
A Robust Sketch Interface for Natural Robot Control

Danelle Shah, Joseph Schneider, Mark Campbell

Abstract—A fully probabilistic command interface for con-

trolling robots using multi-stroke sketch commands is pre-
sented. Drawing from prior work in handwriting recognition,

sketches are modeled as a variable duration hidden Markov
model, where the distributions on the states and transitions

are learned from training data. A forward search algorithm
on the gesture, stroke, and stroke transition observations is

used to find the most likely sketch, which is displayed to the
user for confirmation. In cases where the most likely sketch

is incorrect, the user can reject it, prompting the next most
likely sketch to be displayed. Upon confirmation from the

user, the robot executes the desired behaviors. A prototype
sketch interface was implemented using a pen tablet; two

sets of search-and-identify experiments were conducted using
a single robot in an indoor environment to test the usability

of the proposed framework. Even novice users were able to
successfully complete the missions, including those on whom the

algorithm was not trained. User surveys indicate that operators

generally found the interface to be natural and easy to use.

I. INTRODUCTION

One of the challenges of making robots ubiquitous is

the need to develop intelligent interfaces for more natural

human-robot interaction. Especially in search-and-rescue and

military applications, it is increasingly necessary that hu-

mans be able to communicate naturally and efficiently with

teams of collaborating agents, be they humans, robots, or

both. Specifically, the command of teams consisting of both

humans and robots should require a single communication

strategy, so the operator need not be concerned with the

type or capacity of each individual agent. This motivates

the development of an interface that allows humans to

communicate with robots in the same flexible and natural

way as they would communicate with other humans.

In this paper an architecture for controlling robots using a

robust sketch interface is proposed, moving away from the

more traditional keyboard and mouse interfaces. A prototype

system is shown in Figure 1, in which an operator uses a pen

tablet to control a robot remotely by sketching commands,

which the robot must interpret and execute correctly. This

type of interface could be useful in many robot-assisted

operations due to its flexible nature. The sketch recognition

algorithm is generalizable, in that it learns how gestures are

drawn, rather than pre-defining the gestures’ structures.

While there has been recent work in commanding robots

using hand-drawn sketches, the focus primarily been on

qualitative mapping [1], [2] and navigation problems [3], [4],

where sketch recognition is hard-coded or nearly-trivial. For

example in [3], an object is defined as a closed polygon if

the Euclidian distance between the starting and end points

Department of Mechanical Engineering, Cornell University, Ithaca, NY
{dcs45,jrs465,mc288}@cornell.edu

fall within an empirically set threshold, whereas a path is

interpreted as any line segment that is not recognized as

a closed polygon and has a total length greater than a set

threshold. The authors do not address the effect of incorrect

interpretations of the sketches resulting from variations in

sketching styles.

Drawing from prior work in handwriting recognition [5],

[6], [7], the proposed sketch interface provides several ad-

vantages over the previous approaches. First, by training

a classifier, rigid a priori assumptions about how gestures

should be drawn, such as defining an “X” as two intersecting

lines of a particular length, are largely avoided. The sketch

model can be learned on many people, providing a more

robust interface for a wide range of users; it can also be

learned on a single user to increase recognition accuracy if

the intended operator is known. This helps to shift the burden

of correct sketch recognition from the user to the machine,

allowing the user to sketch more naturally. Second, a proba-

bilistic framework enables an intelligent search of the space

of possible sketch interpretations, the size of which grows

exponentially with the number of strokes. Additionally, if the

‘best’ solution (i.e. the sketch interpretation with the highest

likelihood) is rejected by the user, the interface proposes the

‘next best’ solution. This is both more convenient to the user

than re-drawing the sketch from scratch, and also useful for

updating the model on-line. Lastly, by framing the sketch

recognition problem as a variable duration (semi-Markov)

Hidden Markov Model (HMM), the proposed method sup-

ports flexible and multi-stroke gestures, and can be extended

to incorporate multi-modal communication such as verbal

cues.

Fig. 1. An operator using the sketch interface to control a robot.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4458

II. PROBABILISTIC SKETCH DEFINITION

The definition of a sketch proposed in this paper draws

from prior work in handwriting recognition by implement-

ing a variation of the variable duration hidden Markov

model (VDHMM, sometimes also referred to as hidden

semi-Markov model). VDHMMs have been studied and

successfully implemented for recognizing handwritten text

[8], [9]. Formally, a sketch is composed of NG gestures

G = [g1, . . . , gNG
] where the set of possible gesture types

is finite and known, gk ∈ Ḡ = {ḡ1, . . . , ḡM}, but the total

number of gestures drawn NG is unknown. Each gesture is

made up of dk strokes, where dk ∈ [1,∞) is the duration. In

this paper, it is assumed that each stroke belongs to a single

gesture and that strokes are not interspersed, i.e. users do not

return to a gesture after starting a new one. Given a gesture

gk, the set of dk strokes comprising the gesture is given as

Sk =
[

s1
k, . . . , sdk

k

]

, where s
j
k ∈ S̄ = {s̄1, . . . , s̄M} is the

jth stroke in the kth gesture and S̄ is the set of possible

stroke types. Each stroke type corresponds to a particular

gesture type (i.e. ‘square-like’ or ‘circle-like’ strokes); this

is similar to existing methods that categorize a stroke as

being a particular primitive, such as a line or an arc [10].

The key difference here is that the primitives are not pre-

defined. Rather, the stroke model will be learned such that

the most discriminating features are used for inference (e.g. it

will automatically determine what makes all square strokes

inherently different than all triangle strokes).

An interstroke is the transition between two strokes, and

defines whether a stroke belongs to the same gesture as the

previous stroke (i.e. a self-transition on the gesture) or it is

the start of a new gesture. Figure 2 illustrates an example of a

sketch of N = 5 strokes and NG = 2 gestures modeled as a

VDHMM, where white nodes represent hidden (unobserved)

variables, shaded nodes are observed variables, and arrows

represent conditional dependencies. In this example, the first

gesture g1 has a duration of d1 = 3 strokes, and the second

gesture g2 has a duration of d2 = 2 strokes. Interstroke nodes

i11, i21, and i12 represent self-transitions on the gestures, while

node i1:2 represents a transition from gesture g1 to gesture g2.

The goal is to determine the specific gestures sketched, given

the observations O (from pixel-level data) by maximizing the

observation likelihood:

p (sketch|O) = p (G, S, I|O) (1)

Fig. 2. Example of a two-gesture stroke modeled using a variable duration
hidden Markov model.

Defining OG, OS and OI as sets of observations on

the gestures, strokes, and interstrokes respectively, one can

factorize Equation 1:

p (G, S, I|O) = p (G|I, S, OG) p (I|S, OI) p (S|OS) (2)

Specifically, the observations are features extracted from the

pixel data, to be described in Section III-A. The terms on

the right-hand side of Equation 2 are approximated as:

p (I|S, OI) =

N−1
∏

k=1

p (ik|sk−1, oik
)

p (S|OS) =

N
∏

k=1

p (sk|sk−1, ik−1, osk
)

p (G|I, S, OG) =

NG
∏

k=1

p (gk|Sk, Ik, ogk
, gk−1)

where lowercase letters indicate single nodes and uppercase

letters indicate (possibly) more than one node. (The subscript

notation above differs slightly from those shown in Figure

2, because it is not known how strokes and interstrokes

compose separate gestures.) This generic framework allows

for the inclusion of a variety of scripts and icons without

the need to hard-code their attributes. This flexibility is key

in enabling an arbitrary selection of intuitive and natural

gestures for the basic units in the lexicon of robot commands.

III. LEARNING THE VDHMM

In this work, several simplifying assumptions are made

before learning the HMM. First, the probability distribution

of transitioning from one gesture type to another is assumed

to be uniform. This assumption is not necessary (and may

be inappropriate in some applications), but it provides a

reasonable balance between complexity and accuracy for

the application presented here. Second, gesture ‘mistakes’

or otherwise unknown gestures are not considered, although

this could also be easily incorporated into the framework by

including an (M + 1)th ‘other’ gesture type. Lastly, gesture

gk must be of the same type as its associated strokes Sk (i.e.

a square can only be drawn with square-like strokes).

Noting that the distributions p (ik|sk−1, oik
),

p (sk|sk−1, ik−1, osk
) and p (gk|Sk, Ik, ogk

, gk−1) are

partly known a priori (for example, stroke sk must be of

the same type as sk−1 if ik−1 is a gesture self-transition),

the remaining unknown parts of the HMM require only the

following distributions be defined: p (ik|oik
), p (sk|osk

), and

p (gk|ogk
). These can each be thought of as multinomial

classification problems, the distributions of which are

learned using Sparse Multinomial Logistic Regression

(SMLR)[11]. SMLR is a true multiclass formulation which

learns a weight vector w such that the likelihood of label `

for a set of features x is given by:

L` (y) = p (y = `|x; w) =
exp

(

w(`)T x
)

m
∑

j=1
exp

(

w(j)T x
)

(3)

4459

where y corresponds to gk, sk , or ik and x corresponds to ob-

servations ogk
, osk

or oik
, respectively. As the name implies,

SMLR produces a sparse weight vector by using a Laplacian

prior on the weights. Although calculating the maximum

a posteriori multinomial regression with a Laplacian prior

scales unfavorably with the number of bases (which may

be very large), the component-wise update equation has a

monotonically increasing closed form solution[11]. Solving

component-wise SMLR results in a computation cost and

storage requirement linear in the number of bases. As with

relevance vector machines (RVMs), SMLR uses Bayesian

inference to provide probabilistic classification and can incor-

porate arbitrary bases, including non-Mercer kernels. SMLR,

however, converges to a unique maximum and is not at risk

of converging to local minima as RVMs are [12].

A. Multi-Stroke Data Set and Features

Data was collected for ten gesture types, shown in Figure

3, using a pen tablet from thirteen users. Users were told

to draw the gestures “naturally” and were given minimal

instructions regarding how the gestures should look.

For each gesture drawn, 99 features were extracted from

the pixel data (corresponding to OG). Some of these features

were adopted from a portion of the g-48 set presented in

[13], which was developed to be generally well-suited for

identifying multiple-stroke gestures. An additional set of

features was developed by calculating the direction of the

stroke at each pixel and discretizing into bins. Completing

the set of observations were features corresponding to initial

orientation angles, the amount of time spent drawing each

gesture, the total number of strokes, and cw/ccw orientation.

The gesture classifier, corresponding to Lḡ`
(gk) =

p (gk = ḡ`|ogk
), was learned using SMLR on 880 gestures

(88 of each type ḡ`). Figure 4 presents the average proba-

bilities calculated by the learned regression model using 550

test gestures (55 of each type). The average probability of

the correct gesture types is 96.9%, which is comparable to

other similar recognition algorithms.

The stroke regression model, corresponding to Ls̄`
(sk) =

p (sk = s̄`|osk
), was learned on single strokes using 890

strokes (89 of each type s̄`) and tested on 820 strokes (82

of each type). The extracted stroke features (corresponding

to OS) were the same as those used for gestures (with the

exception of number of strokes).

Fig. 3. The ten gestures used in the proposed sketch interface.

Figure 5 shows the average probabilities calculated by the

learned regression model for stroke classes. Notice that the X-

stroke has non-zero likelihoods associated with triangles

and arrows. This is because triangles and arrows are

often also drawn with angled straight-line strokes. Similarly,

the important-stroke had non-zero likelihoods associated

with the box-stroke, which is also often drawn using vertical

straight-lines. Despite these expected confusions, the average

likelihood calculated for the correct label is still 81.2%.

Considering that half of the 10 stroke classes are likely to

contain straight line strokes, this level of accuracy is still

very good.

The interstroke model Lī`
(ik) = p (ik = ī`|oik

) assumes

that Ī consists of seven classes : box-ST, triangle-ST,

arrow-ST, X-ST, zone-ST, important-ST and new

gesture transition (where ‘ST’ indicates a gesture

self-transition). Four gesture types (circle, path, wan-

der and spiral) were never drawn with more than one

stroke in the training set, so these stroke transition likelihoods

were set to zero. Interstrokes corresponding to new ges-

ture transitions did not specify which gestures were

being transitioned to/from, but this could also be learned

if necessary. Nine interstroke features (OI) were extracted

from the information from consecutive strokes, including

relative positions, sizes, and orientations, as well as temporal

information.

The interstroke regression model was learned on stroke

transitions using 560 interstrokes (80 of each type ī`) and

Fig. 4. Average calculated gesture likelihoods.

Fig. 5. Average calculated stroke likelihoods.

4460

Fig. 6. Average calculated interstroke likelihoods.

Fig. 7. An example sketch with six gestures and seven strokes.

tested on 322 interstrokes (46 of each type). Figure 6 shows

the average probabilities calculated by the learned regres-

sion model. The average likelihood of correct classification

likelihood was 65.1%. This lower recognition rate reflects

the fact that the classification problem is very challenging;

performing classification on interstrokes is analogous to

determining where spaces belong in a line of text by looking

only at two adjacent letters. Although the feature set is not

particularly rich, this extra information can be helpful when

combined with stroke and gesture level features.

B. Recognizing Sketched Commands Using VDHMM

An example sketch is shown in Figure 7. Using the learned

likelihood models from the previous section, a forward tree-

search algorithm is implemented to find the most likely

sketch by searching for the sequence of strokes, interstrokes

and gestures that maximizes Equation 1. Starting with the

first stroke, a node is created for each s1 = s̄` where

` ∈ {1, ..., M}. The node n which maximizes the likelihood

Ln = Ls̄`
(s1) from Equation 3 is expanded and a new node

is created for each i1 = ī`. If i1 at node n′ (with parent

node n) corresponds to a self-transition (i.e. stroke s2 will

be part of the same gesture as s1), the node likelihood is

Ln′ = Ln ·Lī`
(i1). If i1 at node n′ corresponds to a gesture

transition (i.e. stroke s2 is the start of a new gesture), the

node likelihood is Ln′ = Ln ·Lī`
(i1) ·Lḡ`

(g1). This process

is repeated, always starting from the node with the highest

likelihood L until the highest likelihood node corresponds to

the last stroke of the sketch.

The number of nodes explored in the tree search is,

worst-case, M (M + 1)
N−1

nodes, which can be too time

consuming to allow real-time evaluation of stroke sequences.

Unfortunately, as the forward search algorithm progresses

through the stroke sequence, the aggregate likelihood of the

sketch decreases (as numbers ≤ 1 are multiplied, or numbers

≤ 0 added in the case of log-likelihoods). This has the

undesirable effect of encouraging the algorithm to perform

breadth-first-search (this is worst-case for trees with constant

depth). Therefore, a heuristic is implemented to ‘penalize’

expanding nodes closer to the top of the tree:

L′

n = Ln ·

(

Nn

N

)α

(4)

where Nn is the stroke number of node n, N is the total

number of strokes, and α is a number between 0 and 1. (Note

that L here is a log-likelihood.) This heuristic encourages a

more depth-first-search behavior, but sacrifices the guarantee

of optimality.

Two metrics are used to evaluate the efficiency and

effectiveness of the sketch recognition algorithm: (1) the

total number of misclassifications, and (2) the number of

nodes explored in the tree search. A misclassification occurs

either when a stroke is labeled as the incorrect type, or

if an interstroke is incorrectly identified as a new gesture

transition when it is actually a self-transition (or vise-versa).

The number of nodes explored in the tree search indicates

computational complexity, and is a key concern for a system

that must run in real-time. Specifically, full sketch recogni-

tion should be performed at about the same rate as the human

can draw (under one second is desirable).

The sketch recognition algorithm was tested on 77

sketches, with the number of gestures ranging from 3–10,

and each gesture drawn using 1–4 strokes. Average accuracy

(Fig. 8) and percent of tree searched (Fig. 9) show that while

adding a penalty term (α ∈ [0, 1] in Equation 4) decreases

the sketch recognition accuracy slightly, the computational

cost decreases significantly. Figs 8 and 9 suggest that it

may be reasonable to use a small penalty term (α < 0.4)

to help avoid breadth-first-search behavior while sacrificing

little accuracy.

With no penalty (α = 0), the sequence reconstruction

algorithm yielded an average accuracy of 93.2%. Of the

77 sketches tested, only 59% were identified completely

correctly on the first try. To account for these errors, users

were able to confirm or reject the recognized sketch. While

this may slightly increase operator workload, hypothesis

generation and confirmation has been used successfully to

avoid problems caused by imperfect recognition [14].

IV. EXPERIMENTS

Two sets of experiments were conducted to study the us-

ability of the proposed sketch interface. Operators controlled

a single robot in a search-and-identify mission using two

different control architectures: a point-and-click computer

mouse interface using buttons and menus (referred to as

“Waypoint mode”), and a sketch interface using a pen tablet

4461

Fig. 8. Average tree search accuracy using several values of α.

Fig. 9. Average tree search efficiency using several values of α.

(“Sketch mode”). While the modes of user input were dif-

ferent, both architectures included the same functionalities.

The mission objectives were to explore all areas displayed in

green on the map, avoid all areas displayed in red on the map,

take a picture of all green objects (large trash cans), search

for three points of interest (orange traffic cones) and add

their locations to the map. Although users controlled only a

single robot in the experiments presented here, the system

has also demonstrated effectiveness in multi-robot control.

The robot and experimental environment are shown in

Figure 10. The robot’s pose is estimated in real time using

noisy odometry readings and GPS-like measurements ob-

tained from an overhead motion capture system. The robot is

also equipped with a laser range finder and a camera. Objects

in the environment detected by the laser are displayed as

wire polygons in the map. The robot is capable of basic

obstacle avoidance; if an obstacle is seen with the laser,

the object is detected and avoided using the robot’s low-

level path planning component. Additionally, if the robot is

traveling to a waypoint location, the trajectory is planned to

avoid all detected obstacles (so long as the waypoint is not

placed inside an obstacle, in which case the robot waits for

the user to send a new command).

Figure 11 shows screen shots of the user interface, dis-

playing an overhead view of the environment and the robot

being controlled. For experiments conducted using Sketch

mode, nine gestures were available to the user from Figure

3 (the wander gesture was not used). Users were instructed

to sketch “naturally” as if they were trying to communicate

with another human, but were otherwise given no instructions

as to how the gestures should be drawn. Sketches could be

edited by deleting the last stroke or the entire sketch.

Fig. 10. Field used for sketch experiments with robot, obstacles, and points
of interest (POIs).

The gesture commands were to be used as follows. Cir-

cles drawn around a robot selects the robot for future

control. An X sets a single waypoint to which the robot must

go, the specific path to be determined by the robot’s low-level

path planner. An arrow commands the robot to travel to the

base of the arrow and turn to point in the direction indicated

by the arrow head. Paths define a desired robot trajectory

by setting a series of waypoints along the sketched path. A

zone indicates a specific area that should be explored, and

the robot visits randomly sampled points inside the specified

zone. An important instructs the robot to take a picture

of its current camera view. Lastly, squares, triangles

and spirals represent the three types of points of interest

(POIs) the robot can encounter. When one of these three

gestures is drawn, a point is added to the map at the gesture

centroid location.

When a user finishes drawing a sketch, he or she presses

the ‘Send Sketch’ button, triggering the recognition algo-

rithm to search for the most likely sketch. Once finished

(typically < 1 sec), the recognized sketch is displayed on

the screen for the user to inspect. If the sketch is correctly

recognized, the user presses the ‘Correct’ button. Otherwise,

pressing the ‘Incorrect’ button signals to display the sketch

with the next-highest likelihood. Figure 11 illustrates the

sequence of events for an example sketch. In the top panel,

the user inputs a sketch consisting of circle, path,

arrow, and important gestures. In the second panel, the

robot displays the most likely sketch and waits for the user

to confirm. Finally, the last panel shows the robot beginning

to follow the instructed path after the sketch has been

confirmed. The corresponding video submission illustrates

the interface in use.

Four users have performed a total of ten missions using

Waypoint mode, and an additional three users performed

one mission each using both Waypoint and Sketch modes.

On average, users were able to complete the missions in

approximately the same amount of time (within 0.5 standard

deviation) using either interface, around 8 minutes per mis-

sion. However, users of Sketch mode used on average 80

mouse clicks to perform each mission, while users of Way-

point mode used an average of 109 clicks (a 37% increase).

These clicks were divided into distinct interactions; some

4462

Fig. 11. Sequence of events for an example sketch with four gestures.

interactions required several clicks, for example operators

using Waypoint mode used an average of 2.2 waypoints per

path command. The number of interactions was similar for

missions using both Sketch and Waypoint modes (23 and

20 respectively, within 0.5 standard deviation). Thus, Sketch

mode uses substantially fewer mouse clicks than Waypoint

mode (5.8 and 3.5, respectively, a difference of about 1.5

standard deviations).

Operators using Sketch mode could use three different

gestures for robot navigation – X, path, and zone. Of these,

paths were used most often (58%), followed by zones

(29%) and Xs (13%). Operators preferred sending short,

simple commands, rather than long sequences of gestures;

96% of sketches were drawn using only 1–2 strokes. As a

result, sketches were correctly recognized 80% of the time

on the first try, and another 10% on the second try.

User surveys conducted following the experiments suggest

that novice users (unfamiliar with robotic systems) were

quite receptive to the gesture interface, even though they

were more exposed to the common interface of a keyboard

and mouse. One subject indicated, “It could also probably be

easy to control multiple robots with this interface.” Another

subject noted, “It relies more on the robot following your

commands, rather than you do [sic] everything.” This is

precisely the impression that is lacking in many current

control interfaces, hindering the widespread acceptance of

robotic assisted tasks.

V. CONCLUSION

In this paper, a flexible sketch interface to accommodate

natural communication between a robot and human operator

was introduced. By modeling sketched commands using a

variable duration hidden Markov model and learning the

distributions from training data, multi-stroke gesture sketches

are recognized at 93.2% accuracy without requiring the

user to sketch in any particular style. This shifts the bur-

den of recognition from the operator to machine, allowing

users to focus their concentration on the task at hand. The

probabilistic framework is generalizable, and can therefore

be implemented using any gestures desired. The sketch

interface is demonstrated in an indoor search-and-identify

mission, where users controlled a single robot using sketched

commands.

REFERENCES

[1] Bailey, C., “A Sketch Interface for Understanding Hand-Drawn Route
Maps”, MS Thesis, Columbia, MO, 2003.

[2] Parekh, G., “Scene Matching Between a Quatitative Map and a

Qualitative Hand Drawn Sketch,” Ph.D. dissertation, University of
Missouri-Columbia, Publication No.

[3] Skubic, M., Bailey C., and Chronis, G., “A Sketch Interface for Mobile

Robots,” in Proc. of the IEEE 2003 Conf. on SMC, Washington, D.C.,
Oct., pp. 918–924, 2003.

[4] Skubic, M., Anderson, D., Blisard, S., “Using a hand-drawn sketch

to control a team of robots,” Autonomous Robots, vol. 22, no. 4, pp.
399–410, 2007.

[5] Shilman, M., Viola, P., Chellapilla, K., ”Recognition and Grouping of
Handwritten Text in Diagrams and Equations,” Frontiers in Handwrit-
ing Recognition, International Workshop on, pp. 569-574, 2004.

[6] Sezgin, T. M. and Davis, R. 2005. “HMM-based efficient sketch
recognition.” In Proceedings of the 10th international Conference on
intelligent User interfaces, January 10 - 13, 2005.

[7] Lee C., and Xu, Y., “Online, interactive learning of gestures for
human/robot interfaces,” IEEE International Conference on Robotics
and Automation (ICRA1996), pp. 2982–2987, 1996.

[8] Cho, W., Lee S., and Kim, J., “Modeling and recognition of cursive
words with hidden Markov models,” Pattern Recognition, vol. 28, no.
12, pp. 1941–1953, December 1995.

[9] Kundu, A., Hines, T., Huyck, B., Phillips, J., and Van Guilder, L.,
“Arabic Handwriting Recognition Using Variable Duration HMM,”

Proceedings of the Ninth International Conference on Document
Analysis and Recognition, vo. 2, pp. 644–648, 2007.

[10] Alvarado, C., Davis, R., “SketchREAD: a multi-domain sketch recog-

nition engine,” Proceedings of the 17th annual ACM symposium on
User interface software and technology, pp. 23–32, 2004.

[11] Krishnapuram, B., Figueiredo, M., Carin, L., and Hartemink, A.,

“Sparse Multinomial Logistic Regression: Fast Algorithms and Gen-
eralization Bounds.” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), vol. 27, pp. 957968, 2005.

[12] Tipping, M., “Sparse Bayesian Learning and the Relevance Vector
Machine,” The Journal of Machine Learning Research, vol. 1, pp.

211–244, 2001.
[13] Willems, D., Niels, R., Van Gerven, M., Vuurpijl, L., “Iconic and

multi-stroke gesture recognition,” Pattern Recognition, vol. 42, num.

12, pp. 3303–3312, 2009.
[14] Kurnia, R., Hossain, M., Nakamura, A., Kuno, Y., “Generation of

efficient and user-friendly queries for helper robots to detect target

objects,” Advanced Robotics, vol. 20, pp. 499–517, 2006.

4463

