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Abstract— The availability of several Advanced Driver As-
sistance Systems has put a correspondingly large number
of inexpensive, yet capable sensors on production vehicles.
By combining this reality with expertise from the DARPA
Grand and Urban Challenges in building autonomous driving
platforms, we were able to design and develop an Autonomous
Valet Parking (AVP) system on a 2006 Volkwagen Passat Wagon
TDI using automotive grade sensors. AVP provides the driver
with both convenience and safety benefits - the driver can leave
the vehicle at the entrance of a parking garage, allowing the
vehicle to navigate the structure, find a spot, and park itself. By
leveraging existing software modules from the DARPA Urban
Challenge, our efforts focused on developing a parking spot
detector, a localization system that did not use GPS, and a
back-in parking planner. This paper focuses on describing the
design and development of the last two modules.

I. INTRODUCTION
This decade has born witness to several achievements

in research in the area of autonomous driving. The 2005
DARPA Grand Challenge and 2007 DARPA Urban Chal-
lenge competitions confronted entrants with diverse, yet
realistic driving scenarios in both the desert and urban
environments, respectively. The vehicles developed by Volk-
swagen jointly with Stanford, namely Stanley [1] and Junior
[2], were among the participants in these races. In parallel,
Volkwagen’s autonomous driving research has continued in
other areas including: vehicle dynamics evaluation in 2003
with the Steering Robot [3], reproducible driving at the
vehicle dynamics limit in 2006 with the GTI 53+1 [4],
vehicle following also in 2006 with the Twin Car [5], and
highway driving in 2008 with the iCar [6].

With regards to production vehicles, the list of Advanced
Driver Assistance Systems (ADAS) available to the con-
sumer continues to grow. Closely following this trend is
a corresponding increase in sensing modalities available in
these vehicles. Currently, the breadth of the sensor suite
includes cameras, radars, ultrasonic sensors, lidars, GPS and
others. Admittedly, the stock car versions of these sensors
cannot compare in performance to those used in, for example,
Junior, though they are still quite capable. Realizing this fact,
the latest autonomous vehicle built at Volkswagen Group of
America’s Electronics Research Lab, Junior 3, couples the
lessons learnt from its predecessors along with a reduced
sensor suite consisting of automotive grade sensors. It is built
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on the same 2006 Volkswagen Passat Wagon TDI platform as
earlier Juniors, with similar computer systems and a modular
software framework [1], [2].

In this paper we describe the key components in the design
and development of an Autonomous Valet Parking (AVP)
system on the Junior 3 platform. Section II will describe
the AVP system. Section III will detail the new localization
system developed for use in the AVP environment. Section
IV will describe the additional parking planner that works in
concert with the existing general planner developed for the
DARPA Urban Challenge. Sections V and VI will conclude.

II. AUTONOMOUS VALET PARKING SYSTEM

The benefit to the driver from an ADAS can be divided
into three areas: convenience, fun, and safety. By taking
drivers out of the loop, autonomous driving systems typically
maximize the convenience and safety aspects. The AVP
system provides exactly these benefits to the driver by
allowing him/her to leave the vehicle at the entrance of the
parking garage. The vehicle, when switched into AVP mode
by the driver will enter and navigate the parking garage
autonomously, search for a free spot, and initiate a back-in
parking maneuver upon finding one.

The system architecture represents a baseline version with
the aim to determine feasibility. Analysis of the baseline ver-
sion gives valuable insight into where increased complexity
is actually needed to achieve better performance in future
versions. Complexity leads to increased cost, development
time, and risk of failure among other undesirable outcomes.
As a consequence, we made the following design choices.
The sensor suite in AVP is limited to automotive grade
sensors consisting of stock wheel tic sensors, a stock forward
facing camera, and two side scanning automotive grade lasers
as shown in Fig. 2. A digital map informs the vehicle of the
search path, landmark locations for the camera algorithm,
and the location and dimensions of all parking spots in
the parking garage. The garage itself is assumed to be
without humans or other mobile vehicles. In addition to a
controlled environment, algorithm development focused on
deterministic approaches.

In developing software on the Junior 3 platform, we lever-
age the existing modular software framework used by Stanley
and Junior in the DARPA Challenges. In this framework,
software modules run concurrently across multiple CPUs
and communicate with one another through an asynchronous,
publish/subscribe message passing protocol implemented us-
ing the Inter Process Communications Toolkit [7]. The mod-
ular framework allows us to reuse a majority of the software
developed for the Urban Challenge with minor modifications,
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Fig. 1. Major software modules and interconnections in Junior 3. Additions
and modifications specific to the AVP system are highlighted in red.
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Fig. 2. Locations of automotive grade sensors used in the AVP system.

while easily incorporating new modules specific to the AVP
system (See Fig. 1). The design choices allow us to focus
on the localization, parking path planning, and parking spot
detection aspects for the initial version of the system. These
additional modules are described in the following sections.
The parking spot detection module is described in [8].

III. LOCALIZATION

For AVP, Junior 3 requires an always available localization
system that functions within a parking garage using automo-
tive grade sensors. Our solution combines the absolute pose
output of a camera-based landmark detection system and the
relative output of odometry through a Kalman filter. In the
Kalman filter, odometry generates the prediction, while the
camera-based landmark detection provides the observation
update. The system is initialized by the observation of a
landmark from the start position, e.g. at the entrance of the
parking garage. We describe the two components as well as
the calibration procedure for each.
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Fig. 3. The camera algorithm provides an observation update (opaque)
upon registering a detected landmark with the digital map.

A. Camera-based Landmark Detection

Junior 3 uses an automotive grade camera as the sensor for
its absolute positioning system. It provides 640 by 480 12-
bit grayscale images at 25 Hz. The camera is forward-facing
and mounted near the rearview mirror. Typically production
vehicles use cameras in this location to warn the driver if
the vehicle is approaching the lane edge, for traffic sign
recognition, for automatically controlling the high beam, and
other applications.

Junior 3 uses the camera to detect the relative position of
landmarks in the parking lot (See Fig. 3). Artificial landmarks
on the road surface are used instead of ”natural” landmarks
in the camera algorithm in order to increase the applicability
of the system to existing parking garages, while introducing
only minimal additional cost to the parking garage operation
with regards to initial application and maintenaince. The
landmarks are sets of four circular markers in a rectangular
configuration, laid flat on the road surface, and covered in
a retro-reflective material for high contrast. The markers’
locations are georeferenced offline and known to Junior 3
via a map file before it enters the parking structure. By
determining its own pose relative to a landmark, Junior 3
can localize itself within the parking structure.

For detecting the markers, which appear as ellipses on the
camera’s image plane, we use OpenCV, an open source com-
puter vision library. As a first step, we use the morphological
operators dilate and subtract to create an intermediary image
as shown in Fig. 4. In this image, the solid ellipses become
elliptical rings whose brightness represents the difference
in brightness of the marker against the surrounding road in
the original image. We chose a suitable threshold based on
the expected edge contrast to create a binary image for the
OpenCV ellipse detector.

Before we relate the detected markers to those in the
map, their pixel coordinates must be converted to physical
coordinates in Junior 3’s coordinate frame. This relation is
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Fig. 4. The raw camera image (above) is pre-processed with morphological
operators (below). An ellipse detector recognizes markers from this image.

known as a homography (see Fig. 5), an invertible transfor-
mation in which points lying on the same planar surface in
the scene can be related to image coordinates of a camera
viewing that surface. It is expected that irregularities in
the road surface will lead to errors in the estimation of
relative marker position. Additionally, pitch, roll and height
changes of Junior 3 will induce errors in estimation of the
markers’ positions in Junior 3’s coordinate frame. Camera
nonlinearities or distortions, which can be mostly attributed
to the lens, can be sufficiently overcome by calibration
techniques. In typical parking lot environments we found that
the magnitude of the transformation errors to be acceptable
for the task of navigating a parking lot and parking in a
parking spot.

Solving for the vehicle pose amounts to relating the ob-
served marker coordinates in the vehicle centered coordinate
frame to the corresponding expected markers in the parking
lot coordinate frame given by the map. Fig. 3 provides
an illustration of this relationship. The relation between
the ith observed marker with coordinates (xoi , yoi) and the
corresponding expected marker (xei , yei) is:

xei = xoi + xv, (1)
yei = yoi + yv, (2)
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Fig. 5. A homography matrix is used to map pixel coordinates on the
image plane to road surface coordinates relative to Junior 3.

where,

xoi = [cos(ψv) ∗ x̂oi ] − [sin(ψv) ∗ ŷoi ], (3)
yoi = [sin(ψv) ∗ x̂oi ] + [cos(ψv) ∗ ŷoi ]. (4)

The two observed marker coordinates, (x̂oi , ŷoi) and
(xoi , yoi), are related by a rotation from the vehicle centered
coordinate frame to a parking lot coordinate frame. Thus, xv ,
yv , and ψv are the parameters to be solved, corresponding
to the Junior 3’s position and heading, respectively.

We developed an algorithm based on the linear least
squares (LLS) approach to provide a vehicle pose solution
that minimized the distances between observed and expected
marker positions. To make the problem tractable for LLS
we needed to remove two sources of nonlinearity. The first
was the vehicle heading. We limited the LLS algorithm to
estimate only the vehicle’s position based on an array of pos-
sible vehicle headings. This allowed for the separation of the
coordinate frame rotation in (3) from the LLS minimization.
The array of vehicle headings was limited to an interval of
±5◦ centered around the previous heading estimate with a
granularity of 0.05◦. In practice, the actual error in vehicle
heading never exceeded these limits so the limited interval
size was acceptable.

The second source of nonlinearity was the L2 or
Euclidean distance metric defining the distance between
observed and expected markers. In our approach, the LLS
algorithm chooses a vehicle position minimizing the L1
or Manhattan distance between observed and expected
markers instead of the optimal L2 distance. This led to the
following expression for the residual:

R(xv, yv) =

n∑
i=0

[xei − xoi − xv]2 + [yei − yoi − yv]2, (5)

and taking partial derivatives gives us the optimal vehicle
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Fig. 6. The underlying vehicle models used in the odometry approaches.

position in the L1-sense:

xv =
1

n

n∑
i=0

xei − xoi , (6)

yv =
1

n

n∑
i=0

yei − yoi . (7)

The algorithm chooses the new vehicle position and
heading estimate based on the LLS instance with the least
residual. The output of the camera-based component of the
localization system is an absolute pose of the vehicle in
the parking lot coordinate frame whenever a landmark is
visible. To provide a pose estimate at all times, a relative
positioning system based on odometry is fused with camera
pose estimates.

B. Odometry

Odometry is a relative positioning system and thus is
prone to drifting. It is, however, always available unlike
the camera-based system and therefore a complimentary
method. There exists two major approaches to odometry:
one based on the rear axle model and the other based on the
Ackermann model, which is itself a bicycle lane model with
infinite cornering stiffness [9],[10]. Both approaches use the
wheel tic sensors mounted on the left and right rear wheels,
denoted ∆LL and ∆LR, respectively. The Ackermann model
approach additionally uses the steering wheel angle δs.

In the following description, the reader is referred to the
illustration in Fig. 6 for variable definitions. Both approaches
are similar in how they use estimated heading change and the
rear wheel traveled distances to update the vehicle’s position:

∆xv = Rm sin(∆ψv), (8)
∆yv = Rm(1 − cos(∆ψv)), (9)

for a nonzero heading change and,

∆xv = ∆Lm, (10)
∆yv = 0, (11)

when the vehicle is traveling straight. ∆Lm is computed
as the average of the traveled distances of the rear wheels.
Vehicle turning radius Rm is calculated by:

Rm =
∆Lm

∆ψv
. (12)

The difference between the approaches is the manner in
which heading change is calculated. The rear axle approach
is based on wheel travel distance and track width s:

∆ψv =
∆LL + ∆LR

s
. (13)

The Ackermann model approach uses steering wheel angle
and the wheel base l:

∆ψv =
∆Lm

l
tan(δs ∗ i), (14)

where
i =

δs
δw
. (15)

The parameter i relates the steering wheel angle to the wheel
angle δw through a transfer function.

In our experience with the rear axle approach, we found
that due to quantization noise in the wheel tic sensor, the
vehicle heading output contains a significant amount of
noise. The vehicle position is also impacted by the noise in
the heading change estimate. In Junior 3 this manifests itself
as vibrations in the steering wheel as the controller tries to
compensate for the errors in vehicle heading and position. We
decided against filtering the output since it would introduce
errors in the overall pose estimate. Instead, we chose the
Ackermann model approach without any significant impact
on performance. For odometry, the main cause for error is
typically uneven pavement.

C. Calibration

As described in Section III-A, we employed the homogra-
phy matrix in the localization system as a mapping between
pixels on the image plane to vehicle relative positions of
markers on the road. To compute the homography matrix, we
first laid out the markers in front of Junior 3 on a flat road
surface and physically measured their coordinates relative to
the vehicle. We then reused the ellipse detection algorithm
described in Section III-A to compute the pixel coordinates
of the markers. Finally, we input all the pixel and real world
coordinate pairs for each marker into a RANSAC-based
algorithm for robustly fitting a homography matrix to the data
[11]. Estimates of the variance for use in the Kalman filter
were computed by viewing landmarks at different regions of
the image plane and comparing the camera output against
a differential GPS (dGPS) reference system. When Junior 3
runs in AVP mode, the variance for a landmark detected at
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a particular location on the image plane is interpolated from
the reference points measured offline.

Our Ackermann model based approach for odometry uses
Junior 3’s wheelbase, the wheel circumferences of the rear
wheels, and a steering wheel angle to curvature transfer
function as parameters. The wheelbase is from the specifi-
cations for our 2006 Volkswagen Passat Wagon TDI. Wheel
circumferences were measured by dividing the traveled dis-
tance when driving straight on a flat road surface by the
number of wheel revolutions indicated by the wheel tic
sensors. The traveled distance was measured using dGPS.
Lastly, to compute the transfer function, we needed data
relating curvature to the entire range of steering wheel
angles. To accomplish this we drove spirals with random
start positions and recorded the maneuvers using dGPS. The
recordings were analysed to produce many steering wheel
angle-curvature pairs across the entire range, allowing us to
calculate the transfer function. We calculated the variance
estimate for odometry by comparing many short segments
of odometry localization to a dGPS reference.

D. Localization Results

Fig. 7 shows a representative run of the AVP system.
The system is initialized with an observation of the first
landmark and, along the search path, Junior 3 observes four
additional landmarks with the camera. An Applanix POS LV
420 differential GPS (dGPS) is used in conjunction with a
radio linked base station as a reference localization system.
The accuracy of the dGPS is stated to be 2 cm RMS for
position and 0.02 degrees RMS for heading.

To analyze the performance of the camera algorithm, we
look at the error compared to dGPS of the final fused output
of camera and odometry after each cluster of landmark
observations. This is sufficient because the low variance
attributed to the camera algorithm output causes the fused
output of the Kalman filter to closely follow the camera
algorithm’s output. We see that inaccuracy in position can be
as high as 60 centimeters, though typically it is around 20
centimeters. Heading accuracy is typically within 2 degrees.
We found the larger errors in position and heading to be
primarily due to shifts in the pitch, roll, and height of Junior
3 while driving. The predominant causes of this are uneven
road surfaces and sharp turns initiated by the controller. The
latter effect can be seen in Fig. 7 as Junior 3 observes the
fifth landmark. To mitigate this effect we place landmarks
before turns in the vehicle path instead of during or shortly
after them.

The performance of odometry is most important during the
parking maneuver due to the narrow spaces. While searching
for a parking spot, the driving path is generally wide enough
to allow as much as a meter of error. Moreover, when
executing the parking maneuver, the localization uses only
odometry to avoid any sudden shifts in pose due to the
camera during the maneuver. We measured the final error
in Junior 3’s pose in the parking spot, accumulated over
the course of the parking maneuver, to be on average 40
cm laterally, 11 cm in depth, and 3.5 degrees in heading.

Fig. 7. Camera-Odometry comparison to dGPS reference for an AVP run.

The accompanying standard deviations were an order of
magnitude lower. The main cause for the systematic errors
in the odometry were high steering angles in the parking
maneuver. The low variances allowed us to introduce an
offset in pose for the parking maneuver to remove the
systematic error. The remaining error is then largely due to
the error at the start of the maneuver. This error is managed
through strategic placement of markers along the search path.

IV. PATH PLANNING

The existing general planner module used in the DARPA
Urban Challenge handles traffic signs, right of way, and
among many other things, also parking [2]. It considers
detected obstacles as well and ultimately creates dynamic
paths for a dynamic environment. For navigating the parking
lot in the AVP application, the existing planner easily handles
the task. The path planning for parking, however, satisfies
only Urban Challenge competition rules and is not sufficient
to our task. Two main limitations are that the algorithm
allows the car to make multiple attempts in finding a path into
the spot with the only constraint being obstacle avoidance.
Most importantly, it does not constrain the vehicle to park
aligned and accurately within the spot.

We briefly introduce the parking spot detector here, which
is further described in [8]. The detection occurs with the aid
of two single plane lidar scanners mounted on the side of
the vehicle. At the time the lidar unit passes abeam (see Fig.
8) of a free spot, a message is sent via IPC triggering a
transition from the general planner to the parking planner.

A. Parking Planner

The goals of the parking planner are to provide a reliable,
predictable, path that guided the vehicle to the spot in one
attempt. Unlike the general planner, it does not consider
obstacles in its path planning. The vehicle’s pose relative to
the target parking spot at the point of free spot detection is
the only variable input. Parameters used to create a drivable
path are the vehicle’s minimum turning radius, maximum
speed of the steering wheel actuator, and vehicle speed.
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Fig. 8. Components of the parking planner’s forward and reverse path.

The parking planner plans a fixed reverse path leading
into the spot as well as a dynamic forward path linking the
vehicle’s start pose to the start of the reverse path as shown in
8. The forward path is defined by a cubic spline connecting
the start pose to the point of transition to the reverse path.
Since a cubic spline is not guaranteed to be drivable, an
iterative process shifts the end point of the forward path,
relaxing the spline until the car parameter constraints are met.
The reverse path is generated in five segments from the car
parameters using an Ackermann model (Fig. 6) described in
(8-12, 14-15). The length of the segment 1 is determined by
the dimensions of the parking spot and the vehicle. Segments
2 and 4 bring the vehicle to minimum and maximum turning
radius, respectively, with the motion definied by the vehicle
speed and the steering actuator speed. Vehicle motion in
segment 3 is defined by the speed at the minimum turning
radius. Lastly, segment 5’s length is defined by the distance
to the transition point. By constraining the orientaiton of the
this segment to be perpendicular to the spot we largely avoid
the intersecting the path with another spot.

The path generated will park Junior 3 into the parking
spot in one attempt. When localizing with dGPS, Junior 3
parked with a standard deviation of below 1.5 cm for both
lateral and depth error. The standard deviation of heading
was 0.5 degrees. Contributions to these errors include: GPS
inaccuracy and variabilities in the execution of controller
module commands to Junior 3’s actuators. The final pose
error in the parking spot is a sum of the localization
error at the point of free spot detection, localization error
accumulated by odometry during the parking maneuver, and
controller performance during the parking maneuver.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we described the software development of a
modified 2006 Volkswagen Passat TDI, also known as Junior
3, repurposed from its use in the DARPA Urban Challenge to

enable an Autonomous Valet Parking system. The design and
development centered in three areas: parking spot detection,
a localization system that can function in a parking garage,
and a path planner for parking. The localization system fused
the absolute pose output of a camera-based marker detection
algorithm with the relative pose update given by odometry
through a Kalman filter. The parking planner augmented the
existing general planner by taking over at the moment a
free spot is received from the parking spot detector, guiding
Junior 3 to the parking spot in a single attempt. A successful
demonstration of the system took place on October 24th,
2009 at the dedication event for the Volkswagen Automotive
Innovation Lab at Stanford.

B. Future Works
Future work will be directed at creating a more generalized

parking path planner that considers the external environment
and also at characterizing the performance of other methods
of localization in a parking garage.
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