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Abstract— This paper considers the problem of planar multi-
robot realizations of connectivity graphs. A realization is a set of
planar positions for a team of robots with a connectivity graph
that is identical to an a priori given connectivity graph with
the additional constraint that it must be feasible. Feasibility
means that that the robots must not be overlapping with each
other. As the associated mathematical problem is known to be
NP-hard, a stochastic approach based on genetic algorithms is
proposed. First, a population set based on randomly generated
planar and feasible multi-robot positions is generated. Next, a
fitness function that measures the similarity of the graph of each
member is constructed. Finally, new reproduction operators
that enable the evolution of generations are introduced. An
extensive statistical study with different number of robots
demonstrates that the proposed algorithm can be used to obtain
fairly complicated network topologies.

I. INTRODUCTION

This paper considers the problem of planar multi-robot

realizations of connectivity graphs. The problem is defined as

the generation of robot planar positions whose connectivity

graph is identical to an a priori given connectivity graph with

the additional constraint that the robots must not be overlap-

ping with each other. This problem arises in many applica-

tions such as exploration, search, patrolling and collective

games (such as soccer) that require automatic positioning

of multiple robots with a particular underlying connectivity

graph constraint. For example, in multi-robot deployment

and coordination tasks with limited communication, robot

positions must satisfy the particular connectivity graphs [12],

[1]. This paper presents a stochastic approach to this problem

and proposes a graph-based genetic algorithm for generating

planar multi-robot realizations.

A. Related Literature

There are three related areas: robot networks, disk graphs,

and graph drawing. In multi-robot systems, the concept

of connectivity graphs has been introduced which imposes

various constraints on the relative positions of the robots

[10], [9]. For example, connectivity graphs provide a graph-

theoretic model for broadcast networks where the radii

of the circles correspond to the communication range ρ c.

Interestingly, while many approaches are based on graph

based models, the issue of whether an arbitrary graph has

a multi-robot realization or not has been mostly overlooked.

Connectivity graphs are known as unit disk graphs in

graph theory – which are the intersection graphs of closed

disks in the plane where each vertex corresponds to a

circle and edge appears between two vertices when the

corresponding circles intersect [3]. Of course, the distance

unit is not critical since the disks realize the same graph even

if the coordinate system is scaled appropriately. Furthermore,

unit disk graphs have several alternative definitions that are

all equivalent to each other up to a choice of scale factor. Two

such alternatives are the intersection graph of equal radius

circles or a graph formed from a collection of circles all

having the same radius where two circles are connected by

an edge if each circle contains the center of the other circle.

The set of disks is said to realize the graph [2]. A realization

is therefore a mapping of the vertices to points which realize

the graph. The recognition problem of unit disk graphs is

then posed as: Given a graph, determine if it has a realization

[2]. It has been shown that recognizing unit disk graphs is

NP-hard. The results are also shown to hold for the disk

touching graphs – namely all disks have disjoint interiors.

The NP-hardness of the problem has motivated the de-

velopment of approximate, potential-based or stochastic ap-

proaches – as many problems from different problem ar-

eas nevertheless require solutions to the planar realization

problem. An inapproximability result has placed a bound

on how well the planar coordinates can be derived from

the connectivity information alone [8]. In graph drawing,

where the goal is to produce aesthetically pleasing draw-

ings of general undirected graphs, one proposed approach

is the spring model algorithm. Here, the graph is viewed

to be a mechanical collection of rings (the vertices) and

connecting springs (the edges) with minimal energy configu-

ration attained when the network graph approaches the goal

graph [7]. However, as the spring method is likely to be

trapped by local optima, the configurations that are obtained

are very poor. In the genetic algorithm TimGA, aesthetic

criteria used such as the number of edge crossings, even

distribution of nodes, and edge length deviation are utilized

[5]. An extension of this work that develops new mutation

operators has been proposed in [11]. However, none of these

algorithms enforce adherence to a given connectivity graph

by considering both edges and non edges (namely vertex

pairs that should not have a link between them). The novelty

of the proposed approach is to consider the graph realization

problem and to propose a genetic algorithm which has proved

to be statistically working.

B. States and Graphs

Let P = {1, . . . , p} be the set of robots. Each robot i ∈ P
is associated with the radius ρi ∈ R and state bi ∈ W ⊂ R
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Define b ∈ R
2p to be the robots’ state as b =

∑

i∈P bi ⊗ ei,

where ei ∈ R
p are the unit vectors in R

p and ⊗ is the

Kroenecker operator. Let δij =‖ bi − bj ‖ denote the robots’

pairwise relative distance. Since robots cannot overlap each

other, it is required that

∀ij δij ≥ ρij (1)

where ρij = ρi + ρj . Each robot should also stay in

workspace that is bounded by radius ρ0, it is also required

that

∀j ∈ P ρ0j ≥‖ bj ‖ (2)

where ρ0j = ρ0 − ρj . Note that this constraint implies that

W is bounded by radius ρ0. The free robot configuration

space F ⊂ R
2p satisfies Eq.1 and Eq.2 and hence defines

the feasible robot positions.

Suppose that the robots have limited communication range

ρc. A disk-neighborhood of robot i is a closed ball Bρc(bi)
of radius ρc >> ρi around bi ∈ R

2 . Given ρc, any

configuration b ∈ F induces a state-dependent mapping

g : F → G. Here G = {g′|g′ ⊆ Kp} is the set of all

possible graphs on P and Kp is the complete graph [6].

The image of the graph map is g(b) = (P , E(b)) is known

as the connectivity graph [10]. Here E(b) is the set of edges

as defined by the connectivity matrix A(b) = [aij(b)]:

E(b) = {ij | aij = 1} (3)

The connectivity matrix A(b) is defined as follows:

aij(b) =

{

1 δij ≤ ρc and i �= j
0 otherwise

(4)

C. Problem Statement

Consider a graph function g : F → G. Suppose we are

given g∗ ∈ G. The set g−1(g∗) ⊂ F represents the set of

robot configurations all having graph g ∗. The goal is to find

a realization b ∈ F such that b ∈ g−1(g∗).

II. GENERAL APPROACH

Our approach is based on genetic algorithms. This Section

first gives a broad overview of genetic algorithms. Following,

we describe its adaptation to the planar realization problem.

A. Genetic Algorithms

Genetic algorithms are a class of evolutionary methods

for determining the optimal classifiers or equivalently an

optimal solution [13], [4]. In genetic algorithms, a classifier

is represented by a string of genes that is also known as

a chromosome. The mapping from a chromosome to the

features of a classifier is flexible and depends on the applica-

tion. In broad overview, genetic algorithms employ stochastic

search to evolve the best chromosome. First, a population set

of classifiers is constructed. Here each chromosome differs

somewhat from the others in the population. Next, a fitness

function that evaluates the goodness of each chromosome

is constructed. This function is used to compute the score

of each chromosome. Following, the classifiers are ranked

according to their score and only the fittest are retained.

These are then stochastically altered to generate the next

generation. There are three primary genetic operators that

govern reproduction: replication, crossover and mutation.

Replication is mere reproduction. Crossover involves the

mating of two different chromosomes via exchanging certain

parts. Mutation occurs when the genes change. The overall

process is repeated for the succeeding generation. The pro-

cess is terminated when at least one chromosome has a score

that exceeds an a priori specified value.

B. Adaptation to Planar Multi-Robot Realization

In employing genetic algorithms, we must first specify the

map from a chromosome to the properties of the classifier.

In the proposed approach, each chromosome corresponds to

a particular state b ∈ F and hence a team of p robots that

are all located within W . The goal is to generate a state

(equivalently a chromosome) that has the given connectivity

graph g∗.

An initial population set S (0) ⊂ F is constructed where

the cardinality |S (0 )| is set a priori to NP . Next, a selection

process initiates a new generation S (k) ⊂ F where k ∈ Z+

is the generation number. The fitness of each chromosome in

the current population is evaluated based on a fitness function

f and the members of this population set are ranked accord-

ingly. The population S (k) is via selecting members from

S (k−1) randomly with probability depending on the relative

rank value of the individuals [13]. In this manner, population

members having higher fitness are chosen more than those

having lower fitness values. These members of the population

are to be used in the stochastic alteration that follows. Two

primary genetic operators govern reproduction: crossover

and mutation. This is followed by replacement where the

population is changed via replacing the children with the

parents. Elitism is applied to keep the best chromosome

in new population. If there is no improvement in the elite

chromosome after a predefined number of generations N E ,

newly generated randomly realizations are used to replace

the pA percent of the population while keeping the best pB

percent of the population. The process is halted when fitness

of a generation reaches a desired level or when the number

of generations exceeds a given value NG.

III. FITNESS FUNCTION

Given a member b ∈ S (k) of any population, the fitness

function should measure the similarity between its graph g(b)
and the goal g∗. This is equivalent to finding b ∈ F in such

a way that its adjacency matrix A(b) is the same as that

A = [aij ] of the given goal graph g∗. Recalling that δij =‖
bi − bj ‖, the fitness function f : F → R

≥0 encodes the

following measures.

First, the similarity of adjacency matrix A(b) of a given

realization b with that of the goal A is measured. For this,

both the edges and no edges of A(b) must be compared with

the corresponding entities of A. If the goal graph has an edge

ij and hence aij = 1, then ρij ≤ δij ≤ ρc which is measured
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Fig. 1. Left: f1 function; Right: f2 function.

by the function f1 : R≥0 → [0, 1] defined as:

f1(x) =

{

1 x ≤ ρc

e−(x−ρc) x > ρc
(5)

Similarly, if the goal graph does not have the edge ij, then

aij = 0 which means that δij > ρc which can be measured

by the function f2 : R≥0 → [0, 1] defined as:

f2(x) =

{

1 x > ρc

e(x−ρij)/e(ρc−ρij) x ≤ ρc
(6)

Hence, the term
∑

ij aijf1(δij) + (1 − aij)f2(δij) varies 0
in case of being completely different and p(p − 1) in case

of being completely identical.

Next, we also measure the amount of dissimilarity between

the adjacency matrix A(b) of b and that A of the goal. It is

composed of two terms. For all missing edges in A(b) that

are present in A, the function f3 : R≥0 → R measures the

distance each robot pair need to approach in order to come

within each others’ communication range ρc: δij using:

f3(x) = x − ρc (7)

Similarly, for all the superfluous edges present in A(b) that

should not be present with respect to A, the function f4 :
R≥0 → R measures how close is the corresponding robot

pair from moving within each others’ neighborhood as:

f4(x) = 2ρo(1 − x/ρc) (8)

The term 1 +
∑

ij /∈E(b)

ij∈g∗

f3(δij) +
∑

ij∈E(b)

ij /∈g∗

f4(δij) varies be-

tween 1 when the target connectivity graph is realized and

being a large number in case of being different.

Hence, the fitness function can be constructed as the ratio

of these two terms as:

f(b) =

∑

ij aijf1(δij) + (1 − aij)f2(δij)

1 +
∑

ij /∈E(b)

ij∈g∗

f3(δij) +
∑

ij∈E(b)

ij /∈g∗

f4(δij)
(9)

IV. REPRODUCTION

Two primary genetic operators govern reproduction:

crossover and mutation.

A. Crossover

For crossover reproduction, first, a mating pool is gener-

ated via considering each robot i ∈ P and adding it to the

mating pool with probability pC . If the number of robots in

this set turns out to be an odd number, a randomly selected

robot is removed from the pool. The crossover operator

considers each consecutive two members b−, b′
−
∈ S (k) of

the mating pool and replaces them by two offsprings b+ and

b′
+

. The superscripts − and + indicate each chromosome

before and after the crossover respectively. Three types of

crossover operators are considered: Single, multi-point and

square.

1) Single Crossover: In the single point crossover, the

location of a randomly selected robot i is swapped between

the parents. That is to say, b+
i = b′i

−
and b′i

+ = b−i . All the

links are adjusted accordingly. If the crossover leads to an

unfeasible configuration for any of the resulting offsprings,

the offsprings are not added to the population S(k). Instead,

the crossover is repeated with another robot l �= i. If a

feasible configuration is not available after trying all the

indices, the crossover operation is not applied to this pair.

2) Multi Point Crossover: Multi-point crossover is similar

to single point crossover. Here, the parents are spliced into

two groups via choosing a robot index i randomly. The

offsprings are generated via exchanging one of the groups

formed. b+ and b′
+

are defined as follows for ∀j ∈ P :

b+
j =

{

b′j
−

if 1 ≤ j ≤ i

b−j if i < j ≤ p
(10)

b′j
+

=

{

b−j if 1 ≤ j ≤ i

b′j
−

if i < j ≤ p
(11)

If the resulting operation leads to an unfeasible configuration

for any of the offsprings, again the offsprings are not added

to the population set S(k). Instead, another robot index

l �= i is selected. This is repeated until either both of the

offsprings have feasible configurations or all the indices are

depleted. In case of failure to generate offsprings having

feasible configurations, the pointwise crossover is not done

for this pair.

3) Square Crossover: In square crossover, two offsprings

are generated via exchanging a small set of robots between

the two parents. The exchange is based on two square regions

C−,C ′− ⊂ W both centered at the same location c− ∈
W in W , having the same edge length DC . These square

regions are selected in a manner such that there exists at least

two robots i, j ∈ P with bi ∈ C
− and b′j ∈ C

′−. Hence,

each square contains at least one robot from one parent. Let

M and M ′ denote the index set of robots in C − and C ′−

respectively as:

M =
{

i ∈ P |b−i ∈ C−
}

M ′ =
{

i ∈ P |b′i
−
∈ C′−

}

Following, two offsprings b+ and b′+ are generated by first

duplicating each parent exactly, exchanging robots inside C
−

and C ′− while the locations of the rest of the robots are kept

unchanged as much as possible. Furthermore, the centers of

C− and C ′− are moved to a new randomly selected location

c+ ∈ W in the offsprings’ workspace while ensuring that

there is no collision. Of course, all the robots in the offsprings
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Fig. 2. Square crossover. In each graph, the robots are shown with dark
circles and the communication ranges are shown with the dotted circles. If
two robots’s centers are within each others’ communication range, a link
is established as shown by the lines connecting their centers. The dotted
circles indicate the squares selected. The two offsprings are generated via
exchanging the robots.

having indices identical to those in M and M ′ are removed.

The offsprings b+ and b′i
+

are defined as follows:

b+
i =

{

b′i
− − c− + c+ if i ∈ M ′

b−i if i /∈ M ′ (12)

b′i
+

=

{

b−i − c− + c+ if i ∈ M

b′i
−

if i /∈ M
(13)

A sample square crossover is as shown in Fig. 2. Here, C −

contains robots 1 and 2 and hence M = {1, 2}. Similarly,

C ′− contains robot 2 and hence M ′ = {2). Next, C− and

C ′− are moved to a new center. The two offsprings are

generated via copying all the robots while exchanging those

in M and M ′ respectively. The operation is completed after

removing all the robots having identical indices with those

in M and M ′.

B. Mutation

The mutation operator is used to increase the variability of

the population by perturbing each robots’ position in a graph

with a given probability. The algorithm uses two different

kinds of mutation operators – robot and link mutations. At

each iteration k, all the members of the population S(k)
are considered and only one type mutation is selected with

probability pR for robot mutation and pL for link mutation.

If robot mutation is selected, robot mutation is applied on

all the robots bi in the given sample. There are two alternative

operators depending on the restriction on the mutated loca-

tion of each robot. The new position can be perturbed largely

or slightly which correspond to the two types of operators.

Each is selected with probabilities pR1 and pR2 respectively.

For example, in Fig.3(top), the position of robot 3 is mutated

with a large perturbation whereas in Fig.3(bottom), the same

robot undergoes a slight perturbation.

If link mutation is selected, the mutations are applied

on the links. There are three alternative operators and each

is applied with probability pL1, pL2 and pL3 respectively.

First, a robot with one link only – known as leaf robot –

is rotated through a random angle while perturbing the link

length also slightly without breaking the link as shown in

Fig. 4(top) for the link between robots 2 and 3. A second

type of link mutation is where a randomly selected link is

moved to a new location in W by keeping its length and

direction. An example is presented in in Fig. 4(center) where

the link between robots 2 and 3 is translated. The third type

of mutation is where a randomly selected robot that also does

not have any links is forced to be connected to a randomly

chosen nearby robot. An example is as seen in Fig. 4(bottom)

where robot 1 is made to establish a link with robot 2.

Fig. 3. Robot mutations: (Top) Translation within the workspace; (Bottom)
Translation within a small area.

V. SIMULATIONS

In this section, we present simulation results from running

the proposed algorithm for varying connectivity graphs. The

values of all the parameters are set as presented in Table-I.

The type of the crossover operation is determined statistically

as follows: We made 100 simulations with a high number of

robots, identical parameter set and adjacency matrix and with

different S(0) using only one of crossover operators. The

performance of each operator is assessed based on the per-

centage of realizations found in these simulations which turn

out to be 62, 65 and 70 percent for the single-point, multi-

point and square crossover operators respectively. Hence,
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Fig. 4. Link-based mutations: (Top) Rotation based; (Center) Translation
based; (Bottom) Connectivity based.

in the remaining simulations, the only type of crossover

operator used is the square crossover.

We start with p = 8 since an example of an unrealizable

graph is the star K1,7 with one central node connected to

seven leaves as given by A1. It is well known this graph

does not have a realization since using geometry, it can be

seen that if each of seven unit disks touches a common unit

disk, some two of the remaining seven disks must touch each

other. A2 is a realizable version of this graph. The algorithm

does not generate a realization for A1. For A2, a sample

graph is shown in Fig.5.

A1 =

























0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























A2 =

























0 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1
1 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1
1 1 0 0 0 0 1 0

























Next, we run the algorithm for p = 30 robots and

seek realizations of a graph having degree 3 with a simple

connectivity structure shown in Fig. 6. Due to size, the

corresponding adjacency matrix is not provided in the paper.

We run 100 simulations all with different initial population

set S(0). Six sample realizations generated by the algorithm

are as shown in Fig.7.

TABLE I

PARAMETERS OF GA

Parameters Symbol Value

Workspace radius ρ0 50

Robot radius ρi 0.5

Connectivity range ρc 20

Population size NP 60

Max. number of generation NG 10000

Crossover probability pC 0.3
Crossover square size DC 15

RM probability pR 0.5
RM1 probability pR1 0.2
RM2 probability pR2 0.2

Mutation square size DM 5

LBM probability pL 0.5
LBM1 probability pL1 0.2
LBM2 probability pL2 0.3
LBM3 probability pL3 0.3

Constancy generation for elite NE 1000
Random new addition percentage pA 33

Best population percentage pB 10

1

2

3

4

5
6

7

8

Fig. 5. A sample graph realization for 8 robots given A2.

Fig. 6. A simple graph for 30 robots.

Finally, we run the algorithm again for p = 30 robots,

but this time the realizations are of a graph having a more

complicated connectivity as shown in Fig.8. Again 100

simulations with different initial population set S(0) are

made. Six sample realizations generated by the algorithm

are as shown in Fig.9.

VI. CONCLUSION

This paper considers the problem of planar multi-robot

realizations of connectivity graphs. A realization is a set of

robot locations in the planar workspace having a connectivity

graph that is identical to an a priori given connectivity graph

with the additional constraint it must be feasible. As the

associated mathematical problem is known to be NP-hard, a

stochastic approach based on genetic algorithms is proposed.

Here, a population set is generated based on randomly

generated feasible planar multi-robot positions. Each member
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Fig. 7. Sample 30 robot realizations for a simple connectivity structure.

Fig. 8. A complicated connectivity graph for 30 robots.

in this set is then evaluated using a novel fitness function

that measures the similarity of its connectivity graph with the

given connectivity graph. New mutation operators that enable

the evolution of generations are introduced. An extensive

statistical study with different number of robots demonstrates

that the proposed algorithm can be used to obtain realizations

for fairly complicated connectivity graphs.
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