two very
different japanese folk dances and discuss further implications
of this work in respect to the LFO paradigm and dances of
other domains.

I. INTRODUCTION

In the recent years a steady decline of willing students to

learn and to carry on traditional cultural heritage, particularly

japanese folk dances, has been a significant problem in Japan.

To prevent this loss of heritage, japanese dance teachers

created elaborate drawings (dance master illustrations), as

shown in Fig. 1, to illustrate the most significant poses and

movements with annotations to guide the students in the

same spirit as labanotation [1]. These important drawings

together with the teacher are the basis to actually instruct

and communicate students the order and configuration of

each pose as well as timing and other information. Due to

the importance of instructors in teaching, the fast overaging

society has put a strong emphasis on saving cultural heritage

by digitalisation and robotic reproduction.

Realizing human dance motions on robots is a challenging

topic due to the dynamic and kinemeatic differences and

can be overcome by using paradigms such as Learning from

Observation (LFO) [2]. In this paradigm, robots observe

human actions, recognize and map the detected actions to

robot actions in order to mimic them. To recognize human

motions the abstract Task Model (TM) is used to separate
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Fig. 1. Traditional japanese folk dance drawings showing one dance cycle
by dance master Mr. Tokio Igarashi for Aizu-bandaisan created in 2004.

the motion stream into tasks (what to do) and skills (how

to do). In LFO terminology this means that tasks are state

transitions and skills are the trajectory of the state transitions.

This indirect mapping, which we base our work on, can

overcome physical differences between humans and robots

and allows a successful approximation of a given dance.

In order to detect natural boundaries of human motion

(LFO states), Shiratori et al. [3], [4] successfully analyzed

motion capture data as well as music information. They

coined a concept called keyposes which are important stop

motions of hand and foot occurring together with the music

beat. This method successfully extracts a subset of the given

dance master illustrations which they call keyposes. A prob-

lem of this extraction is that it fails to detect and explain all of

the illustrations. They furthermore use hierarchical B-splines

[5], [6] to preserve characteristic trajectory information (LFO

skills) under robotic constraints with different temporal scal-

ing. This method, despite its merits, is non-optimal (data

size) as the entire input information is kept and error prone

to missing states or larger gaps between states (keyposes)

when their detection fails. Our recent experiments, as shown

in Fig. 2, also indicate the importance of poses beside the

keyposes during slow dancing and when reproducing a more

real looking dance performance.
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Fig. 2. Experiments, using motion capture equipment Vicon iQ, in Aizu-
wakamatsu with Dance Master Mrs. Hisako Yamada and her students from
26

th to 28
th October 2009.

To solve all these problems, without the use of musical in-

formation, we introduce in this paper a novel approach based

on turning motions. This method allows us to successfully

detect characteristic poses for trajectory interpolation from

state to state (LFO skills). Furthermore, we use a modified

version of this approach, to detect all poses as shown in

the dance master illustrations, which we refer to as turning

poses (LFO tasks).

II. RELATED WORK

Previous works focused on motion analysis [7], [8], [9]

and others used musical information [10]. In general there

is a difference in the quality of achieving the poses as

shown in the dance master illustrations (LFO tasks) from

dancer to dancer. Shiratori et al. [3] postulates that keyposes

help to recognize the skill-level of a dancer. In these works

trajectories (LFO skills) are represented by hierarchical B-

splines [5], [6]. Although a proper pose extraction for tra-

jectory representation was very difficult, good results could

be achieved by preserving the motion data shape. A popular

paradigm to map these human motions to robot motions is

LFO widely used by Ikeuchi et al. [11] and others [12], [13],

[14]. Kovar et al. [15], [16] followed another approach which

enabled them to efficiently identify and remove redundant

motions for a very large data sets. Other researchers also tried

to capture and transfer style [17] while preserving its original

content using a translation model. Pollard et al. adapted

human motion data to robots by using a PD Data filter [18].

This paper is organized as follows: Section III describes our

observations during experiments in Aizu-wakamatsu. Section

IV describes our detection method based on turning motions

and turning poses. Section V shows experimental results,

and Section VI discusses the implications of this technique.

Section VII concludes this paper by mentioning possible

future work directions.

III. OBSERVATION OF HUMAN DANCE MOTION

A closer study of the poses shown in the dance master

illustrations which could not be extracted by previous works

reveals that they seem to be of a more dynamic, not stopping

but slowing down, nature. The dancers slow down at these

points a little as they need to perform a more exact motion.

This dynamic behavior was indicated by the dance teachers

by the arrows in the drawings four to eight as shown in Fig. 1.

Further study of dance video and motion capture material of

many traditional japanese dances, reveals that these motions

excerpt complex elliptical-like arm motions which indicates

a turning or critical point in their maximal arm displacement,

not occurring at a musical beat. This lack of pose relation to

musical information allows us in this paper to omit all use

of music data. Furthermore, japanese dances often show a

general symmetry in their movement, particularly in the arm

movements which makes this finding so interesting.

To further analyze the symmetry and importance of these

poses we conducted music and dancing speed varying exper-

iments in Aizu-wakamatsu as shown in Fig. 2. During this

experiment we used the 3D movement analysis system (38

markers per dancer) to capture the dance information with

varying speeds (0.5x, 0.8x, 1.0x, 1.2x, 1.5x, 2.0x) and four

female dancers (two master and two senior level). Resulting

from these experiments, we found that the poses of dynamic

nature were particularly valuable for slower dancing while

on the other hand during faster speeds especially these poses

were omitted. From these observations, we obtained the

following two insights:

a) Insight: These poses are characteristic for dance

structure though less important than keyposes. When time

is short, these poses are sacrificed first to have more time

to execute the keyposes. When more time is available these

poses become equally important.

b) Insight: When these poses are executed a overall

higher completeness of a dance reproduction was the result.

They convey style and details of a given dance.

Based on these insights, we propose a method to detect

the dynamic poses of human dance motion.

IV. TURNING MOTIONS AND TURNING POSES

In this section, we propose a method to detect turning

motions (elliptical motions), based on the acquired insights,

when the configuration of the dancers forearms change. This

special motion occurs when both arms cross, change its

movement direction or orientation. This concept is deceiv-

ingly simple, but enables us particularly in the japanese

dance domain to capture the important characteristic rela-

tionship between body and arm configuration.

We consider all poses as seen in the dance master illus-

trations to be special turning motions which we call turning

poses. In order to successfully extract the poses shown by the

dance master illustrations we minimize the speed, velocity

and the power of the forearms to extract the critical points in

their elliptical motion. By extracting these poses, however,

we cannot determine which of them essentially are keyposes

or not due to the lack of musical information in this work.
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Only by using musical beat we can determine if a given pose

by a dance master is a keypose or turning pose.

Fig. 3. Different body components,
divided into fifteen parts

In order to extract the

important body/arm rela-

tionship called turning mo-

tions, we place our lo-

cal coordinate system in

the umbilicus (navel, at the

level between L3/L4 ver-

tebrae) of the performer

as shown in Fig. 4. The

main purpose is to utilize

the natural body geome-

try of the person which

is commonly known as

ϕ. Furthermore, we use

a fixed coordinate system

which changes all motions

measured from our global

to a local system. We

are specifically interested

in the X-Y (Coronal), Y-Z

(Sagittal) and X-Z (Transverse) planes from the navel point.

Instead of looking only at certain points (e.g. hand and

foot point) over a time series we based our method on

the naturally rigid body components as shown in Fig. 3.

This means that certain parts of the human body are fixed

in relation to each other by a bone so there is no flexing

movement in the components. So span for instance the elbow

and the shoulder one component, the upper arm, the elbow

and wrist another one, the forearm.

Fig. 4. Simplified visualisation of the turning motion algorithm

We are specifically interested in the forearms (Ante-

brachium) for our method. The limb motion is captured by

two markers which are placed at the elbow joint and the wrist

joint of the forearms. It is important to point out that this

method is not limited to upper body motion and a similar

application for the legs (e.g. tibia) or other parts is possible.
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Fig. 5. Raw, unsmoothed and unfiltered Pn data plots for Aizu-bandaisan.
Areas of interest are cicled red. Starting point of sequences is marked in
green.

Given points a(x1, y1, z1), b(x2, y2, z2) for the left and

c(x3, y3, z3), d(x4, y4, z4) for the right arm we establish

lines l1(a, b) and l2(c, d) through (1) in parametric form

as shown in figure 4. Then by an orthogonal projection of

the lines l1 and l2 we lower them from 3D into 2D space

resulting in l′1(a
′, b′) and l′2(c

′, d′). We calculate this for all

planes i ∈ [(x − y), (y − z), (x − z)]. Lines l′1(a
′, b′) and

l′2(c
′, d′) intersects in a point (Pn)i ∀ frames n and plane

i with the exception when both arms are actually parallel.

For simplicity all further references of (Pn)i are denoted as

Pn. The extraction process results in data Pn for each plane,

which is highly non linear as seen in Fig. 6.

Fig. 6. Raw Pn data plot for Jongara-Bushi ∀
frames n of the entire dance sequence. Visualized
as a radial graph without filtering of parallel arms.

To linearize

and to increase

robustness of

the graphs Pn

the following

approach is

applied. From

our observations

in section III we

established that

interesting points

(turning motions)

in a dance may

slow down but

do not stop like

shown in Fig.

5(a) to 5(d). This means that around these critical points a

higher, or denser, sampling occurs compared to other parts

of the motion. In order to give a higher weight to these

distributions we apply an euclidean distance (2) to points

of a certain window size α resulting in clustered sample
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weights wn (3) for each point Pn. In our experiments we

found that a window size of 100 to 160 [ms], α ≅ 20
[points], lead to stable results for all Pn of all three planes.

d(p, q) =

√

√

√

√

n
∑

i=1

(pi − qi)2 (2)

wn =

α

2
∑

n=0

(d(Pn, Pn+1)) +

−
α

2
∑

n=0

(d(Pn, Pn−1))

∀n ∈ [
α

2
, n −

α

2
] (3)

To extract the poses as shown in the dance master illustra-

tions we need to calculate another weighting function which

minimizes the linear combination of acceleration a in [ m
s2 ],

velocity v in [m
s
] and power P in [w] as shown in equation

(4). We will use the weight en together with the euclidean

distance weight wn we determined earlier to extract special

slow motions where the orientation or direction changes

inside the sample window wn.

en =
1

a
·
1

v
·

1

P
(4)

We set the mass of the arms relative to the whole body

proportions with m = 2.2 [kg] per forearm and the time tn
in [s] as given in equation (5) with tcap depending on the

capture rate in [s] of each dance.

tn = tcap · wn (5)

After solving the formula (4) with known theorems from

mechanics we establish (6) and finally (7) after substituting

t (5).

en =
t

w2
n

·
1

m · wn

(6)

en =
tcap

wn

·
1

m · wn

(7)

Due to the complexity of the forearm motions the radial

raw data Pn is as shown in Fig. 6. To simplify this for our

purposes we further reduce the dimension by linearizing the

data, similarly like a bit matrix, by equation qn (8). For all

further graphs we use the x-values ∀ frames n ∈ [0, n] ∈ N.

This means that one x-axis segment represents one frame for

each qn, Mn or Tn on the y-axis.

qn = |Pn(xn) · Pn(yn)| (8)

Finally, we can define the turning motions Mn∀ frames n as

(9) and the turning poses Tn∀ frames n as equation (10). We

apply an experimentally determined scale factor θ = 1000
to decrease the maximal amplitude.

Mn =
en · qn

θ
(9)

Tn =
wn · en · qn

θ
(10)

To find a good threshold to determine if a point occurrence

in a graph is interesting we used a function to calculate a

TABLE II

EXTRACTION RESULTS FOR Aizu-bandaisan IN FRAMES n

DMP P1 P2 P3 P4 P5 P6 P7 P8

GT 193 345 520 678 808 900 1030 1073

TP 210 311
∗ 526 679 796 907 1031

∗ 1089

mean over all dances. It seems that a lower threshold value

of γ = 0.05 is suitable to filter the noise which occurs in

Mn and Tn.

V. RESULTS

To evaluate our new method we use two different dance

sequences, namely Aizu-bandaisan and Jongara-bushi. These

dances vary greatly in their style, body movement and timing

which gives us a good evaluation of the exactness of our

algorithm under changing and difficult scenarios. All dances

were captured using Vicon Motion iQ System equipment

with 38 markers placed on specific places on the dancer as

shown in Fig. 2.

To evaluate the poses by a dance master extraction quality

we used a 3D Motion Viewer software by S. Kudoh [19]

to visually hand pick the exact frames which correspond to

the drawings (dance master illustrations) best. Consequently

these frames are our Ground Truth (GT) to verfy the success

of our results. In all tables all poses as indicated by dance

masters are referred to as Dance Master Poses (DMP)

and turning poses (TP) The motion capture equipment we

used in this experiment captured frames in an interval of

tcap = 0.008333 [s] for the current Aizu-bandaisan and

tcap = 0.005000 [s] for the older Jongara-Bushi dance

experiments.

Areas where the euclidean distance of the P-data is at

its smallest distance, for a one second interval, are treated

special and are evaluated on all planes as they might be a

turning motion or turning pose indicator. These results are

noted with a ,,*” in the tables. Just by looking at dense

points without taking turning motions into consideration for

Jongara-bushi we can already extract a reasonable amount

of all dance master poses, which needs further study as it

might yield interesting consequences.

A. Jongara-bushi - A Female Dancer

The result of our method is shown in Figure 7. This dance

has twelve poses as indicated by the dance master. Previous

methods were not able to successfully extract all poses as

indicated by the dance teacher. Our method successfully

extracts all poses by a dance master and establishes char-

acteristic intermediate poses for LFO task/skill mapping as

shown in table I.

B. Aizu-bandaisan - A Female Dancer

The result of our method is shown in table II. This dance

consists of eight poses as indicated by the dance master.

Previous methods were able to extract the stop motions

correctly (Four from eight, Shiratori et al.) but could not
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TABLE I

EXTRACTION RESULTS FOR Jongara-bushi IN FRAMES n

DMP P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

GT 1319 1441 1610 1912 2119 2448 2608 2881 3088 3295 3560 3756

TP 1311
∗

1439
∗

1604
∗

1922
∗

2109
∗

2416
∗ 2618 2858 3088 3272 3501 3759

(a) Linearized and weighted turning poses graph Tn (x-y plane) (b) Linearized turning motions graph Mn (x-y plane) with θ = 300

instead of 1000

Fig. 7. Extraction results for Jongara-bushi for graph Tn and Mn shown in figure (a) and (b) respectively. Values from 0-1300 have been omitted as
they were only used for calibration.

(a) Linearized and weighted turning poses graph Tn (x-y plane). (b) Linearized turning motions graph Mn (x-y plane) without scaling θ and
with a higher y-axis graph.

Fig. 8. Extraction results for Aizubandaisan for graph Tn and Mn shown in figure (a) and (b) respectively. Missing pose no. 6 (dance master illustrations)

is extracted from the corresponding y-z plan.

(a) DMP #3 at
increase beginning,
frame 492, y = 0.06

(b) DMP #3 at the
peak, frame 526,
y > 1

(c) DMP #3 at the
decrease end, frame
573, y = 0.05

Fig. 9. Evaluation of the pose by a dance master, no. #3, range as shown in
figure V-A, beginning (a), peak (b) and the end (c) for the Aizu-bandaisan

dance.

achieve success during the dynamic motions. Our method

can successfully extract these poses as shown in Fig. 8(a).

Futhermore, it is also able to extract characteristic values for

LFO skill mapping (peaks between the detected Tn peaks)

as shown in Fig. 8(b) for the Mn graph.

Using the results from the weighted graph it is possible

to extract the exact frames (graph peaks) but also a certain

frame range where the characteristic motion starts (c.f. 9(a))

and ends (c.f. 9(c)). This is indicated in the graph by the

beginning of a increase in yn, peaking at a pose (c.f. 9(b))

by a dance master and falling off until the value is below

the noise threshold again. Of course this depends highly on

the scaling θ and lower threshold γ of the function Mn and

Tn respectively. Results converge quickly to a pose as seen

in the dance master illustrations for sufficient high values.

VI. DISCUSSION

In the case of Aizu-bandaisan for instance creating a

Task Model with only keyposes and hierarchical B-splines is

possible, but not optimal. The main problem lies in the fact

that when later motions need modification and significant

time scaling. This is specifically troublesome when dances

need be performed slower or faster and large gaps between

keyposes exist. This is for instance necessary if we want

to see a very slow version of the dance to understand

the movements in greater detail. This problem can now be

avoided by our novel method which helps us to generate

a number of characteristic states for trajectory mapping

depending on the threshold γ we apply (rough to sensitive).

These special states characterize naturally the interesting

boundaries between states which will help to re-create dances

with a minimal data size and greater detail.

Figure 10 gives more details about the context between

turning poses Tn which result in a extraction of poses as

shown in the dance master illustrations and turning motions

Mn which give us the desired intermediate poses for skill

modelling. We consider this approach as promising, due to

the robust and successful extraction results for the dance
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Fig. 10. Learning from Observation paradigm illustrated. States are poses
from the dance master illustrations, tasks are state transitions from one pose
to another and skills represent the trajectory of the state transitions. The use
of the Turning pose algorithm in the LFO concept is indicated.

master illustrations. Furthermore, the simple weighting en

basically just imitates the results from Shiratori et al. [3] by

minimizing speed, velocity and power of the turning motion.

Thus, the extracted intermediate states between the poses

by a dance master are considered as important trajectory

parameters (LFO skill).

Early experimental results of other dances outside of the

japanese dance domain show also promising results. So are

for instance DMP extraction ratios for the Macarena dance

(latin/flamenco) well above eighty percent, which is a good

indicator for the usefulness of this method in other domains.

This was tested by using the exact same variables (θ, α, etc.)

as with the previous dances.

VII. CONCLUSIONS AND FUTURE WORKS

This paper describes how we extracted Turning Poses from

two given dances. We could establish all of our important

goals, namely: (1) Extract all poses as shown in the dance

master illustrations by using the turning pose method. (2)

Understand the importance and purpose of the dynamic

poses beside existing keyposes. (3) Our method is robust

against different dances in the japanese dance domain. (4)

Extract natural boundaries, characteristic turning motions,

useful for intermediate poses to preserve sufficient trajectory

information in a minimalistic form. (5) The computational

complexity of this method is sufficiently low to allow real-

time constraints.

Additional development will include testing of our new

method with robot and robot simulators. Also we want to find

out how strong the impact of turning poses are on a dance

for a subjective viewer compared to previous hierarchical

B-spline methods. Also a closer analysis and comparison

of the dimensional reduction by other means, e.g. Principal

Component Analysis (PCA), seems interesting.

Dances outside the japanese dance domain are also worth

studying to establish if this method is usable for other dance

genres. Recent results with latin dances suggest that also

good extraction ratios can be achieved in this new dance

domain. All software created for this project has been open

sourced and can be found in the internet [20] for further

reference.
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