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Abstract— This work builds upon the fact that robots can
observe humans interacting with the objects in their environ-
ment, and that humans provide numerous non-visual cues to the
identity of objects. In previous work, we outlined a Multiple-
Cue Object Recognition (MCOR) algorithm which attempted
to use multiple features of any type to produce more robust
object recognition. All results so far reported with MCOR have
been on data collected by ourselves.

In this work, we introduce new advancements in the MCOR
algorithm to increase its effectiveness and ability to deal with
complex real data from outside datasets. These advancements
include the integration of Scale-Invariant Feature Transform
(SIFT) features and an improvement in training. To demon-
strate the effectiveness of the MCOR framework, we first show
a comparison of the MCOR algorithm to an outside dataset to
show its basic advantages. We then demonstrate the advanced
MCOR features on real television video datasets in particular
cooking.

I. INTRODUCTION

There is a variety of tasks where an agent’s ability to ac-
complish them depends heavily on the reliable recognition of
the kind of objects in the environment. Category-level object
recognition however has proven to be a significantly difficult
challenge especially with the complexity of real world data,
where there is great variation in both the appearance of
objects within a single object class (e.g., chairs come in many
shapes and colors), and in the appearance of the same object
under various circumstances (e.g., the same chair can appear
different with changes in lighting, view, and orientation).

Several approaches have attempted to focus on learning
the visual features of an object in order to recognize it.
Although great progress has been made along these lines,
there is still much to be done in order to build an object
recognition system that can be used under any of the various
situations that must be dealt with real data.

In dealing with this complexity, we are particularly inter-
ested in the important observation that the environment and
context around an object can provide numerous non-visual
cues to the identity of the objects, such as the interaction
of humans with those objects. The benefit of including non-
visual information is supported by the success made by a few
approaches, which have successfully integrated non-visual
cues, although generally restricted to a single type of non-
visual information.

In previous work, we have shown that visually similar
objects can be disambiguated through the integration of
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information obtained from cues of various types producing
a Multiple-Cue Object Recognition (MCOR) algorithm [2].
We defined a context-dependent subset of objects, “interac-
tionable” objects, as objects that can interact or be interacted
with. This set of objects define the type of objects utilized
by our multiple-cue algorithm [3] and functional recognition
algorithms.

In this work, we outline advancements in the algorithm,
making improvements on two key features:

Integration of SIFT Features In order to enhance the
visual description of the objects being learned, the
advanced MCOR algorithm includes scale-invariant
feature transform (SIFT) features [8] to the defini-
tion of each object.

Training In previous work, learning was previously
done on simulated training sets, while in this work
we describe the method used to develop a greater
training dataset and the information that it provides.

These advancements allow the MCOR algorithm to be
more effectively used on general datasets including those
independently collected. In order to evaluate our framework,
we first show a comparison of the MCOR algorithm to
another object recognition technique and dataset that also
uses activity information for object recognition. We then
demonstrate the advancements of the MCOR algorithm on
real TV video datasets in particular cooking.

II. RELATED WORK

There have been numerous vision-alone-based object
recognition systems [9], [4], [17], [12], [8]. Although fast and
accurate results have been demonstrated by these techniques,
the dependence of these approaches on visual cues alone
make them susceptible to variations in size, lighting, rotation,
and pose.

Other approaches have attempted to compensate for the
weaknesses of visual cues by including another type of
information such as context [11] and activity cues [10], [16].

Functional recognition [15], [14], [19], [18], a technique
which uses affordance properties to determine the function
and finally identity of the object, is another category of
algorithms, similar to MCOR, which attempts to use the way
people interact with objects in order to identify an object
either in place of or in conjunction with its visual attributes.

Encouraged by the general success of these approaches in
integrating a non-visual cue for more robust object recogni-
tion, moving past just functional information to include other
cues such as speech, MCOR [2] provides a general frame-
work for flexibly including multiple cues of any number and
any type, so that all cues, whether activity, visual, context,
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or any other possible cues available to provide evidence for
the presence of an object.

III. MCOR

The MCOR framework is based on object recognition
using an unrestricted number of cues. It provides a flexible
framework for including evidence from any type of informa-
tion. Figure 1 shows a flow diagram of MCOR.

Fig. 1. Flow of MCOR framework: (From top to bottom) (1.) Get frame from video,
(2.) extract cues from the image, (3.) segment the image and associate extracted cues
with a segmented region, (4.) recognize objects based on dictionary, (5.&6.) update
object dictionary based on the recognized objects, search image again with updated
dictionary including updated visual description of object.

Given a video frame, the MCOR algorithm extracts all
possible cue information, c j. It then segments the region, rk,
associated with that cue if it has not already been segmented.
This becomes a possible object candidate.

MCOR has an object dictionary containing all the cues l
associated with each particular object and their weights, wi,l ,
(i.e., the strength of the association, which is learned using
a Probabilistic Relational Model[1]). The evidence, ek,i that
the region, rk belongs to the ith object class is then calculated
using the equation:

ek,i = ∑
l∈Ci

∑
j∈Ck

wi,ls j,l (1)

s j,l is the similarity between lth cue in the object definition,
Ci, and the jth cue, in the set of cues Ck for region rk. If the
cues are not of the same type, then s j,l = 0. A segment is then
recognized as the object class with the greatest evidence, if
it is above a threshold, θ , i.e.,

labelk← argmaxi ek,i, if maxek,i > θ (2)

Once an object is recognized, all the cues not previously
associated with that object class are added to that class’s
definition. In this way, new cues can be added to an object’s
definition in the dictionary and generalization can occur.

IV. SCALE-INVARIANT FEATURE TRANSFORM IN MCOR

Previously, when a visual description of the object being
identified was grabbed, the visual description consisted of
color information and the aspect ratio of the bounding-box
around the segment produced by a region-growing color

segmentation algorithm [2]. In the advanced version of
MCOR, in addition to the color and shape information, we
grab SIFT (Scale-Invariant Feature Transform) features from
the area within the bounding box to build a model of the
object.

SIFT features [8] are well-known descriptors used widely
through computer vision and object recognition tasks. These
features are useful because they provide highly descriptive
texture-based features which are robust to most changes in
scale and rotation.

Because it would be too computationally intensive and
unnecessarily repetitive to calculate a feature for every pixel
location, we calculate SIFT features only at interest points
in the image such as areas with rapid intensity change called
“corners” [6]. There are numerous corner detectors that can
be used, we used the common Harris Corner Detector [6],
defined by the equation below:

A = ∑
u

∑
v

G(u,σ)

[
I2
x IxIy

IxIy I2
y

]
=

[
< I2

x > < IxIy >
< IxIy > < I2

y >

]
A is a Harris matrix whose eigenvectors and values can be

used to determine areas of interest, i.e. if the first and second
eigenvalues have a zero response, there are no features of
interest. If one of the eigenvalues has a large response, an
edge is present. If both eigenvalues have a large response, a
corner is found. Brackets, <>, indicate averaging over the
summation of all pixel locations, u, and G(u,v) corresponds
to the Gaussian function used.

In SIFT, key locations are further deciphered by using
the maxima and minima of the results of the difference of
Gaussians are applied in scale space to a series of smoothed
and sampled images in an image pyramid [8].

Dominant orientations are assigned to each interest point
using a 128 dimensional vector formed from a histogram of
image gradients in the neighborhood of the interest point [8].
This produces key points that are more stable and robust to
changes in orientation and scale.

In MCOR, we start with 5 initial training images for each
object from which SIFT features are taken and stored in
a database in the object definition, i.e. a 128 dimensional
vector for each of the features extracted from the training
images are saved into the object dictionary. An example of
the interest points where SIFT features were extracted is
shown in figure 2. Additional model images are added to
the database if a segment is determined to be recognized
as a particular object category by MCOR. In this way, new
visual features can be learned for each object dictionary as
recognition occurs.

If a model for an object is already stored in a database,
then we look for that object in each of the frames. In figure
3, we show an image of the SIFT features extracted during
recognition. These key points are then compared with the
key points saved in each object dictionary using a Hough
Transform to determine the strength of the match [8]. The
similarity is then used as the similarity measure described
in the evidence equation in section 3. We will assume that
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Fig. 2. Each point in the figure corresponds to the location of an extracted SIFT
feature. This is a training example of a cereal box used for recognition. Note the
numerous number of feature points due to the complex texture on the cereal box.

a SIFT model of an object is strongly associated with that
object, thus we will assume the value of the weight is set to
1. Similarity will then determine the extent of the evidence
provided by the SIFT response.

Fig. 3. Frame of the SIFT features extracted during recognition. These key points
are then compared with the key points saved in each object dictionary.

Thus, MCOR is able to create a more detailed visual
descriptor of the objects being described by including scale-
invariant feature transform models to each object definition.

V. TRAINING

In order to get a dataset reflective of real world data, we
developed and used tools that could produce a useful dataset
for object recognition of ‘interactionable’ objects.

MCOR and functional recognition algorithms are able to
utilize cues provided by the interaction of humans with
objects. The training mechanisms described here were based
on producing datasets with those characteristics. There are
two mechanisms used to produce such datasets which we
describe below: (1) Scene sorting, which is used to han-
dle the common camera shifting of data taken from real
world datasets, and (2) Labeling using ViPER, which uses
a labeling program from the University of Maryland and
develops a labeling framework to provide useful information
to ‘interactionable’ based algorithms.

A. Scene Sorting

We want training datasets which are primarily generated
from real world datasets in order to show the advantages
of the MCOR algorithm in the real world. The problem is
most real world video datasets, except for those filmed in
a restricted laboratory, consist of frequent shifts in camera
angles (think of any real world TV show such as cooking
shows). In order to compensate for these sudden shifts in
camera angle, we outline a scene gist algorithm we developed

to sort different camera angles or scenes into bins with
similar scenes, so they can be processed using the same
tracking or computer vision parameters that would need to
be adjusted if the scene were constantly shifting.

In our scene sorting algorithm, we use local-intensity his-
tograms to separate viewing angles. This is done by dividing
images into four 2x2 quadrants. A gray value histogram of
each section is then taken. The image is divided into four
regions in order to provide some spatial information, if a
single histogram was used for the entire image all spatial
information would be lost. See figure 4 for an example of
the gist descriptor.

The histogram is then compared to a database of stored
histogram values using the sum of square difference between
each histogram bin. If the histogram is similar to one already
found in the database it is labeled under the same scene
category. If it is different then any other histogram according
to a particular histogram, it is then added to the database as
a new scene category.

Fig. 4. Gist information extracted and used in order to separate different scenes.

Once the video clips are properly sorted into their cor-
responding scene/camera viewing angle categories, we then
need a way to label each of the clips with all the information
that would be useful for learning for an ‘interactionable’
based algorithm.

B. Labeling using ViPER

There are a number of video labeling products, but we
chose to use ViPER: Video Performance Evaluation Resource
[7] by the Language And Media Processing (LAMP) at the
University of Maryland because it provides the user with the
ability to define your own schema for labeling, in addition to
duplication and interpolation tools when labeling an object
across a large number of frames.

Using ViPER, we developed an ‘interactionable’ schema
which can provide useful information about objects and their
interactions. Thus, we labeled the following:

• Person
– Face: Bounding box around frontal face
– Body: Bounding box encompassing entire body

seen
– Hands: Bounding box around left and right hand

• Object
– Label: Object class of that object
– Location: Bounding box around object
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– Segment: Polygon around the true segmentation of
the object.

• <Cue> - can be replaced with any cue type, ex:
Activity.

– Value: value of the cue, ex: Sitting, Standing, etc.
– Person: Person providing or related to the cue
– Objects: Objects being affected or generating the

cue
This schema (see figure 5) allows for a large variety

of learning opportunities for example one could learn the
average distance of an activity cue as related to the person
doing the activity (for instance the location of the face) from
an object. This information can then be used to reduce the
search area of the segment of the object being recognized.

We then can create using this schema and ViPER, XML
files for easy processing which can then be used for easy
training and performance evaluation.

Fig. 5. Example of Labeling using ViPER.

VI. EXPERIMENTS AND RESULTS

In order to evaluate our framework, we first show a com-
parison of the MCOR algorithm to another object recognition
system and dataset that also uses activity information in
determining the evidence of the presence of a particular
object. We then demonstrate the advancements of the MCOR
algorithm on cooking video datasets.

A. MCOR Comparison using Outside Dataset

In order to demonstrate the ability of the MCOR algorithm
to run on datasets outside of our own, we first compare
results produced by Gupta et al. [5] on their dataset.

The dataset consist of forty-six videos that were five to
ten seconds long. Frame size was 640x480 pixels.

In this work, we have successfully applied the MCOR
algorithm to this Gupta set, demonstrating: (i) An equivalent
object recognition accuracy to the results reported by Gupta,
(ii) the additional ability to generalize from previous experi-
ence, i.e., the algorithm visually recognizes objects without
the additional activity recognition, after it has previously
learned the association, and (iii) the successful engineering
of running the algorithm in other datasets.

The Gupta dataset is an optimal choice for frameworks
interested in ‘interactionable’ objects, i.e., objects that are
interacted with and interact, such as the MCOR algorithm.

Fig. 6. Captured frames taken from two different videos from the Gupta and Davis
dataset. In the left, the 150th frame was captured at the point when the activity of
pouring was recognized. This allowed the cup to be recognized and the visual features
to be stored in the cups dictionary. Thus, when the next video was processed with the
updated definition. The cup was able to be recognized on the first frame without any
other cue information.

Fig. 7. Captured frames taken from results video generated after processing various
video clips from the Gupta and Davis Dataset. Each frame shows the point in the video
when an activity cue was recognized, which allowed for the object being used to be
recognized and the color and shape information (top right of each frame) to be stored.

The Davis’s group used these videos to do activity recog-
nition and then object recognition based on these activities.
Here is an overall description of the dataset:
• Number of Videos: 46 videos each about 5-10 secs long
• Objects Recognized: Spray can, Phone, Cup, Flashlight
• Activities Recognized: 5 activities: Spraying, Answer-

ing, Lighting, Pouring, Drinking
Gupta was able to recognize 98.67 percent of the objects

using activity information based on a histogram of oriented
gradients using an adaboost classifier, this was an improve-
ment over the 78.33 percent recognition rate without activity
information.

We did not have access to their activity recognition, so for
our object recognition and for comparison with the results
from Gupta, we manually created the activity recognition
information for each of the videos according to the activities
outlined by [5].

MCOR provides a color-based region segmentation and
tracking algorithm (extending our previous algorithm and
implementing it in Matlab) that can segment objects in the
images using color-based region growing. It then tracks that
region according to proximity, shape and color [2], [3].

4557



We then ran the MCOR algorithm using the automated
visual object segmentation and tracking and the manually
annotated activity information.

Given an object dictionary with the activity information
and the visual information, MCOR was able to achieve a
100 percent recognition rate, as the manual annotations on
activity had no noise.

Both my 100 percent and the Gupta reported 98.67 percent
object recognition excellent performance, are not surprising
as this Gupta dataset has a one-to-one association of an
activity to an object. Example of our results can be found in
figures 6 and 7.

One of the strengths of the MCOR approach is that it
allows many-to-many weighted associations between objects
and cues, which is an ability not tested or demonstrated by
the Gupta dataset. Furthermore, another main contribution of
MCOR is the ability to learn an association and generalize
from it to similar visual situations.

Interestingly, using the Gupta dataset, after MCOR rec-
ognizes an object through the association of the visual and
activity cues, it is able to generalize and recognize objects
solely from their updated visual description without the need
for the activity information. For example, the white cup in
one video (captured frame shown in left image in figure
6) was actually recognized based on the color and shape
information learned from another video (captured frame
shown in right image in figure 6).

In summary, with this dataset, we have shown that the
MCOR algorithm can utilize datasets outside those generated
by our own work. MCOR got comparable results and showed
its generalization capabilities.

B. Advanced MCOR on Cooking Data

In this section, we show how the training and SIFT
advancements were used in order to enhance the MCOR
framework. First, we show the utilization of the training to
learn the weights used in the object dictionary. In previous
work, this had always been determined either by hand or
based on simulated data. Second, we show the benefit of the
SIFT features for enhancing the visual descriptors for the
MCOR algorithm.

1) Training: Training was done on two main sources:
• Rachel Ray videos: Learning was done on 100 video

clips from 1 to 30secs, from 3 half-hour videos (Ripped
from DVD)

• LACE dataset, University of Rochester [13]: Learning
was done on 32 video clips from 1 to 3mins, from 8
half-hour videos

In figures 8 and 9, we show tables showing the proba-
bilities learned from the XML data generated by our ViPER
schema. These probabilities represent P(O|C), where O is the
object category and C, a cue value. One can see how certain
activities are more strongly associated with a particular
object such as ‘Pour’ to ‘Bowl’ with a value of .8, while other
activities such as ‘PutDown’ are more widely distributed
across all the objects and thus less weighted when giving
evidence for any particular object.

Fig. 8. Learned weights for the Rachel Ray Cooking dataset. Each number represents
the probability of an object (rows) given each cue value (columns).

Fig. 9. Learned weights for University of Rochester (LACE Dataset). Each number
represents the probability of an object (rows) given each cue value (columns).

This training data then provided the weight values that
were then used in the MCOR algorithm when recognizing
objects. Since the recognition results are similar to those
shown in previous papers [2], we will mainly focus in the
next section on the new SIFT adaptation.

2) SIFT Results: The inclusion of the SIFT features
provides an added benefit to the MCOR algorithm, where
it can now visually recognize objects it could not do so
previously. In figure 10, we show some examples of SIFT
models extracted from one training example of a knife, a
cereal box and wine bottle. Note how the objects with a more
interesting texture pattern (such as the cereal box) provides
more interest points for the SIFT model.

Fig. 10. Examples of SIFT models extracted from one training example of (a.) a
knife, (b.) a cereal box, and (c.) a wine bottle. Green circles indicate keypoints used
in a match, red circles indicate outliers, and blue plus signs indicate matches from
nearest neighbors.

It is these complex textured items which gave the previous
MCOR algorithm difficulty, primarily because the previous
version was solely dependent on getting a color segmentation
to visually describe the object (see figure 12 for examples).
This meant textually complex objects would provide strange
and difficult segmentations and so could not be recognized as
often in each frame. With the new MCOR algorithm which
looks for SIFT features as well, these objects are no longer
a major problem.

It is important to note however, that using the SIFT fea-
tures alone does not provide enough information to recognize
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Fig. 11. SIFT features, represented by yellow + signs, found to match the model of
the knife (top left), the cereal box (top right), and the wine bottle (bottom). Note the
large number of matched SIFT features for the cereal box because its large amounts
of texture, and the small number for the less textured knife.

Fig. 12. Color segmentation results, colored in with red, used in color and shape
features used by MCOR. Top left shows the segmentation of the knife, top right
shows the segmentation of the cereal box, and bottom shows segmentation of a cup.
Note the better segmentation of the homogeneous colored knife and the less precise
segmentation of the more textured cereal box.

all the objects that MCOR can. Take the knife for instance in
figure 11. Because of the smooth texture of the knife, it could
not get enough interest points to properly find it in the frame.
This shows the benefit of the integration of multiple cues by
the MCOR algorithm, which can find the knife (figure 12)
using the color-segmentation growing as well as the cutting
activity, even if the SIFT feature model cannot.

VII. CONCLUSION

With this paper, we have demonstrated the advantage of
MCOR compared to another functional recognition object
recognition system, where we showed both a match and

slight improvement in the recognition rate and the added
ability to generalize object visual properties to new videos.
In addition, we outlined and demonstrated the advancement
of new MCOR features including the use of SIFT features
and a new framework for training data.
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