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Abstract— In this paper, we address the problem of dis-
tributed path planning for large teams of hundreds of robots
in constrained environments. We introduce two distributed
prioritized planning algorithms: an efficient, complete method
which is shown to converge to the centralized prioritized
planner solution, and a sparse method in which robots discover
collisions probabilistically. Planning is divided into a number
of iterations, during which every robot simultaneously and
independently computes a planning solution based on other
robots’ path information from the previous iteration. Paths
are exchanged in ways that exploit the cooperative nature
of the team and a statistical phenomenon known as the
“birthday paradox”. Performance is measured in simulated
2D environments with teams of up to 240 robots. We find
that in moderately constrained environments, these methods
generate solutions of similar quality to a centralized prioritized
planner, but display interesting communication and planning
time characteristics.

I. INTRODUCTION

Much previous research has been done on the problem

of cooperative path planning. Unfortunately many proposed

approaches do not scale to teams of hundreds of robots

in constrained environments. One approach which has been

shown to be effective for reasonably large teams is prioritized

planning [1]. In this approach, robots sequentially plan

paths according to a prioritization function. However, this

means robots must plan paths in order, resulting in a linear

increase in overall planning time with the number of robots.

Prioritized planning is also centralized, creating a potential

computational and communication bottleneck, as well as a

single point of failure.

However, in many domains, the strict ordering of se-

quential planning is likely to be unnecessarily expensive

because not all robots need to avoid all other robots. Online

prioritized approaches, such as [2] and [3], take advantage

of this property by determining which sets of robots need

to be planned sequentially by detecting interactions via local

observations. In this paper, we describe an approach that

distributes prioritized planning, allowing each robot to plan

at the same time, then look for collisions between paths and

require lower priority robots to replan. The intuition behind

this is that if robot paths are not dependent on all other paths,

the number of replanning iterations might be quite low and

overall planning time will be reduced because no single node

needs to plan for each robot in sequence. We prove that

distributing the planning in this way still converges to the

same result as the centralized planner. Experimental results

support the intuition, showing a dramatic reduction in the

number of planning iterations. However, because the length

of an iteration for the distributed algorithm is governed by
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the slowest planner, there is not always a large gain in overall

planning time.

For a robot to know that its path is collision free, its

path must be checked against the paths of every other robot.

If each robot sends their path to every other robot during

each planning iteration, though, the use of communication

bandwidth may become prohibitively high. However, many

robots do not need to change paths during an iteration. Thus,

simply having robots assume that paths have not changed

if they do not receive a message containing a new path

can reduce communication dramatically. Empirically, we find

this simple change reduces message traffic by 80% while

maintaining the performance of the full version.

Moreover, we observe that it is not necessary for a robot

to detect every collision with its path itself. In a cooperative

team, it is sufficient that some robot detects the collision

in the planned paths and communicates with the robots

involved. Mathematically, the problem of finding collisions

within sets of paths turns out to be similar to the problem

of finding matching birthdays in sets of people. By adapting

the “birthday paradox” phenomenon found in the latter, it is

possible for robots to communicate newly planned paths to

relatively few other robots and still have an extremely high

probability of any possible collision being detected by some

robot. Surprisingly, adding this strategy to the algorithm does

not result in an overall reduction of communication, because

it results in more planning iterations being required for

convergence. We believe that this is due to robots using paths

with which they are not yet colliding to effectively preempt

possible collisions. By not sending paths to everyone, the

robots lose this ability and more iterations are required.

However, in sparse environments, leveraging the birthday

paradox in this way is shown to be useful.

II. RELATED WORK

The problem of multi-robot path planning has been exten-

sively studied for a number of years. For a detailed summary

of the literature, we refer readers to [4]. Previous approaches

can be generally divided into coupled and decoupled strate-

gies. Coupled planners (e.g. [5], [6], [7], [8]) combine the

DOFs of each robot into a single high-dimensional composite

robot and plan in this joint space. These approaches can

theoretically find optimal solutions for multi-robot planning

problems, but are restrictive in the number of robots for

which they can plan, as the complexity of planning grows

exponentially with number of robots. Thus, while they pro-

vide the highest-quality solutions overall, they are generally

intractable for large teams.

Decoupled approaches plan for each robot independently,

then adjust the plans in various ways to account for the paths

of other robots. The two most common such approaches
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are path coordination and prioritized planning. The former

decomposes the planning problem into a spatial path plan-

ning problem and a temporal velocity planning problem [9].

Robots first plan paths in space that avoid static obstacles,

but ignore dynamic constraints such as other robots. Then,

coupled [10], [11], [12], [13], prioritized [1], [14], or reac-

tive [15] methods are used on the simpler problem of solving

for velocity profiles that allow the robots to avoid collisions.

Prioritized planning, introduced in [16], is another, of-

ten complementary approach to path coordination. In it,

trajectories are generated sequentially according to some

prioritization of the robots. Higher priority robots form

obstacles in space-time for lower priority robots. This greedy

and incomplete strategy is often effective in practice [17],

[18]). Searching or optimizing over the prioritization can

yield improved solutions [19], [20], [21], but often, simple

heuristics perform quite well [1]. However, a major problem

with prioritized planning is that paths must be computed in

sequence, which scales poorly to large numbers of robots.

Several works have tried to address this by identifying

simplified graph structures online for which prioritized plan-

ning can be done. In [22], robots are divided into small

coupled cliques and plan to execute in order, with each

group waiting until the last finishes. This allows solutions

in certain highly constrained settings, but can lead to long

execution times as cliques must execute in sequence rather

than simultaneously. In [23], the map itself is partitioned

into subgraphs, simplifying the space over which prioritized

planning takes place. In [2], dynamic networks are formed

as robots move through the environment. When new mem-

bers are added, trajectories are exchanged and checked for

collisions. Each robot then executes a prioritized replan on

its own probabilistic roadmap [24], with the best plan used

by the entire group. In [3], robots locally sense conflicts,

and use a prioritization scheme to determine whether to

add the corresponding dynamic obstacles to their maps.

The approach presented in this paper is similar to this

latter technique, however, it makes no assumptions between

connectivity and spatial locality, it attempts to resolve all

conflicts at planning time rather than during execution, and

it addresses much larger team sizes.

III. PROBLEM

Suppose we have a team of n robots R = {r1, . . . , rn}.
These robots are traversing a binary obstacle map O. Each

robot ri has some start location si and some goal location

gi. We consider this team over a time window [ti, tf ]. Our

objective is to find a set of trajectories Π = {π1, . . . , πn}
such that for each ri, πi(ti) = si and πi(tf ) = gi.

This set of trajectories should not allow any two robots to

collide as defined by some function COLLISIONCHECK()

that compares two path sets Π1 and Π2 and returns a boolean

indicating whether they ever occupy the same space at the

same time.

We are also given a deterministic independent planning

function PLAN() that takes an obstacle map O, a start s and

goal g, and a set of obstacle trajectories (of other robots)

Πobs, and returns a collision-free trajectory π from s to g, if

such a path is possible. While planning, robots are assumed

to have complete peer-to-peer communication over the team,

as well as a real-time distributed synchronization mechanism

allowing them to wait for all teammates to reach a certain

point in algorithm execution. In this work, the latter mech-

anism is encapsulated in a function WAITFOROTHERS(),

which is called with a boolean flag and blocks until it has

been called by every team member, then returns a boolean

which is true if and only if every member’s flag was true.

IV. ALGORITHMS

In this section, we define the prioritized planning algo-

rithms used in this paper. We begin with a brief overview

of canonical prioritized planning, as described in [16]. From

this, we define a straightforward distributed algorithm that

yields the same result. Next, we show that the communica-

tion necessary for this distributed algorithm can be reduced

by reasoning about the absence of messages and discovering

which robots share dependencies. Finally, we propose a vari-

ant that detects dependencies using a probabilistic method,

potentially reducing communication further and relaxing

constraints on robots’ knowledge of the team.

A. Prioritized planning

Prioritized planning is a decoupled planning strategy first

introduced in [16]. The underlying concept is as follows:

given a team of robots and an obstacle map, assign a

priority to each robot in the team. Then, plan for the robots

sequentially, in the order of their priorities. As each robot is

assigned a path, map that path to a dynamic obstacle in the

map that subsequent robots must plan around. Assuming that

independent planning for each robot is successful, a set of

collision-free paths can be generated in exactly n planning

cycles.

B. Distributed prioritized planning

The complete distributed prioritized planner is a simple

variant of the conventional prioritized planner as applied to

multi-robot problems. The only additional requirement is that

robots are able to determine their static priority as a function

of local information such as their identity or an initial

estimate of their path. Planning is divided into a number

of iterations, during which every robot simultaneously and

independently computes a planning solution based on other

robots’ path information from the previous iteration. At the

end of each iteration, each robot transmits its priority and

current plan to every other robot, to be used in subsequent

planning stages.

Theorem IV.1. Given complete communication of robot

paths in every iteration and a deterministic path planner, in

n iterations, the complete distributed prioritized planner will

output the same solution as a centralized prioritized planner.

Proof. This can be proved using induction. For a team of

size 1 (e.g. R = {r1}), the centralized planner will output

some planned path π1. On the first iteration, the complete

distributed planner will output the same independent path.

Now suppose that the theorem holds for all teams of size

n or smaller. Consider a team R = {r1, . . . , rn+1} of size
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(n + 1). Without loss of generality assume the robots are

ordered by priority (e.g. p1 > p2 > . . . > pn+1). Then

consider the subteam R′ = {r1, . . . , rn}. Since any path

generated by rn+1 will simply be ignored by robots in R′,

R′ will match the centralized solution in n iterations, by the

inductive hypothesis. Now, in iteration (n + 1), robot rn+1

will receive paths {π1, . . . , πn} which exactly match the

centralized planner solution. Thus, because both prioritized

planners are using the same deterministic path planner, with

the same map and same obstacle paths, they must return the

same path πn+1.

C. Reduced distributed prioritized planning

We can drastically reduce the number of messages com-

municated by taking advantage of the static prioritization of

robots. Suppose the robots exchange messages containing

priority along with their path: mi = 〈i, pi, πi〉. Then, a

receiving robot can compare the priority value to its own

priority, and determine if the sender robot has a higher or

lower priority. If priorities are static, the receiving robot can

maintain this knowledge in subsequent rounds. If the priority

is lower, the receiving robot would simply ignore the path

in any iteration.

In order to reduce the number of messages, ri maintains

a dependency list Di and a path cache Πcache. The list is

initialized to contain all of the robots in the team, and the

cache is initially empty. In each iteration, when a robot ri

receives a message mj = 〈j, pj , πj〉, it compares the priority

to its own, pi. If pj > pi, the robot will remove the sender

rj from its dependency list and add πj to Πcache. If pj < pi,

it is discarded, but rj remains on the dependency list Di. At

the end of each iteration, if a robot has replanned, it sends

its new plan to all robots on its dependency list.

In the first iteration, this leads to identical behavior as the

original distributed planner. However, in subsequent rounds,

robots will only communicate to robots that have a lower

priority. In addition, if robots do not change their plans, no

further communication to lower priority robots is necessary,

as these robots already have the previous plan cached.

D. Sparse distributed prioritized planning

It is possible to further reduce communications by exploit-

ing the cooperative nature of the team in conjunction with

a statistical phenomenon known as the “birthday paradox”.

In the birthday paradox, in a set of randomly chosen people,

the probability that two will have the same birthday grows

rapidly as the set size is increased. We can use this in a

communication algorithm by considering “birthdays” to be

collisions, and people to be robot paths. Since we have a

cooperative team, we can rely on other agents to check our

paths for collisions with the other paths they know about.

If each robot sends its path to a set of randomly chosen

teammates, then each robot has received its random set of

“people” (paths), within which it can search for a common

“birthday” (pairwise path collision). The exact probability of

this detection grows rapidly with the number of teammates

each robot shares its path with, and the function is formally

computed later in this section.

Algorithm 1 REDUCED DISTRIBUTED PLANNER(i)

1: Di = {1, . . . , n}, Πcache = ∅
2: πi ← PLAN (O, ∅)
3: pi ← COMPUTEPRIORITY (i, πi)
4: mi ← 〈i, pi, πi〉
5: SENDTOTARGETS (mi, Di)
6: repeat

7: Mrecv ← RECEIVEMESSAGES ()
8: for all 〈j, pj , πj〉 ∈ (Mrecv) do

9: if pj > pi then

10: Πcache ← Πcache ∪ {πj}
11: Di ← Di \ {j}
12: isCollided← COLLISIONCHECK (πi,Πcache)
13: if isCollided then

14: πi ← PLAN (O,Πcache)
15: mi ← 〈i, pi, πi〉
16: SENDTOTARGETS (mi, Di)
17: everyoneDone← WAITFOROTHERS (!isCollided)
18: until everyoneDone

We therefore introduce a birthday-paradox-inspired de-

centralized collision detection scheme to form the sparse

distributed prioritized planner (Alg. 2) with the aim of reduc-

ing the number of exchanged messages while still detecting

potential path collisions with high probability. Robots start

with an empty dependency list Di. Then, complete exchange

of paths is replaced by a pair of communication stages. In the

first stage, when each robot computes its path, it sends out a

message to γ random teammates (lines 5 and 25 in Alg. 2).

Then, in the second stage, it takes the received messages

from its teammates, as well as its own path, and checks every

pair of paths for possible collisions (lines 7-10 in Alg. 2).

For any pairwise collisions detected, the robot forwards the

opposing messages directly to the two conflicting robots (i.e.

mi → rj , mj → ri), thus alerting them both to the conflict

(lines 12-13 in Alg. 2). When a conflict is received, the

higher priority robot adds the lower one to its dependency

list, ensuring the lower priority robot will be alerted upon

future plan changes. The lower priority robot adds the other’s

path to its path cache, allowing it to immediately begin

avoiding the path. As long as the probability of collision

detection is sufficiently high, the sparse algorithm seems as

though it will quickly converge to the behavior of the reduced

planner, while not requiring an initial iteration of complete

path exchange.

1) Statistical Properties of Collision Communication:

The effectiveness of collision communication depends on

the probability that a particular collision will be detected

in a team. This detection probability corresponds to the

probability that two colliding path messages will both be

received by a single robot anywhere in the team. We can

compute this by considering the complementary probability

that two paths that collide will not both be received by any

robot in the team.

Suppose we have a team A of n robots using collision

communication with γ messages being sent randomly in the

first iteration. Let us consider some pair of colliding robots
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Algorithm 2 SPARSE DISTRIBUTED PLANNER(i)

1: Di = ∅, Πcache = ∅
2: πi ← PLAN (O, ∅)
3: pi ← COMPUTEPRIORITY (i, πi)
4: mi ← 〈i, pi, πi〉
5: SENDTORANDOM (mi, γ)
6: repeat

7: Mrecv ← RECEIVEMESSAGES ()
8: for all 〈j, pj , πj〉 ∈ (Mrecv ∪mi) do

9: for all 〈k, pk, πk〉 ∈ (Mrecv ∪mi) do

10: isCollided← COLLISIONCHECK (πj , πk)
11: if isCollided then

12: SENDTOTARGET (mj , k)
13: SENDTOTARGET (mk, j)
14: WAITFOROTHERS (·)
15: Mrecv ← RECEIVEMESSAGES ()
16: for all 〈j, pj , πj〉 ∈ (Mrecv) do

17: if pj > pi then

18: Πcache ← Πcache ∪ {πj}
19: else

20: Di ← Di ∪ {j}
21: isCollided← COLLISIONCHECK (πi,Πcache)
22: if isCollided then

23: path← PLAN (O,Πcache)
24: mi ← 〈i, pi, πi〉
25: SENDTOTARGETS (mi, Di)
26: SENDTORANDOM (mi,max(0, γ − |Di|))
27: everyoneDone← WAITFOROTHERS (!isCollided)
28: until everyoneDone

a, b ∈ A that send out messages ma and mb. Robot a
sends ma to some set of robots Na, while robot b sends mb

to some set of robots Nb. From the definition of collision

communication, |Na| = |Nb| = γ. A collision will not be

detected if Na ∩Nb = ∅. Thus, we can simply consider the

possible ways of choosing the members of Nb from the set

A−Na against the possible ways of choosing the members

of Nb from A.

P (Na ∩Nb = ∅) =
(n−γ

γ
)

(n

γ
)

This implies that the probability of detecting a collision is:

P (Na ∩Nb 6= ∅) = 1− (n−γ

γ
)

(n

γ
)

(1)

We can also consider a lower bound on the collision detection

probability by computing the probability of detecting a col-

lision if teammates are chosen randomly, with replacement.

In this case, the probability that some robot c will receive a

message is P (c ∈ Na) = 1 −
(

n−1

n

)γ
. Since a and b will

have their own messages, and would not send their messages

to the same teammates multiple times, it is clear that this is

a lower bound on the actual probability. Now, the chance of

some robot c not detecting a collision is

P (c /∈ Na ∩Nb) = 2
(

n−1

n

)γ −
(

n−1

n

)2γ

This means that, since detection will occur unless every robot

doesn’t detect the collision, we have the following:

P (Na ∩Nb 6= ∅) = 1−
(

2
(

n−1

n

)γ −
(

n−1

n

)2γ
)n

(2)

An interesting property emerges if γ is selected to be of

the form γ = k · √n. In Figure 1, we plot the resulting

collision probabilities with various k. As the team size

increases, the exact probability and the lower bound converge

together toward an asymptote. This suggests that using γ ∼√
n allows team-size-invariant tuning of collision detection

probability. While the method is still probabilistic and can

miss collisions, the results in Figure 1 suggest that values

of k > 2 have extremely high probabilities of collision

detection, implying that sparse distributed planning is likely

to detect colliding paths efficiently in large teams.
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Fig. 1. Collision detection probability as team size increases when
γ = k · √n. The solid line is the exact probability, and the dashed
line is the lower bound. The sawtooth shape of the exact probability
function is because the actual number of messages sent must be an
integer.

V. EXPERIMENTAL DESIGN

Detailed experiments were performed to evaluate the per-

formance of these algorithms. In this section we describe

the experimental setup used and in the following section we

describe the corresponding results. Experiments were carried

out in a 2D grid simulation on binary obstacle maps. Maps

were generated by iterating through cells in row-first order

using a probabilistic cellular automaton, where occupancy

was determined as a function of the upper, left, and upper-left

corner cells on the map. The exact function is described in

Table I. This yielded randomized maps containing partially-

connected obstacles. Figures 2(a) and 2(b) show two exam-

ples of these maps. Start locations were uniformly randomly

sampled from the free cells in the map, and goal locations

were uniformly randomly sampled from a square region 60

cells wide, centered at the start location.

TABLE I

PROBABILISTIC CELLULAR AUTOMATON USED TO GENERATE MAPS.

Upper Cell � � � � � � � �

Left Cell � � � � � � � �

Corner Cell � � � � � � � �

PObstacle 0.1 0.0 0.2 0.3 0.2 0.3 0.4 0.6

Robots executed paths over 80 discrete time steps. Each

time step, the plans could instruct the robot to move one cell
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horizontally or vertically, or remain in place. Collisions were

defined as multiple robots occupying the same map cell in a

given time step, or multiple robots exchanging positions with

one another over consecutive time steps. For this paper, an

A* planner with a Manhattan distance heuristic was used, but

the method could be adapted to other planning approaches

such as D* [25], RRTs [26] or PRMs [24].
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(a) Small map
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(b) Large map

Fig. 2. Two typical maps used in experiments. Circles denote robot start
positions while stars denote goals. In the smaller map, dotted lines connect
associated start and goal positions.

Two problem sets were generated to test the performance

of the planners, a team-size dataset and a map-density

dataset. 15 problem instances were generated for each pa-

rameter set and tested using a centralized prioritized planner

to verify that a solution existed and to establish a baseline

for performance. In the first dataset, the number of robots in

the team was varied between 40 and 240. In order to keep

the problem difficulty similar across different team sizes, the

maps were sized such that the density (the ratio of robots to

map cells) was held constant at 0.125. In the second dataset,

the number of robots was fixed at 240, while the density of

the map varied between 0.125 and 0.03125. Descriptions of

the two problem sets can be seen in Table II, along with

some measures of map difficulty explained next.

TABLE II

PARAMETERS FOR THE TWO PROBLEM SETS USED IN EXPERIMENTS.

TEAM-SIZE DATASET

Team size 40 60 80 120 160 240

Map density 0.125

Map size 18 22 26 31 36 44

Avg. collisions 75.5 139.5 237.9 420.8 658.3 1050.9

Avg. blocked 30.6 47.4 67.1 104.2 143.4 214.9

MAP-DENSITY DATASET

Team size 240

Map density 0.03125 0.04166 0.06250 0.08266 0.1250

Map size 88 76 62 54 44

Avg. collisions 262.3 352.0 535.7 721.5 1030.4

Avg. blocked 145.0 161.6 184.6 201.7 215.3

A. Establishing the difficulty of the problem instances

A simple experiment was done to measure the difficulty

of the generated path planning problem instances. For each

problem instance, an independent planner coupled with a

simple stop-and-wait reactive controller was tested on the

map. Plans were generated independently for each robot and
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Fig. 3. Rates of failure of the sparse planners to converge to a collision-
free solution in 20 iterations. A k-value of 2 (γ = 2

√

n messages) is
insufficient in most cases, but there is little difference between k = 3 and
k = 4. Increasing either map density or team size dramatically increases
failure rates in all cases.

the number of collisions between these paths was computed.

Then robots attempted to follow their paths, stopping if they

detected that they were entering an occupied cell. This was

iterated until all robots were either at their goals or blocked

by another robot. In all problem instances, this reactive

planning failed to get every robot to its destination. The

number of collisions and the number of robots that ended

up blocked were averaged for each parameter set, giving a

relative measure of the difficulty of the problem instance.

These results are included in Table II.

B. Selecting the prioritization

In this paper, initial local planning time is used as a priori-

tization for the robots. Previous work [1] showed that a path-

length heuristic performed well in many environments, with

the intuition that robots with shorter paths have time to move

around other robots. The best-first nature of the underlying

A* planner provides a similar intuition for using planning

time. If the planner is taking a long time to search, it is

because the most direct paths for the robot cannot be taken. A

comparison of the paths generated by centralized prioritized

planners using path length or planning time heuristic revealed

similar performance. Variance in relative path cost between

the two over both data sets was minimal (σ2 = 8.87×10−5).

However, the planning time of distributed planners can be

improved with this time heuristic because their running time

is limited by the speed of the slowest planning operation

every iteration.

VI. RESULTS

The centralized, reduced distributed, and three sparse

distributed planners were run on the two problem sets. The

total path costs, planning time, number of iterations (for the

distributed algorithms), and number of messages used were

recorded for each of the problem instances. For planning

time, the concept of wall-clock time was used to estimate

running time in an actual team of n robots. Under wall-

clock time, operations that can be parallelized, such as

individual path planning in the distributed algorithms, are

combined by taking the maximum of the running times, as

this is the amount of time it would take a team of robots

to compute these operations in parallel. The results over the

two datasets can be seen in Figure 3 and Figure 4, with the
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Fig. 4. Average results of the centralized and distributed planners on the team-size and map-density datasets. Results for the team-size dataset are displayed
on the top row, while results for the map-density are on the bottom row. Each point represents 15 runs.

first dataset (varying team size) on the top, and the second

dataset (varying map density) on the bottom.

An iteration limit of 20 was imposed on all distributed

planners, based on the performance of the complete dis-

tributed planner on the first dataset. Unfortunately, as can be

seen in Figure 3, the sparse planners often failed to converge

to a solution within this limit when the map was dense or

there were large numbers of robots. However, the reduced

distributed planner did not have any failures in the problem

instances. This is interesting as statistically, sparse planners

with k ≥ 3 detect well over 99% of trajectory collisions in

the team. Indeed, failure rates are virtually identical between

the k = 3 and k = 4 cases. This suggests that collision

detection alone is insufficient to achieve good convergence.

The reduced distributed planner differs in that it updates

every robot with every relevant path, suggesting that some of

these non-colliding paths are useful in preemptively avoiding

collisions and significantly improving convergence. For the

remainder of the results, non-converging sparse planning runs

were included in the numerical results with the statistics

taken when the planners were interrupted at 20 iterations.

However, this means that the measurements in Figure 4

such as planning time, number of messages, and number

of iterations are underestimates, as the actual performance

might have been worse given additional iterations.

To ensure that efficient paths were being generated, the

cumulative path costs of each solution were compared to

those of a set of independently planned shortest paths for

each robot from start to goal. In both of the problem sets, the

cumulative path costs of the solutions (Figures 4(a) and 4(e))

found by the planners were less than 6% higher than the costs

of the shortest paths, suggesting that the prioritized solutions

were very efficient. As map density increased, there was a

slight increase in the relative path costs of all the prioritized

planners, as would be expected from an increase in planning

difficulty. Interestingly, as team size increased, there was a

slight decrease in the relative path cost for all the prioritized

planners, suggesting that the planners were producing more

optimal paths in larger teams.

Since all of the planners generated similarly efficient

solutions, the next measure of performance was planning

time. Ideally, the distributed planners, because they divided

computational load over the team of robots, would be able

to outperform centralized planning in large teams. However,

as team size was varied, there were no clear trends in the

planning times, and the distributed planners took longer

than the centralized planner. Figure 4(b) shows the times

as normalized by the wall-clock time taken by a centralized

prioritized planner. Part of this result is related to the charac-

teristics of the underlying path planner. The A* planner takes

widely varying amounts of time on these maps in the best

and worst cases. For example, in the first problem instance

of 240 robots, A* takes 0.0047s for one robot and 4.4822s

for another. While this means that the latter robot will be

prioritized higher initially, this three orders of magnitude

difference in planning times means that often, the distributed

approaches are bounded in time by a few iterations in which

they replan a path that takes A* a long time, which a

centralized prioritized planner only has to plan once.

The results on the density varying dataset (Figure 4(f))

show a more clear trend. As density increases, relative

planning time for the distributed planners also increases.

At the lowest densities, the distributed planners resolve

paths in less than half the time taken by the centralized

planner. This shows that when the environment is sparse,

the parallelization was more helpful. However, the high

failure rate of the sparse planners can once again be clearly

seen, as the planning times increase dramatically as density

increases. The reduced distributed planner increases at a

more controlled rate.

The potential for the distributed planners to reduce plan-

ning time, specifically the reduced distributed planner, is

particularly evident when considering the number of iter-

ations taken for convergence across problem sets, as seen
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in Figures 4(c) and 4(g). While the sparse planners are

able to converge relatively quickly in small teams and low

densities, they begin to take many more iterations as density

and team size are increased. The reduced distributed planner,

on the other hand, converges across all cases with a relatively

small number of iterations, considering the team sizes. In the

240-robot problem instances, (the right side of Figure 4(c)

and all of Figure 4(g)), it finds a solution on average in

fewer than 12 iterations, with its absolute maximum over

all trials being 16 iterations. This compares to the 240

iterations required for a centralized prioritized planner, so

if these communications and worst-case planner behaviors

are acceptable, this approach may be useful.

Finally, the purpose of the optimizations introduced by

the reduced and sparse distributed planners was to reduce

the amount of necessary communications between robots.

This was reflected in the total number of messages used by

the various planners. For the team-size dataset (Figure 4(d)),

a plot of the number of messages used by the complete

distributed planner is shown as a worst-case upper bound.

By design, the sparse planners follow curves that are pro-

portional to n
√

n. More interestingly, however, the reduced

distributed algorithm uses far fewer messages than the sparse

planners. In fact, in a 240-robot team, it uses only 17%

of the messages used by the complete distributed planner.

This can be attributed to two factors: the fast convergence

of the algorithm, and the ability to depend on cached

messages. Because the reduced distributed planner takes so

few iterations to converge, it is able to reduce its total number

of messages. In addition, however, the reduced distributed

planner can reduce messages through the assumptions that

it makes at the start: that not receiving a message means

that a robot has not changed its path, and that everyone is

dependent unless proven otherwise. This performance trend

is also found in the density dataset (Figure 4(h)), where

the reduced distributed planner once again uses very few

messages.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we present two distributed variants of

prioritized planning for use with teams containing hundreds

of robots. An efficient, complete method is presented which

is shown to converge to the centralized prioritized plan-

ner solution. Then, a sparse method is proposed in which

robots discover collisions probabilistically. In moderately

constrained environments, it is shown that these methods

generate solutions of similar quality to the centralized al-

ternative, while taking similar amounts of time. However,

in less constrained environments, it is shown that these

methods can find solutions in as little as half the time

of full prioritized planning. Surprisingly, convergence to

collision-free solutions is found to be highly sensitive to the

communication of paths involved in future conflicts.

In the future, improved performance might be obtained

with the use of a more efficient planning strategy than A*. As

the presented algorithms spend most of their time re-solving

paths to avoid new obstacles, incremental planners [27] or

roadmaps [24] might tremendously improve running-time by

reducing the time to replan. In addition, in real domains

communication is unlikely to be lossless, and more work

needs to be done to understand the impact of communication

losses on performance.
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