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Abstract— Transfer learning refers to reusing the knowledge
gained while solving a task, to solve a related task more
efficiently. Much of the prior work on transfer learning,
assumes that identical robots were involved in both the tasks.
In this work we focus on transfer learning across heterogeneous
robots while solving the same task. The action capabilities of the
robots are different and are unknown to each other. The actions
of one robot cannot be mimicked by another even if known.
Such situations arise in multi-robot systems. The objective then
is to speed-up the learning of one robot, i.e., reduce its initial
exploration, using very minimal knowledge from a different
robot. We propose a framework in which the knowledge
transfer is effected through a pseudo reward function generated
from the trajectories followed by a different robot while solving
the same task. The framework can effectively be used even with
a single trajectory. We extend the framework to enable the robot
to learn an equivalence between certain sequences of its actions
and certain sequences of actions of the other robot. These are
then used to learn faster on subsequent tasks. We empirically
validate the framework in a rooms world domain.

I. INTRODUCTION

One of the drawbacks associated with the reinforcement

learning paradigm is the initial period of nearly random

exploration while the robot looks for the goal. One approach

for addressing this problem is to adopt a transfer learning

framework. In a transfer learning setting, the knowledge

acquired in solving one task is used to bootstrap the solving

of another task. There have been several approaches proposed

for transfer learning. In most of the approaches, a mapping

is used to relate the new task to the task for which a policy

had been learned (Torrey, Walker, Shavlik and Maclin 2005;

Taylor, Whiteson, Stone 2007). In few others, a mapping

between the base actions of the robots or the transitions is

learnt and re-used. They also require substantial amount of

accurate transition information collected in the source and

target tasks (Taylor, Kuhlmann and Stone 2008). In all the

earlier work on transfer learning the assumption has been

that the same (or an equivalent) robot is involved in both the

tasks. The problem of transfer between robots with different

action capabilities has not received much attention in the

literature.

In multi-robot systems, the robots have different action

capabilities. The action capabilities may be unknown to each

other or one robot may not be able to imitate another robot.

Hence, even if the policy (state to action mapping) to solve

Balaji Lakshmanan is student with the Department of Computer Sci-
ence and Engineering, Indian Institute of Technology Madras, India
balajil@cse.iitm.ac.in

Ravindran Balaraman is faculty with the Department of Computer
Science and Engineering, Indian Institute of Technology Madras, India
ravi@cse.iitm.ac.in

the task is available from another robot, it cannot be used

as the action capabilities are different. If the action models

of the two robots are known, a complete mapping between

the base actions may not always be possible or they would

often need to be hand coded. Even if such a mapping is

possible, it may not be precise. It is hard to obtain an exact

action model of a robot as some amount of stochasticity is

always involved and might require several self calibrations

and result in control related problems.

Our work is primarily related to transfer learning across

heterogeneous robots when the action models of the robots

are different and are either unknown to each other or a

mapping between their base actions do not exist. The robots

do not have any prior knowledge of the environment. The ob-

jective is to speed-up learning, i.e., reduce initial exploration,

with very minimal prior information (single trajectory) from

a different robot. The focus is to solve the task quickly and

not the optimality of the solution. In general, for any robot, it

might take many exploration and exploitation steps in order

to solve the task. The knowledge gained by one robot while

solving a task in an environment can be reused by a second

robot for learning a policy faster and solving the same task

in the same environment. For instance, the first robot might

have a circular action model and move in arcs while the

second robot has a linear action model as seen in Figure 2.

Given that the first robot has solved the task and learnt a path,

our aim is to use the knowledge with the second robot and

accelerate the learning to solve the same task. The framework

we propose can be used for multi-robot system including

different robotic arms or robotic arms with different degrees

of freedom as shown in Figure 1.

We present a pseudo reward function framework for the

second robot based on the knowledge obtained from the

first robot. The second robot also learns to map its action

sequences to certain sequence of actions of the first robot and

uses this mapping while solving subsequent task. There are

many real world applications of the work like quick response

robots, search and rescue systems, etc., where gathering

information would be expensive.

The rest of the paper is structured as follows: the next

section gives the background of the problem. Then we

describe our solution framework. After that, we present the

experimental set-up and results that serve to support our

solution framework. We then review some of the recent

transfer learning work followed by the discussion and direc-

tions for future work. We will be using the terms, agent and

robot interchangeably, for better understanding in appropriate

sections.
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Fig. 1. Different Robotic Arm

Image courtesy: www.osha.gov

Fig. 2. Action models of the two robots and their respective paths to reach
the goal. The actions of one robot cannot be imitated by the other robot
even if it they are known.

II. BACKGROUND

A. Reinforcement Learning

Markov decision process (MDP) is the modeling paradigm

of choice for reinforcement learning problems. An MDP is

quadruple {S, A, T, R}, where S is the finite set of possible

states of the agent, A is the finite set of actions the agent can

take, T(s, a, s′) is the transition function which defines the

probability of a transition from state s ∈ S to s′ ∈ S when

action a ∈ A is taken. R(s, a) is the reward function, which

defines an expected immediate reward for taking action a

∈ A in state s ∈ S. An MDP defines a formal model of

an environment that an agent can interact with and learn

about. In the reinforcement-learning framework, the agent

has knowledge of its state and its action spaces, but does

not have knowledge of the transition and reward functions.

The task of the agent is encoded in the reward function and

the objective of the agent is to obtain a policy by interacting

with the environment over a period of time.

In the MDP formalism, the objective of the agent is to

learn to maximize the expected value of reward received over

time. It does this by learning an optimal mapping from states

to actions defined as policy π : S→ A.

Qπ(s,a) = Eπ

{

∑γ iri|s0 = s,a0 = a
}

where, γ ∈ [0,1) is the discount factor and ri is the reward

from the environment at step i.

B. Transfer Learning

Transfer Learning has been traditionally observed as a

method of utilizing the knowledge gained by solving one

or more tasks, to speed up the learning in a related but

different task. Speeding up the learning is important as the

learner takes large number of steps to reach an unknown

goal state in an environment with unknown dynamics and

thus comes up with a feasible policy. If there are two MDPs

with the same state and action space and related transition

and reward functions, transfer learning reuses the knowledge

gained from the first MDP with the second MDP, to obtain

a feasible or nearly optimal policy, faster.

Our work is aimed at using the knowledge gained by one

agent having one action model with another agent having

a different action model, given the same environment and

task. Hence, the two MDPs differ in their action space and

transition function while the state space and reward function

remain the same. We aim to rapidly learn and solve a task

using very minimal prior knowledge from another agent with

a different action model. 1

III. SOLUTION FRAMEWORK

A. Problem Space

As in most transfer learning frameworks, the first agent is

assumed to have solved the task. However, it is not necessary

for the first agent to have learnt a value function or a policy.

The agent is assumed to have knowledge of the sequence of

states in the respective order it had covered to reach the goal.

If the agent had learnt a policy, the sequence of states can

be generated from the policy. The policy may or may not be

optimal and the agent could have learned the policy using

any algorithm. The second agent needs to solve the same

task solved by the first agent, in the same environment. It

has a different action model compared to first agent and has

no knowledge of the state connectivity of the environment.

It has only the state perception and can identify its current

state. It also has no knowledge of the action model of the

first agent and it doesn’t understand the action capabilities

of the first agent.

B. Knowledge Based Pseudo Rewards

For the first agent, there is an MDP {St , At , Tt , Rt} and a

task for which either a solution or a policy has been learnt.

For the second agent there is another MDP {S, A, T, R} and a

task for which a solution needs to be learnt. The state spaces

St and S are the same. The reward functions Rt and R encode

the same task. The action models At and A and transition

function Tt and T are different. From a given start state st0,

a trajectory consisting of a sequence of state action pairs

{(st0,at0),(st1,at1)...(stn,atn),stg} is known by the first agent

or generated using the first agent’s policy and is transferred

to the second agent to reach the goal state stg. st0, st1, .., stn

are intermediate states visited in that order, by the first robot

to reach the goal state. The action taken at each intermediate

state is transferred as a label and is used for action sequence

mapping.

For the second robot, we now introduce a pseudo reward

function based on the trajectory of the first robot. This pseudo

reward function is inversely proportional to the distance of

1The reward function can be different as long as the encoded task of the
agent remains the same.
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the intermediate states from the goal state in the sequence.

This pseudo reward function is combined with the regular

reward function from the environment and used during

exploration. This accelerates the learning and helps to solve

the task faster and reach the goal. The pseudo reward is

defined as follows:

r′(s) =

{

iK if s = sti

0 otherwise

where, K is a constant chosen to ensure that the pseudo

reward is much smaller than the tasks reward functions. The

pseudo rewards are linearly scaled depending on the order

of the state in the transferred sequence. Now the modified Q

function is defined as:

Qπ ′ (s,a) = E π ′
{

∑γ i(r′i + ri)
}

.

This can be used with any of the reinforcement learning

methods to solve the task. We have used sarsa(λ ), shown in

Algorithm 1.

The transfer learning framework we propose does not

require the first agent to learn a value function or a policy

for solving the task or a transition model. The pseudo

reward function proposed is characterized by the order of

states in the trajectory transferred and does not depend on

policy or value function. The framework is not bound to a

deterministic environment and can be extended to stochastic

environments as the pseudo reward framework for any given

transition is dependent on the destination state and not on

state action pair.

C. Action Sequence Mapping

One way of further speeding up learning in future transfer

is to use the learnt knowledge to establish mapping between

the actions of the two robots. With robots that are very

different in their capabilities, it is difficult to establish a one

to one correspondence between the actions. Hence we look

to mapping fragments of policies, or action sequences of

the first agent to action sequences of the second agent. It

is easier to quantify what such a correspondence implies in

a deterministic world. Two action sequences correspond to

each other, if starting from the same state, say x, executing

the action sequences by the respective robots will result in

them ending up at the same state, say y. This notion has to be

extended to preservation of state distributions in a stochastic

environment, and is harder to establish.

During transfer, let a sequence of state, action index pair

{(st0,at0),(st1,at1). ..(stn,atn),stg} be framed by the first robot

and transferred to the second robot. The second robot, on

reaching the goal, converges on a policy and let the sequence

generated from the policy be {(s0,b0),(s1,b1)...(sm,bm),sg}.
We have the start states s0 same as st0 while goal state sg is

same as stg. Let there be two pairs of equivalent states, say

sti and s j are equivalent, stk and sl are equivalent, satisfying

the condition 0 ≤ i < k ≤ n and 0 ≤ j < l ≤ m. Now the

sequences of actions {ati, ..., at(k−1)} and {b j, ..., b(l−1)} are

mapped as equivalent. at(k−1) is the index of the action that

takes first agent from st(k−1) to stk and b(l−1) is the action

that takes second agent from s(l−1) to sl . The mapped action

TABLE I

DIFFERENT SETS OF TASK FOR TRANSFER FROM LARGER TO FINER

ACTION MODEL (ROBOT)

TASK START STATE GOAL STATE DISTANCE*

TASK 1 (0,0)[ROOM 1] (-8,12)[ROOM 2] 20

TASK 2 (2,-2)[ROOM 1] (-12,18)[ROOM 2] 34

TASK 3 (2,6)[ROOM 1] (-6,-6)[ROOM 3] 40

TASK 4 (20,18)[ROOM 1] (-22,-16)[ROOM 3] 76

*DISTANCE is the optimal number of steps required to reach the Goal State from Start State

sequence is replaced by another action equivalent action

sequence if it contains lesser number of actions. A sample

of mapping computed is shown in Table 3 and Figure 7.

Once we have such a mapping we can re-use it while solving

subsequent tasks.

In the subsequent tasks, if the same sequence of actions are

observed in transferred action index sequence, the mapped

action sequence of the second robot can be directly used

during exploration. This can take the second robot faster to

the goal, though not always guaranteed. In some instances,

the mapped action sequence might take the second robot

away from the goal and make it longer to solve the task.

Hence, we use the mapped action sequence (1 - ε time) at

the useful intermediate state during the exploration phase of

the robot and for ε time, the regular algorithm Algorithm 1 is

used. However, if the new task is a combination of mapped

action sequences, the convergence is very quick.

Algorithm 1 Transfer Knowledge motivated Learning

Input: s ∈ S, a ∈ A, st0,st1...stn,stg ∈ St , at0,at1...atn

∈ At , Intrinsic reward r′

Initialize Q(s,a) arbitrarily and e(s,a) =0, for all s,a

Initialize s,a

repeat

Take action a and observe next state s′ and reward r

from the environment

Choose action a′ from s′ using policy derived from Q

(ε-greedy)

if s′ = sti (i = 1 to n) ∈ St then

δ ← r′ + r + γ Q(s′,a′) - Q(s,a)

else

δ ← r + γ Q(s′,a′) - Q(s,a)

end if

e(s,a)← e(s,a)+1

for all (s,a) do

Q(s,a)← Q(s,a)+ α δ e(s,a)

e(s,a)← γ λ e(s,a)

end for

s← s′; a← a′

until s is terminal

IV. EXPERIMENTAL SET-UP AND RESULTS

To evaluate our algorithm, we created a rooms world

environment, shown in Figure 3. The states of the domain

are based on 50x50 grid world and the states are represented

as (x,y) [-25 ≤ x, y ≤ 25]. There are 4 rooms with
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Fig. 3. Rooms world environment used in the experiment

X axis: Different Tasks as given in Table I

Y axis: Average number of exploration steps to reach the

Goal

Fig. 4. Comparison of the number of exploration steps before reaching
the goal for transfer from larger to finer action model (Robot). (averaged
across ten trials)

different orientations and 4 doors connecting them. The agent

can move from one room to another only through these

doors. The knowledge transferred is a sequence of state

and corresponding action indices. The sequence of states is

used for generating the pseudo reward function while the

action indices are used for action sequence matching. The

experiments have been run in deterministic and stochastic

environments. We have also run trials to evaluate trans-

fer learning from the robot with the larger action model

(Robot 1) to the robot with the finer action model (Robot

2) and the reverse. An example of the knowledge trans-

ferred is {{(-4,6),1},{(-4,8),1},{(-4,10),4},{(-6,10),4},{(-
8,10),2},{(-8,8),2},{(-8,6),2},{-8,4}}. The action model of

Robot 1 is larger and Robot 2 is finer. A transfer learning

solution framework is effective for the robot, if it solves a

task faster compared to the time it takes otherwise. Hence,

we measure the effectiveness by comparing the number of

exploration steps taken by the robot to reach the goal without

transfer and with transfer.

A. Transfer from Larger to Finer Action Model (Robot) in

Deterministic Environment

Robot 1 having action model, shown in Figure 2(a) is

assumed to have solved the task. We can represent index

the actions as {1, 2, 3, 4}. The second robot Robot 2,

X axis: Different Tasks as given in Table I

Y axis: Average number of exploration steps to reach the

Goal

Fig. 5. Comparison of the number of exploration steps before reaching
the goal for transfer from finer to larger action model (Robot). (averaged
across ten trials)

X axis: Different Tasks as given in Table I

Y axis: Average number of exploration steps to reach the

Goal

Fig. 6. Comparison of the number of exploration steps to reach the goal
in stochastic environment

which needs to learn a policy to reach the goal has action

model, shown in Figure 2(b) {Forward, Backward, Right,

Left} represented as {F,B,R,L} and move one step in the

corresponding direction of each action. Experiments were

conducted with four different sets of start and goal states in

a deterministic environment. These states were distributed in

different rooms and were of varying complexities, shown in

Table 1.

The results show that there has been a speed up in learning

because of transfer, shown in Figure 4 indicated by the reduc-

tion in number of exploration steps to reach the goal. From

our experiments, we find that there is an improvement of 10%

to 47% , shown in Table 2. The speed-up may vary depending

on the knowledge transfered and the resulting pseudo reward

function. For all meaningful knowledge transferred, there is

an appropriate speed-up happening for the second robot. The

speed-up comparisons across different knowledge (sequence

of states) transferred for the same task are indicated in Table

4.

B. Transfer from Finer to Larger Action Model (Robot) in

Deterministic Environment

Here Robot 2 is assumed to have solved the task is

assumed to be having action model, shown in Figure 2(c).
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TABLE II

COMPARISON BETWEEN NUMBER OF EXPLORATION STEPS TO REACH

THE GOAL FOR TRANSFER FROM LARGER TO FINER ACTION MODEL

(ROBOT). (AVERAGED ACROSS TEN TRIALS)

TASK A B C D E F

TASK 1 9777.80 5200.1 46.82 3152.4 NA NA

TASK 2 7338.3 3841.7 47.65 1039.6 34.38 85.83

TASK 3 11797.5 6467.8 45.18 2880.10 56.82 75.59

TASK 4 9222.2 8282.9 10.19 11419.4 0 -23.83

A: Number of exploration steps taken to reach the goal without transfer

B: Number of exploration steps taken to reach the goal with transfer

C: Percentage Improvement using transfer learning

D: Number of exploration steps taken to reach the goal with transfer and action sequence mapping

E: Percentage of mapped action sequences used in the final path

F: Percentage Improvement using transfer learning and action sequence mapping

TABLE III

ACTION SEQUENCE MAPPING EXAMPLE FOR TRANSFER FROM LARGER

TO FINER ACTION MODEL (ROBOT)

SET ROBOT 1 ROBOT 2

ACTION INDEX SEQUENCE MAPPED ACTION SEQUENCE

I 11 RFFRFFLL

II 4 LL

III 2 BB

IV 1 BRFFFL

V 4411 FLFRFFLLBLFL

VI 3 FRRB

VII 222244 LLLBBLBRBBLBBLBR

VIII 444 RBRBLBLLLFFLBLFLLF

IX 44 LBLLLF

X 422 BLBBBL

XI 22 BRBBLB

The second robot which needs to learn a policy to reach the

goal has action model represented as {1,2,3,4} and move

two steps in the corresponding direction of each action. The

speed up in learning because of transfer is shown in Figure 5.

There is an improvement in performance using the mapped

action sequences.

C. Transfer from Larger to Finer Action Model (Robot) in

Stochastic Environment

In the rooms world environment, shown in Figure 3, a

wind is modeled to blow from left to right with a probability

0.01. It moves the agent to the right by one step. Robot 1 is

assumed to have solved the task and transfers the sequence

of states it has traversed to reach the goal to (Robot 2). From

Figure 6, it is evident that there has been a speed-up because

of the transfer even if the environment is stochastic.

V. DISCUSSION

Time to converge on a policy for a given task is a measure

of evaluating a transfer learning approach. A transfer learning

solution framework is effective, if it speeds up the learning

of the agent comparing the time it takes otherwise. In almost

all the experiments we conducted using our transfer learning

framework, there has been a considerable improvement in

time to learn and converge on a policy. We have analyzed the

solution framework using different tasks and using different

transfer for same task in both deterministic and stochastic en-

vironments. One of our observation is that the performance is

not completely dependent on the optimality of the transferred

knowledge. From Table 4, we find that the transfer based

Fig. 7. Action sequence Mapping Example for transfer from larger to finer
action model (Robot)

TABLE IV

COMPARISON ACROSS DIFFERENT KNOWLEDGE TRANSFER FOR SAME

TASK FOR TRANSFER FROM LARGER TO FINER ACTION MODEL (ROBOT).

(AVERAGED ACROSS TEN TRIALS)

TASK DISTANCE* A B C D

NO TRANSFER NA 7338.80 NA 104.4 NA

OPTIMAL PATH 24 3841.7 47.65 80.2 23.18

SET 1 32 7256.6 1.12 89.2 14.56

SET 2 48 5081.2 30.76 54 48.28

SET 3 56 3772.2 48.6 68 34.87

*DISTANCE is the optimal number of steps required to reach the Goal State from Start State

A: Number of exploration steps taken to reach the goal with transfer

B: Percentage Improvement on exploration steps taken to reach the goal using transfer learning

C: Number of greedy steps on converged policy taken to reach the goal with transfer

D: Percentage Improvement on greedy steps on converged policy using transfer learning

on Set 3 provides faster learning, though it is based on a

non-optimal path with larger path length. As our approach

provides pseudo rewards based on the distance of the state

from the goal in the transfer, the less relevant states are

bypassed by more important states. In case of loops in the

transferred sequence, the second agent bypasses the loop to

more useful states.

Learning action sequence mapping accelerates the conver-

gence of the second robot with a high degree, if the mapped

action sequences are useful with respect to the task. In few

instances if the new task is a collection of mapped action

sequences, the convergence, understandably, is extremely

fast. If none of the mapped action sequences are relevant

to the current task, the proposed transfer learning algorithm

Algorithm 1 is used. But in tasks, where the mapped action

sequences are relevant but not useful, it affects the learning

and results in slowing down the learning. The result in Table

2 for TASK 4 is an example of this behavior. An interesting

observation is that, in the case of loops in the sequence

of the first robot, the second robot maps ”no action” as

an equivalent action sequence. This helps to identify the

loops and bypass them straight away. However, computing

the usefulness of a mapped action sequence, for the current

task need to be fine tuned for better performance. While it

is easier to establish such an equivalence in a deterministic

world, it is harder to establish in stochastic domain.
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TABLE V

COMPARISON BETWEEN NUMBER OF EXPLORATION STEPS TO REACH

THE GOAL FOR TRANSFER FROM FINER TO LARGER ACTION MODEL

(ROBOT). (AVERAGED ACROSS TEN TRIALS)

TASK A B C D E

TASK 1 3365.89 331.89 90.14 371. NA

TASK 2 1967.3 1277.4 35.07 1333.2 32.23

TASK 3 2544.8 1468.6 42.29 2133.1 16.17

TASK 4 3126.7 2652.0 15.18 2480.2 20.67

A: Number of exploration steps taken to reach the goal without transfer

B: Number of exploration steps taken to reach the goal with transfer

C: Percentage Improvement using transfer learning

D: Number of exploration steps taken to reach the goal with transfer and action sequence mapping

E: Percentage Improvement using transfer learning and action sequence mapping

VI. RELATED WORK AND COMPARISON

There have been several methods proposed for transfer

learning. Often, a mapping is used to relate the new task

to the task for which a policy had been learnt. There have

been several work in learning such a mapping. The mapping

is used to find the similarities between the state variables

in source and target task. Most of the approaches exploit

the already learnt policy of one task and use it during

the exploration of new task. Madden and Howley (Madden

and Howley 2004) use symbolic learner and a propositional

representation of the task to build a generalized policy and is

used to aid exploration. Fernandez and Veloso (2006)re-use

the learned policy as an option during exploration and hence

use either exploration action or exploit learned policy. Liu

and Stone (2006) use specialized version of the structure

mapping theory, to find similarities in the tasks based on

similar patterns in their state transitions. Kuhlmann and

Stone (2007) use graph based domain mapping for value

function transfer learning. Talvitie and Singh (2007) use an

experts algorithm to select the best policy amongst a number

of given policies. By creating different target task policies

using the source task policy and different mappings, they can

hence find the best mapping. Transfer learning, recently have

also been achieved using transfer actions, where actions are

transferred from source task to target task and used to guide

during the exploration (Tom Croonenborghs, Kurt Driessens

and Maurice Bruynooghe 2008). In all the transfer learning

related work,the transfer happens across two reinforcement

learning tasks and the assumption has been that the same

robot is involved in both the tasks and their action models

are the same. They also assume the availability of significant

knowledge. There haven’t been approaches where the robots

are different and are trying to solve the tasks with very

minimal information. Our approach on the other hand is for

the condition where very limited information is available

and also makes no assumptions on the action model of

the other robot or its transition probabilities. Since our

approach and available knowledge are different it is hard

to absolutely compare the results of our method with the

existing approaches.

VII. CONCLUSION AND FUTURE WORK

We introduced transfer learning across heterogeneous

robots. The action capabilities of the robots are different and

unknown, while the task and environment are the same. The

knowledge gained by one robot in solving a task is modeled

as a sequence of states and action indices. It is passed to

the other robot. The sequence of states are used to develop a

pseudo reward function which are used along with the regular

reward function from the environment. It has been shown to

speed up the learning and solve the task faster with minimal

knowledge. The action indices are used to come up with a

mapping between the sequence of base actions of the two

robots. It is shown that if the mapped action sequences are

useful for subsequent task, it accelerates the learning and

helps to converge on the policy quicker.

The framework we have proposed use minimal infor-

mation, a single trajectory. It can also be extended to be

used with more information, say multiple trajectories, partial

action equivalence or partial map of the environment etc. Our

current work is based on the assumption that that environ-

ment and task are same. We can work towards extending

our model for related but different tasks, while the robots

are different. Our experiments have been performed on a

discrete state space environment. Working in a continuous

state space environment and exploiting the state space ap-

proximations can be done. Exploiting the symmetries and sub

goal discovery and combining it with transfer is promising.

Methods to identify useful action sequences for a given task

is also a direction for future work.

True hetrogenity of robots is when the robots have differ-

ent sensory input but however the underlying state space cab

be mapped and the proposed framework can be used. We can

extend the model to the condition when the observation of

the state space is partial for the robot. Besides mobile robots,

the framework can be extended to the robotic arm space.
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