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Abstract— This paper describes learning of robust haptic
recognition by Bionic Hand, a human-like robot hand, through
dynamic interaction with the object. Bionic hand is a human-
like hand that has soft skin with distributed receptors and
is driven by artificial pneumatic muscles. At the beginning
of learning, it utilizes the result of physical interaction with
the object: thanks to the hand compliance, regrasping will
leads object’s posture to stable one in the hand. This result
can be successively used as object classification for learning
dynamic interaction between the hand and the object by a
recurrent neural network. We conduct experiments and show
that the proposed method is effective for robust and fast object
recognition.

I. INTRODUCTION

Ability of human’s hands is prodigious. By using hands,

we can recognize and manipulate objects adaptively and

stably. Such ability is acquired through experience during

his/her development. Researchers have been trying to repro-

duce such ability by robotic hands, but yet, their ability is far

less than that of humans. Existing robot hands do not have

sufficient manipulation/sensing skill.

A human has distributed receptors all over his/her hand,

and gather information on the object through dynamic in-

teraction. When he/she moves the fingers and the palm,

stimuli from the receptors will change and they provide

rich information about the object. Recognition ability of the

robotic hands may be increased as well by utilizing such

distributed receptors and dynamic interaction.

Historically speaking, research on the robotic hand mainly

focused on pinching manipulation, grasping the object by

fingertips, since the mathematical analysis is relatively easy

(e.g. [1]). Therefore, robot hands had their sensors at the

fingertips [2], [3], [4]. However, such structure of a hand

obviously limits the ability to manipulate and to recognize

the object.

There are several studies aiming at object recognition by

utilizing complicated tactile pattern obtained from multi-

contact [5], [6], [7], [8]. Kawasaki et al. developed a robotic

hand covered with a force-sensitive resistance array [5]. They

investigated static sensor image when the robot grasps an

object. Natale et al. implemented a sensor array to the palm

of the robotic hand and distinguished the object by static sen-

sor patterns [6]. Takamuku et al. realized object recognition

by a static pattern in a stable posture after regrasping [8].
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Watanabe et al. used a 2D finger with distributed switches

and developed a method to distinguish softness and radius of

cylinders [7]. To the best of our knowledge, this was the only

work that utilized dynamic change of sensation. However,

since the interaction between a cylinder and 2D finger was

very limited, they did not effectively utilize dynamic change

of sensation.

In this paper, we describe learning of robust haptic recog-

nition by Bionic Hand, a human-like robot hand, through

dynamic interaction with the object. The hand has distributed

tactile receptors, and performs regrasping motion without

dropping the object. The sensation is used to train a recurrent

neural network to memorize the dynamic receptor pattern.

Experimental results demonstrate that robust, stable, and fast

object recognition is performed by the proposed method.

This paper is organized as follows. First, we introduce the

idea how a regrasping scheme and a recurrent neural network

can be utilized for haptic object recognition. Then, the

technical detail of the proposed learning scheme is described.

Finally, experimental results are shown to demonstrate ro-

bust, stable, and fast object recognition by the proposed

method.

II. ROBUST HAPTIC RECOGNITION UTILIZING

REGRASPING SCHEME

A. Regrasping scheme

When a human grasps an object, and is not sure what

he/she is grasping, he/she regasps the object without drop-

ping it and tries to figure out what it is. Takamuku et al.

claimed that such regrasping leads the object to a certain

stable posture by dynamic interaction between the compliant

hand (shown in Figure 1) and the object, and as a result, the

obtained sensation at the posture also becomes stable and can

be utilized to classify the objects [8]. This paper extends this

idea that the hand can learn to recognize the object during

the dynamic process: no need to wait until the object moves

to a stable posture.

We adopt a regrasping scheme without dropping the object

(Figure 2). Since the hand moves its fingers two by two,

it can keep grasping the object while its posture gradually

changes. Thanks to the interaction between the soft hand

and the object, the object moves to a certain stable posture,

as demonstrated in [8]. During the process, contact state

dynamically changes: number of contact points (surface),

contact position, slip condition, etc. But, finally, the hand
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Fig. 1. A robotic hand covered with soft skin. It has human-like skeleton
structure (similar structure of [9], but we add another DOF to the index
finger, totally 17 DOF) and driven by 18 pneumatic artificial muscles. Inside
the silicon skin, 25 strain gauges are embedded as receptors distributed over
the fingers and the palm. It also has many PDVF and thermo receptors, but
are not used in this paper.

can get a sensor pattern corresponding to the posture, which

is relatively stable when it grasps the same class of objects.

In the sensor space, we can classify the objects and calculate

the value to represent their class.

As a result, the hand can distinguish the object class after

regrasping, and now the problem is how it can be possible

during regrasping manipulation. To realize this, we propose

to use a recurrent neural network with object classe nodes.

The representative value of each object is fed to the neural

network described below.

B. Leaning haptic recognition through dynamic interaction

During regrasping the object, sensory flow comes from the

receptors embedded inside the soft skin. Since the object pos-

ture leads to a certain stable one, we can expect a recurrent

neural network to learn the trajectory in the sensor space. We

adopt a Jordan-type recurrent neural network [10] that has

context nodes and put another two nodes that represent the

object class (Figure 3). The structure is similar to RNNPB

(recurrent neural network with parametric bias) proposed

by Tani and Mori [11], but the object class is obtained by

Fig. 2. Regrasping motion. The hand regrasps the object without dropping
it. It moves fingers two by two. Dynamic interaction between the soft hand
and the object will lead it to a certain posture even when the initial posture
is not the same (demonstrated in [8]).

Fig. 3. Jordan-type recurrent neural network with object class nodes.

the resultant sensory state by regrasping (described in detail

below) while parametric bias is self-organized. Trained by

the object class, learning time becomes dramatically short

and learning becomes stable as well. The network is trained

by the BPTT (Back Propagation Through Time) method [11].

III. EXPERIMENT

A. Objects used for experiments

We prepared three classes of objects: cylinder, prism, and

ball. Each class consists of three objects for learning and

three for evaluation (Figure 4). Dimensions of the object is

shown in Table I.
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TABLE I

DIMENSION OF OBJECTS

dimention

shape number diameter/width(mm) height(mm) weight(g)

1 49.8 200 43.4
1’ 53.1 180 57.6

cylinder 2 47.7 172 33.1
2’ 43.7 135 106.4
3 43.1 112.9 13.9
3’ 48.4 112.9 25.3

4 30.0 126 111.3
4’ 40.0 242 280

prism 5 29.8 150.5 47.8
5’ 30.5 151.3 185.1
6 38.6 152.5 7.4
6’ 31.0 150.3 4.8

7 63.7 - 55.7
7’ 71.9 - 134

ball 8 69.5 - 28.9
8’ 59.7 - 2.9
9 62.2 - 30.3
9’ 66.7 - 35.4

(a) Objects for learning (b) Objects for evaluation

Fig. 4. Objects used for experiments. We prepared three classes of objects:
cylinder (top), prism (middle), and ball (bottom). Three objects from a class
are used for learning, and three others are for evaluation. Totally, 18 objects
are used for the experiments. Note that They are not only different in shape
and size but in stiffness, weight, and friction.

B. Experiment 1: Object recognition after regrasping

First, we conducted experiments to confirm the effect of

regrasping. We handed objects to the robot at 0[s], and waited

until 3.5[s] before grasping was stabilized. Then, we let the

robot regrasp twice, each sequence took 7.5[s]. We got the

signal from receptors and classified the objects. We applied

principal component analysis to pick two main components

out of the sensor measurement. The result is shown in Figure

5. We conducted 15 trials for each object in Figure 4(a) and 5

trials for each in Figure 4(b), totally 180 trials, which means

180 points in the figure. We also plot standard deviation

ovals for convenience (they are not used for the following

experiments). We can see that the ovals separate from each

other as the hand repetitively regrasps.

In Figure 6, we show within-class variance and within-

class between-class ratio. We can see that the ratio grows as

number of regrapsing increases. While within-class variance

TABLE II

CORRECT RATIO AFTER 350,000 LEARNING STEPS

known(Fig. 4(a)) unknown(Fig. 4(b))

cylinder 95.6 % 80.0 %

prism 95.6 % 93.3 %

ball 100 % 86.7 %

total 97.2 % 86.7 %

of cylinder monotonically decreases, that of prism does not.

Variance of ball even increases. We suppose that this could

be the result that we prepare objects of different stiffness,

for example, hard gum ball (7) and a sponge ball (9)’. We

did not have such large difference within the cylinder class.

Note that the hand is driven by pneumatic artificial mus-

cles. Its preciseness and repeatability are very poor. Also, it

is impossible for us to give an object to the robotic hand in

very precisely controlled posture. We rather try to give it in

different posture to demonstrate robustness of the proposed

method.

We can utilize this result for the next step: learning

haptic recognition during regrasping. Representative value,

the center of the ovals in this case, is used as the object

class in the recurrent neural network (Figure 3).

C. Experiment 2: Learning object recognition by neural

network

First, we checked the learning ability of the recurrent

neural network. In this experiment, we used 25 strain gauges

embedded in the hand. Therefore, the dimension of input

and output layer was 25. We used 50 hidden layers, 16

context nodes, and 2 object class nodes. As the input for

the object class nodes, we used (0.112, 0.869) for cylinders,

(0.954,0.558) for prisms, and (0.273,0.095) for balls, which

were obtained representative value in the principal compo-

nent space by the previous experiment.

Temporal sequence of stain gauge signals and the object

class of 9 objects (Figure 4(a)) were used to train the

recurrent neural network. For learning, we feed 18.5[s] long

time sequence is sampled in every 0.5 [s]. Initial weights are

set randomly between -0.1 and 0.1.

We checked the correct ratio whether the network can

detect the object correctly (the object class nodes go within

a certain range) when we feed a whole sequence (which

means whole 18.5[s]) to it. We use temporal sequences that

are used for training for check, and ones that are not used

for training as well. We checked 5 learning courses and

the results are shown in Figure 7. Correct ratio grows up

to 80% after 100,000 learning steps (which means 100,000

sequences are presented to the network). We also show the

correct ratio after 350,000 learning steps in Table II.

From these results, we can conclude that the neural net-

work can eventually recognize the object class very precisely,

even when it is not used for the training (note that it is very

difficult to define “class” though). These results demonstrate

that the proposed method can perform robust and stable

recognition.
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Fig. 5. Experimental result: standard deviation ovals within the classes.
Data from the strain gauges (25 dim.) is compressed by the principal
component analysis into 2D. The ovals separate from each other as the
hand repetitively regrasps.
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D. Experiment 3: Object recognition during regrasping

Finally, we confirm the temporal recognition ability of the

network. After the training, we expect the network to learn

the dynamics of interaction between the hand and the object.

As a result, we may not have to wait until the object goes

to a certain stable position, but the hand can distinguish it

during regrasping.

We used the network after 350,000 learning steps, and

present a temporal sequence of known/unknown object. The

result is shown in Figure 8. A prism can be recognized within

2[s], a cylinder within 6[s], and a ball within 8[s], almost

within second regrasping.

Last but not least, we check the role of the context nodes

that are supposed to be important for learning the dynamic

time sequence. We plot the correct ratio over time in Figure

9 in three cases: (1) using recurrent neural network with 16

context nodes, (2) using PCA with immediate sensor data,

and (3) using recurrent neural network without context node.

If we do not use the context node, the recognition ability

of the network is almost the same as PCA with immediate

sensor values. We can see that the context nodes help to

recognize object faster.

1239



 

0

 0.2

 0.4

 0.6

 0.8

 

1

 0  2  4  6  8  10  12  14  16  18

o
u

tp
u

t 
o

f 
o

i

time[sec]

known_oi1
known_oi2
unknown_oi1
unknown_oi2

(a) tempral sequences for k nown/unknown cylinders

 

0

 0.2

 0.4

 0.6

 0.8

 

1

 0  2  4  6  8  10  12  14  16  18

o
u

tp
u

t 
o

f 
o

i

time[sec]

known_oi1
known_oi2
unknown_oi1
unknown_oi2

(b) tempral sequences for known/unknown prisms

 

0

 0.2

 0.4

 0.6

 0.8

 

1

 0  2  4  6  8  10  12  14  16  18

o
u

tp
u

t 
o

f 
o

i

time[sec]

known_oi1
known_oi2
unknown_oi1
unknown_oi2

(c) tempral sequence for known/unknown balls

Fig. 8. Temporal output of object class nodes. Time before converge to be
recognized is approx. 6[s] for cylinders, 2[s] for prisms, and 8[s] for balls.
It may be interesting to note that balls can be easily detected from other
two, but cylinders are a bit difficult to be distinguished from prisms.
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IV. DISCUSSION AND FUTURE WORK

If the hand grasps the object statically and uses the

receptors for getting contact points with respect to the hand

coordinate frame, they only provide kinematic information,

and as a result, there is no advantage of using tactile sensing

over vision except occlusion problems. We can maximize the

advantage of using tactile sensing over vision when contact

points change dynamically and we get more information on

the dynamic interaction between the hand and the object, and

dynamic of the object itself, as well. This paper shows such

ability of the tactile sensors, and we believe that such sensing

modalities will dramatically improve the overall ability of the

hand, and eventually, lead to that of humans’.

Again, we like to emphasize that the robotic hand is

controlled by pneumatic artificial muscles. Artificial muscles

provide essential flexibility to the hand and enable it comply

with various objects. Since the hand is driven by compliant

muscles, it can (relatively) easily explore the object and

can recognize it. Soft silicon skin also plays a crucial role.

Uncertainty from such compliance is usually harmful to the

existing stiff robotic hands consisting of metal and electric

geared motors. We suppose that principles for controlling

such rigid system is completely different from that for

soft and flexible biological system. This may be one of

reasons why existing robot hands do not have sufficient

manipulation/sensing skill.

The proposed method does not use any visual information

for recognition. Humans obviously recognize the manipu-

lated object not only with tactile sensing, but with vision.

Then, the next step is how we can combine these two

modalities, which is not an easy problem.
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