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Abstract— In this paper we explore the effects of service level 
differentiation on a multi-robot control system. We examine the 
premise that although long interaction time between robots and 
operators hurts the efficiency of the system, as it generates 
longer waiting time for robots, it provides robots with longer 
neglect time and better performance benefiting the system. In 
the paper we address the problem of how to choose the optimal 
service level for an operator in a system through a service level 
differentiation model. Experimental results comparing system 
performance for different values of system parameters show 
that a mixed strategy is a general way to get optimal system 
performance for a large variety of system parameter settings 
and in all cases is no worse than a pure strategy. 

 

I. INTRODUCTION 
A critical challenge to practice in robotics lies in moving 

beyond the current many operators per UV control found in 
the Predator and other deployed systems [10] to applications 
in which a single operator becomes able to control multiple 
UVs.   In this new multirobot setting the operator must 
choose which robot to control sometimes trading off the 
performance of one for another. 

Crandall et al. (2005) described an operator’s interaction 
with a robot as a sequence of control episodes in which an 
operator interacts with the robot for period of time (IT) 
raising its performance above some upper threshold after 
which the robot is neglected for a period of time (NT) until 
its performance deteriorates below a lower threshold when 
the operator must again interact with it [5].   The duration of 
the IT/NT intervals depend on the task requirements which 
determine appropriate performance thresholds (at a 
minimum an underwater robot, for example, cannot be 
allowed to drift more than 180˚ off course and still reach its 
destination), the threshold values (lowering performance 
thresholds shortens IT and lengthens NT) and level of 
automation (increasing automation increases NT).  This 
model is very general and can describe a range of 
human-robot system performance from very poor to the best 
obtainable.  In practice thresholds are rarely found to be 
fixed [14].  For example in a complex task such as picking 
waypoints for a robot that must avoid underwater obstacles 
and mines while following routes designed to prevent 
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detection, an operator pressed for time might assign a shorter 
path but at the cost of needing to return to controlling that 
robot sooner.  

Olsen’s fan-out model [5, 12] fixes these thresholds to 
give an upper bound on the number of independent 
homogeneous UVs that a single human can manage.  This 
upper bound is computed by identifying how long an 
individual robot can be neglected, and then determining how 
many other robots can receive interactions during this 
neglect interval. 

Since the limiting resource in the system is the human 
attention, we can model the operator as a queue and the 
robots as clients that request service. This paper presents a 
queuing model addressing two issues: 1) individual 
differences in operator skills/capabilities, and 2) trade-off 
between human interaction and performance. In many cases, 
such as assigning waypoints for underwater robots 
mentioned above, we can see that the IT and NT are not 
independent but can be interrelated (the longer IT leading to 
the longer NT) This motivates introducing a model of 
service differentiation into the queuing HRI model. 
Specifically, allowing the operator to choose a mixed service 
strategy, in which with probability p, he/she offers the robot 
better and more complete service with a longer IT time, 
which should support a longer NT time and higher 
performance during the NT interval; on the other hand, with 
probability (1-p), the operator offers a comparatively lower 
level service interaction to the robot, which decreases the 
robot’s interaction time IT and other robots’ waiting time 
TQ (time in queue) , but supports a shorter neglect time NT 
and perhaps less satisfactory performance for the robot 
during the NT interval. 

 Our paper makes the following contributions: it 
introduces the conjecture that IT duration and quality are 
correlated with performance and length of the subsequent 
NT interval and explores the tradeoffs for multirobot 
systems.  We also propose the first closed system model for 
human-robot teams that meets the assumptions of Crandall’s 
(2005) informal neglect tolerance model.  A closed system 
model is one where robots arrive, get served and return for 
service. Most of queuing models in the literature are open 
queue because they are easier to analyze. Close queue 
models are far more difficult to construct and analyze. They 
are even more challenging to develop and analyze when 
service differentiation is also modeled. However, close 
queue models with service differentiation are applicable to 
human control of multiple robots since typically the operator 
controls a known number of robots that may require repeated 
service during system operation, thus returning to the queue. 
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One key finding we provide is that TQ depends on IT and 
NT, and also affects the system total performance.  

II. RELATED WORK 
In a recent survey of human control of robot teams 

Goodrich and Schultz [10] argued for increased research into 
techniques and approaches for increasing the number of 
robots a single human can manage.  The paper also 
summarized work on two measurements designed to assess 
human-multirobot performance: fan-out and team 
performance prediction.  

Fan-out, introduced by Olsen [12], refers to the maximum 
number of homogeneous robots a single operator can 
control. Olsen also gives a direct and simple computation 
function for fan-out from NT and IT based on fitting 
additional ITs into the NT period.  This expression was 
modified by Cummings in 2007 to take robot waiting time 
into account [7].  Because their definitions of fan-out are 
threshold based they can be presumed to predict additive 
improvements in performance, plateauing at the fan-out 
number.   

Crandall in 2003 introduced the first method to predict the 
performance of human-robot teams [4] and extended it in 
2007 proposing two key performance metrics for multi-robot 
control: interaction efficiency (IE), representing the 
effectiveness of the robot during human-robot interaction 
time, and neglect efficiency (NE) measuring robots’ 
performance during neglect time [6]. Crandall’s new metrics 
were defined with integral functions, more accurate and 
specific than the averages used in [4].  Crandall’s newer 
model provides a basis for our service differentiation model, 
which predicts these metrics from human’s service/ level 
choices through different human-robot interaction times [6]. 

Another important aspect in our model relates to applying 
queuing theory to multiple robot control.  Cummings et al 
[7] introduced queueing theory into multirobot control using 
a simplified open system as an example. However, as [13] 
demonstrated, closed and open systems can act in 
dramatically different ways. A closed system is needed to fit 
the basic human-multiple robots control model we have 
described, yet is far more complicated to analyze.  

As [8] discovered, wait time (TQ) plays a critical role in 
the prediction of a human controller’s capacity for multiple 
robot supervisory control.  The paper specifically 
decomposed TQ into three components: queue waiting time 
(WTQ), interaction waiting time (WTI) and waiting time 
caused by loss of situation awareness (WTSA), which turned 
out to be the most critical.   While our paper does not 
attempt to fit human data it extends this approach by 
predicting WTQ from IT, NT, and other metrics of the 
model.  

There is extensive literature related to service-level 
differentiation application. As space here is limited, we 
mainly refer to the working paper by Anand et al in 2009 
[1], which studies the optimal “quality-speed tradeoff” in 
customer intensive services. They focus on an open 

queueing system with a single service level and investigate 
the strategic behavior of the service provider and the 
consumers [1].  

III. MODEL AND ALGORITHM 
We study a system with a single operator who interacts 

with multiple robots. The tasks are homogeneous in the 
sense that their service requirements follow the same 
stochastic distribution. The operator has freedom to choose 
between high/low-quality interactions, a mixed strategy, i.e. 
provide high-quality interaction with a certainty probability. 
The tradeoff here is that high-quality service requires longer 
service time and endogenously longer waiting time for the 
robot, but also promises longer neglect working time and 
better performance during the neglect times, while the fast 
but low-quality interaction does the reverse. Our objective is 
to identify the best mixed strategy for the operator to 
optimize system performance.  

Under the same problem settings, we model the 
human-robot system as an open or a closed queue, 
respectively. The system can be viewed as an open queue 
when the correlation between the arrival process and service 
process can be ignored, which is certainly not realistic.  
Additionally, we model the system as a closed queue in 
which the robots’ arrival process is dependent on the human 
operator’s service process.  We show that different modeling 
approach yields strikingly different optimal strategies.  

 

A. Open Queue  

 
Fig. 1. Human Robot Interaction Modeled as an Open System 

 
Arrival and Service Process. All the robot arrivals follow a 
Poisson process with the rate of λ. The operator uses a mixed 
strategy such that each robot receives high-quality service 
with probability p, and low-quality service with probability 
1-p. After the service, the robot continues its mission. The 
next time the same robot needs services from the human 
operator, it will be treated as a new robot. Fig. 1 illustrates 
the configuration of the queue model. The operator deals 
with the queueing robots on a First Come-First Serve 
(FCFS) discipline and offers two types of service: 1) 
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high-quality service with an interaction time exponentially 
distributed with the mean of IT1 and 2) 
low-quality-short-time with the interaction time 
exponentially distributed with the mean IT2. If the robot 
receives high quality service, then it has a neglect time of 
NT1 and neglect efficiency β1 during the neglect times; 
otherwise, the robot has a neglect time of NT2 and neglect 
efficiency of β2. The probability p could be interpreted as the 
fraction of robots receiving high-quality service during the 
whole planning horizon. Here we assume without loss of 
generality that IT1>IT2, NT1>NT2 and β1>β2. Furthermore, 
the utilization of the operator is strictly less than 1 so as to 
enable system stability, i.e.,  

,  

Performance Metrics. We have defined β1 and β2 as the 
robots’ efficiency after they have been provided with high- 
and low-quality services, respectively.  We treat the 
performance during the IT and TQ time as a penalty 
(denoted by (-α) to the whole system’s performance since 
during those times the robot does not do useful work for the 
system). The system utility, denoted by U, is defined as 
 

  
 

Maximizing the system utility is essentially the tradeoff 
between service quality and service speed: On the one hand, 
with a higher p, more robots receive high-quality service 
from the human operator, and the average performance 
during autonomous working state would be higher; on the 
other hand, as p increases, the system suffers from longer 
service and waiting times.  

 
Performance Optimization. We first note from the service 
process that 

 

 
The mean waiting time can then be obtained through 

standard results of M/G/1 queue model, 

 
 
To solve the constrained optimization problem, we first 

study the second-order derivative of U to p. We prove that 
under system stability condition, the inequality 

 always holds, which means that U is concave 
in p.  The optimal solution p* is defined by the following 
equation:  

 

. 

Solving the above first-order condition yields the following 
optimal solution: 
 

 

 
We see from the above function that p* is decreasing in α, 

and increasing in β1, β2, NT1  and, NT2.  How p* changes 
with λ varies and we shall see this through simulations later 
on. 

 

B. Closed system 
1)  Model introduction 

Most of the time, an operator is in charge of a group of 
robots and one robot makes repeated interaction with one 
operator for commands or services etc. We claim that closed 
system is more realistic than open system model related to 
multi-robots control. As shown in Fig. 2, all the robots 
coming to the operator (as the subsystem 1) are not from 
outside of the system, but from the subsystems 2 and 3. In 
addition, the total number of robots in the system is constant 
and defined as N. Thus the arrival process of the robots to 
the operator is not following Poisson or any other common 
distributions; instead, it is affected by the neglect time and 
neglect efficiency of all the robots.  

 
Fig. 2. Human Robot Interaction Modeled as a Closed System. In the 
analysis, we divide the system into three subsystems as the dash box 
bounded  

 
To analyze the average performance of the system, we 

keep all the assumptions that also hold in the open system. 
The only difference is here the N replaces the arrival rate λ 
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and the main problem comes from how to characterize the 
average waiting time E[TQ] in a closed system. 

 
2) Algorithm 

In this part, we determine the optimal service level p 
through two steps: first we decide the mean of waiting time 
and secondly we solve the performance maximization 
problem. 

Above all, we need to derive the queue waiting time in the 
closed HRI system. Here we also assume that all the time 
variables are random variables following exponential 
distributions with the corresponding mean IT1, IT2, NT1, NT2. 
Thus in the system we have a server with non-exponentially 
distributed service time and robots whose inter-arrival times 
do not follow Poisson process. Based on [9] our model can 
be expressed in product form as:   

 

As shown in Fig.2, we divide the whole system into three 
subsystems, the human operation center, the part of the 
system with robots that receive high level of service with 
corresponding neglect time and neglect efficiency  and 
finally the part of the system with robots that receive low 
level of service with corresponding neglect time and neglect 
efficiency. In the above product form, P(n1, n2, n3) presents 
the probability that there are  ni number of robots in the ith 
subsystems. Fi(ni), as a probability function for  the ith 
subsystem, is defined as follows: 

  

With the product form function, a traditional convolution 
method is adopted to compute the normalizing constant 
G(N) following [3]. Accordingly, we could compute P(n1, n2, 
n3) as well as Pi(ni), the probability that there are ni number 
of robots in the ith subsystem. We derive the average 

waiting time as: , where the average number 

of robots in the human operation center E[N1] and system 
throughput X can both be determined by the system state 
probability:  

and  

The latter function is based on the rule that throughput 
equals to the mean service rate times the utilization. 

In the open system case, we have introduced that the 
system performance measurement is defined as: 

For performance maximization, we take the first derivative 

of U function to the service differentiation level p and the 

optimal p* satisfies either   or if not feasible, p* is 

chosen as a boundary point 0 or 1. Unlike the study in an 
open case, the closed form representation of the waiting time 
E[TQ] could not be derived, in other word, we cannot 
analytically determine the exact solution for the optimal p*. 
Therefore, a searching methodology is adopted and the 
whole algorithm is presented in Fig. 3. 

 
Fig. 3 optimal p* searching algorithm for closed system 

 
Note that in a closed system, the trade-off between service 

quality and service time becomes more complicated as 
longer service time generates longer neglect time, but also 
lower arrival rate to the operator, which alleviates the queue 
congestion created by longer interaction time. Furthermore, 
the detailed optimal strategy is illustrated in the simulation. 

 

IV. SIMULATION AND NUMERICAL STUDY 
In this section, we firstly study the sensitivity of optimal 

p* with other parameters in both open and closed system. 
Secondly, we obtain the effects of mixed-strategy on the 
system performance comparing with pure service strategy in 
both open and closed system. We mainly adopt two types of 
service data: high average IT1, NT1 and low average IT2, 
NT2. The data set of IT and NT is obtained from the results 
of a human multirobots interaction experiment, in which 
human control multiple simulated robots to search for 
victims in a damaged building [14]. 

  

Input: system parameters IT1, IT2, NT1, NT2, β1, β2  
Output: optimal p* maximizing U 
For each p between 0 and 1 do 

Compute G(N)=g(N,3)  
// Initialization  
g(0,k) = 1 for k =1,2,3; g(i,1) =F1(i) 
// convolution method  
For each k = 2,3 do 

For each n from 1 to N do  

 
Until g(N,3) computed  

Compute P(n1,n2,n3)  
Compute E[TQ] 
Compute U 

End 
Find p* = max U 
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A.  Open system 

 
Fig. 4 System performance changes with p under different α parameters. U 
is concave in p and the optimal p decreases as α increases. 
 

As we mentioned in the model section, the system utility 
function U is concave in p as Fig. 4 shows. The diamond 
labels on the dotted graphs show the optimal p* generating 
the highest system performance under different values of α.  

Fig. 5 shows the trend of how the optimal p* changes with  
λ. The left hand side axis of the figure denotes values of p, 
whereas the right hand axis denotes value of U. The solid 
line in Fig. 5 shows that p* decreases discretely as λ 
increases, which follows the fact that large λ generates more 
congested system which can be counterbalanced by shorter 
IT with shorter waiting time. Moreover, there is a special 
bound of λ (from 0.05 to 0.2 in the figure), below which, 
only high-quality service is needed and above which, p is 
zero and fast service is needed. How the optimal U change 
with λ is also presented in the dashed (green) line. 
Specifically, comparing the optimal system utility with the 
utility generated without service differentiation (see Fig. 6) 
we see that service differentiation improves the whole 
system performance. 

 

 
Fig. 5.  Optimal solution p* and system performance U decreases as arrival 
rate λ increases in an open system. A bound of λ (around 0.2) exists for 
service differentiation 

 
Fig. 6.  Optimal system performance U compared with benchmark values 
generated by single service type (dashed line with p=0 and dotted line with 
p=1) in open system. We see that a mixed strategy greatly improves the 
system performance 

 

B. Closed system 
1) Waiting time  

We present a plot (Fig. 7) comparing the waiting time 
provided by the model and solution procedure and the 
simulated value to check the accuracy of the algorithm. In 
Fig. 7 the scattered dots stand for results of the simulation, 
while the smooth line shows the model results. Three 
different groups of line and dots represent different number 
of robots in the system, namely N equals to 8, 10 and 12. 
From Fig. 7, we see that though the simulation results have 
random distribution, the computed smooth curve provides 
best fit to those data in all the three cases. 

 
Fig. 7. Computed E[TQ] compared with simulation E[TQ] under different 
number of robots N 

 
2) Performance maximization 

We are still interested in the sensitivity of optimal p* with 
other parameters, especially the number N of robots in the 
closed system. 
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Fig. 8.  Optimal solution p* and system performance U as the number N of 
robots increases in a closed system. A bound of N exists for service 
differentiation  

 
Fig. 9. Optimal system performance U compared with benchmark values 
generated by single service type (dashed line with p=0 and dotted line with 
p=1) in closed system. A cut-off N’ exists that separates the optimal service 
strategy. 
 

From Fig. 8, we still see that there is a bound for N for 
choosing mixed strategy as the optimal. Comparisons of the 
optimal system performance U with the pure strategy in Fig. 
9 show that in closed system a mixed strategy is not as 
efficient as in the open system. However, we find that a 
special cut-off N’ exists in the system (around 13 on the 
x-axis in Fig. 9), which alters the optimal interaction strategy 
from high level to low level.. It shows that based on the 
number of robots and the system conditions, an appropriate 
pure strategy could work well for the system, either high 
level or low level  based on the number of robots in the 
system. On the other hand, a pure strategy with deterministic 
IT is not applicable to all ranges of number of robots. A pure 
service type sometimes may not work even when only one 
additional robot has been added into the system. For 
example in Fig. 9 when robots number increases from 12 
to13 with a pure strategy (p=1), the system utility drops 
from 150, above another pure strategy (p=0) to 100, below 
it. 

V. CONCLUSION 
The presented model identifies the optimal service 

strategy to maximize system performance in multi-robot 
control through a service level differentiation method based 
on two types of service: high-quality-long-time and 
low-quality-short-time.   Modeling different levels of service 
is motivated by real human performance data which shows a 
wide variety of ITs related to variations in demands on the 
operator.  While the earlier neglect tolerance model assumed 
a fixed efficiency threshold for each robot our model relates 
IT and NT to optimal system performance allowing the 
individual thresholds to vary.   This increased flexibility not 
only improves team performance but agrees with human 
data [14, 11] showing performance per robot to decrease 
smoothly with increasing team size rather than dropping 
abruptly upon reaching the fan-out threshold. 

Our first model for an open queue system allowed us to 
find exact analytic solutions.  While an open system model 
has been used by other researchers in this area [7] and may 
provide an approximation of systems with long NTs it 
cannot accommodate the basic assumption of repeated 
interactions made by the neglect tolerance model and fan-out 
estimators.  Our second closed system model is much more 
realistic since it models the inter-dependency between the 
service process and arrival process. This model is very 
challenging and we were only able to find solutions 
algorithmically. Experimental results comparing system 
performance for different values of system parameters show 
that a mixed strategy is a general way to get optimal system 
performance for a large variety of system parameter settings 
(e.g.; values of λ, number of robots) and in all cases is no 
worse than a pure strategy. 
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