
Push-Grasping with Dexterous Hands: Mechanics and a Method

Mehmet R. Dogar Siddhartha S. Srinivasa

Abstract— We add to a manipulator’s capabilities a new
primitive motion which we term a push-grasp. While significant
progress has been made in robotic grasping of objects and
geometric path planning for manipulation, such work treats
the world and the object being grasped as immovable, often
declaring failure when simple motions of the object could
produce success. We analyze the mechanics of push-grasping
and present a quasi-static tool that can be used both for
analysis and simulation. We utilize this analysis to derive a fast,
feasible motion planning algorithm that produces stable push-
grasp plans for dexterous hands in the presence of object pose
uncertainty and high clutter. We demonstrate our algorithm
extensively in simulation and on HERB, a personal robotics
platform developed at Intel Labs Pittsburgh.

I. INTRODUCTION

Robotic grasping systems suffer from two main problems
in unstructured human environments: uncertainty and clutter.
Consider the task of cleaning a dining table. In such a task
the robot needs to detect the objects on the table, figure
out where they are, move its arm to reach the goal object,
and grasp it to move it away. If there is significant sensor
uncertainty, the hand could miss the goal object, or worse,
collide with it in an uncontrolled way. Clutter multiplies this
problem. Even with perfect sensing, it might be impossible
for the hand to wrap around the object for a good grasp.
With both clutter and uncertainty, the options for a direct
grasp are even more restricted, and often impossible.

We address the problems for grasping in such a context.
In particular, we demonstrate how the mechanics of pushing
can be harnessed to provably funnel an object into a stable
grasp, despite high uncertainty and clutter.

We call this capability push-grasping. A push-grasp aims
to grasp an object by executing a pushing action and then
closing the fingers. We present an example push-grasp in
Fig. 1. Here, the robot sweeps a region over the table during
which the bottle rolls into its hand, before closing the fingers.
The large swept area ensures that the bottle is grasped even
if its position is estimated with some error. The push also
moves the bottle away from the nearby box, making it
possible to wrap the hand around it, which would not have
been possible in its original location.

Intuitively, under large uncertainty, the wider the robot
opens its fingers and the longer it pushes, the larger the area
it can sweep into its grasp. However, this is in direct conflict
with avoiding surrounding clutter. Hence, for a successful
and efficient push-grasp, we need a detailed analysis enabling
the robot to decide on necessary parameters; e.g. the initial
hand pose, the pushing distance, and the hand shape.

M. Dogar is with The Robotics Institute, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA - 15213, USA. mdogar@cmu.edu

S. Srinivasa is with Intel Labs Pittsburgh, 4720
Forbes Ave., Suite 410, Pittsburgh, PA - 15213, USA
siddhartha.srinivasa@intel.com

Fig. 1. An example push-grasp of an object in contact with the surrounding
clutter.

In a given scene, to find the right parameters of a push-
grasp efficiently, the robot must predict the consequences
of the physical interaction. For this purpose, we introduce
the concept of a capture region, the set of object poses
such that a push-grasp successfully grasps it. We compute
capture regions for push-grasps using a quasi-static analysis
of the mechanics of pushing and a simulation based on this
analysis. We show how such a precomputed capture region
can be used to efficiently and accurately find the minimum
pushing distance needed to grasp an object at a certain pose.
Then, given a scene, we use this formalization to search over
different parametrizations of a push-grasp, to find collision-
free plans.

Our key contribution is the integration of a planning
system based on task mechanics to the geometric planners
traditionally used in grasping. We enhance the geometric
planners by enabling the robot to interact with the world
according to physical laws, when needed. Our planner is
able to adapt to different levels of uncertainty and clutter,
producing direct grasps when the uncertainty and clutter are
below a certain level. Our planner infers the consequences
of physical interaction with the world, in a fast and con-
servative manner. We do not assume specific values for the
coefficient of friction between the robot and an object or
the pressure distribution beneath an object, but we assume
reasonable bounds for these parameters. Given our quasi-
static assumption, the robot does not need to know the object
masses or the coefficient of friction between the object and
the supporting surface.

We demonstrate our results both in simulation and in real

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2123

Fig. 2. Overview of our framework

world experiments with HERB, a personal robotics platform
developed at Intel Labs Pittsburgh, using the framework
illustrated in Fig. 2. Our robot detects and estimates the
poses of the objects in the environment with a camera and a
computer vision system using SIFT features. Predefined 3D
models of the detected objects are inserted into the simulation
environment at the estimated poses. A measure of uncertainty
can be associated with each of these objects, reflecting
the expected error in their estimated poses. Our planner
searches for a feasible push-grasp, performing the necessary
3D collision-checking in the simulated environment. We
make sure that a push-grasp is executable by the robot arm,
checking if the inverse-kinematic solutions exist and are
smooth. The robot also plans a collision-free arm trajectory,
using an RRT-based planner, to move the hand to the initial
pose of the push-grasp. After the hand reaches this initial
pose, the robot executes the push-grasp.

II. BACKGROUND

There is a large body of work addressing the problem
of planning to grasp an object using a robot arm. The
problem is usually solved by first identifying grasping goal
configurations for the robot manipulator, and then planning a
path from the initial configuration of the robot arm to these
goal configurations. Planning algorithms like probabilistic
roadmaps (PRMs) (Kavraki and Latombe [1]) or rapidly
exploring random trees (RRTs) (Lavalle and Kuffner [2])
can be used in planning such a path. Using PRMs, Siméon
et al. [3] propose a planner that produce transfer/transit
paths separated by grasp/ungrasp actions. Berenson et al. [4]
extend the RRT algorithm by integrating into the plan-
ning process, the sampling of goal configurations from a
continuous range of grasping configurations for the object
(called task space regions, TSRs). These planners deal with
clutter through collision checking to avoid contact with the
objects during the execution of a path. The grasping goal
configurations are also collision checked before trying to
plan to them. The objects are treated as immovable until
the point that a complete grasp is acquired, and contact with
any object is avoided until that point.

For our planner, there is an explicit time window, during
which the robot does not have the complete grasp of the
object, but is in contact with it and moving it. In our
experiments, as a part of the larger framework, we also
use an RRT-based planner, but we do not plan a specific
grasping configuration of the hand. First, the push-grasp
planner chooses an initial pose of the hand to start pushing,
and then we use the RRT planner to plan to reach that

initial pushing configuration. Interacting with an object prior
to grasping is also studied under the name of pre-grasp
manipulation and is shown to be useful. For instance, Chang
et al. [5] use pre-grasp object rotation to increase grasping
task performance and to decrease the load on the arm during
the lifting action.

There have been different approaches in addressing un-
certainty in object manipulation. One approach tries to come
up with robust actions that work even under the given uncer-
tainty; by computing grasps that are robust to disturbances
(Nguyen [6]), or using the preimage backchaining work of
Lozano-Perez et al. [7]. Uncertainty TSRs by Berenson et
al. [4], also mentioned above, address uncertainty by taking
different pose hypotheses for an object, and intersect the
TSRs of all those pose hypotheses to find a hand pose that
grasps all the hypothetical objects. The second approach to
addressing uncertainty in object manipulation plans motions
that actively reduce the uncertainty using the task mechanics.
Brost [8] presents an algorithm that plans parallel-jaw grasp-
ing motions for polygonal objects with pose uncertainty, and
coins the term push-grasping. The object is pushed by one
plate towards the second one, and then squeezed between the
two. Mason [9] investigates the mechanics and planning of
pushing in object manipulation under uncertainty. One of the
first planners that incorporates the mechanics of pushing was
developed by Lynch and Mason [10]. This planner is able to
push an object in a stable manner using edge-edge contact to
a goal position, using a quasi-static analysis of the mechanics
of pushing. This approach is the inspiration for our work. We
use a similar analysis to Lynch and Mason [10], tailored for
dexterous hands and grasping.

III. THE MECHANICS OF PUSHING

Here we review the previous work, that we directly use in
implementing our pushing simulation.

When pushing an object with a robot finger, one question
is whether the object will roll into or out of the hand.
Mason [9] develops the voting theorem stating that the
pushing direction and the edges of the friction cone at the
contact determine the sense of rotation for a pushed body.
We can use the voting theorem to immediately reject pushing
if the rotation sense indicates the object will roll out of the
hand.

Goyal et al. [11] show that, in the quasi-static case,
the motion of a pushed object is determined by the limit
surface. The limit surface is a three-dimensional surface in
the force-torque (fx, fy , τoz) space. Given a point on the
limit surface, the motion of the object can be computed by

2124

taking the normal to that point on the limit surface. However,
building the limit surface analytically may not be possible
for the general object geometry. Also, it depends on the
pressure distribution underneath the object, which is usually
not known.

Howe and Cutkosky [12] show that the limit surface can be
approximated by a three-dimensional ellipsoid. We use their
model to simulate the motion of a pushed object. If we place
the origin of our coordinate frame at the center of friction of
the object this ellipsoid will be centered at the origin. We use
the aspect ratio of this ellipsoid, in calculating the normal to
a point on it. The equatorial radii are found by calculating the
maximum friction force (fmax) that the supporting surface
can apply to the object, which occurs when the object is
translating. The polar radius is found by calculating the
maximum moment (mmax) that the supporting surface can
apply, which occurs when the object is rotating around its
center of friction. Then the quasi-static motion of the object
is determined by the ratio c = mmax/fmax. The mass of
the object and the coefficient of friction between the object
and the supporting surface (µs) are multipliers in both the
numerator and denominator of this fraction, and cancel out.
Hence, as long as the quasi-static assumption holds, we do
not need to know the object mass or µs to predict the motion.

Howe and Cutkosky [12] also show that if the pressure dis-
tribution underneath an object is concentrated at the center,
the object has a rotational tendency; and if it is concentrated
at the periphery, the object has translational tendency. For
push-grasping, rotational velocity of the pushed object is
more desirable than translational velocity, as more translation
of the object would require the robot to push for longer
distances. Given an object, our planner assumes that the
pressure distribution is at the object’s periphery. This is a
conservative estimate for our planner: the pushing motion
that rolls this object into the hand will also roll other objects
of the same shape with a different pressure distribution.

We make a similar worst-case assumption for the coef-
ficient of friction between the robot finger and the pushed
object (µc). A large µc will let the fingertip apply forces to
the object along its pushing direction, causing the object to
translate with the fingertip; a smaller µc will create a slippery
contact and the object will roll in more quickly. Our planner
assumes a high µc, such that any lower value will work.

IV. PUSH-GRASPING

In this section, we demonstrate how the mechanics of
pushing described above can be extended to produce capture
regions for real-world objects with dexterous robot hands.

A. The push-grasp

The push-grasp is a straight motion of the hand parallel
to the pushing surface along a certain direction, followed by
closing the fingers (Fig. 1). We parametrize (Fig. 3(a)) the
push-grasp G(ph, a, d) by:

• The initial pose ph = (x, y, θ) ∈ SE(2) of the hand
relative to the pushing surface.

• The aperture a of the hand during the push. The hand is
shaped symmetrically and is kept fixed during motion.

Fig. 3. (a) Parametrization of a push-grasp. (b) The capture region of a
radially symmetric bottle is the area bounded by the black curve. We divided
the plane into different regions using the green dashed lines. (c) Capture
regions for push-grasps of different distances. (d) 3D capture region of a
rectangular box.

• The pushing direction v along which the hand moves
in a straight line. In this study the pushing direction is
normal to the palm and is fully specified by ph.

• The push distance d of the hand measured as the
translation along the pushing direction.

We execute the push-grasp as an open loop action.

B. The Capture Region of a Push-Grasp

A successful push-grasp is one whose execution results
in the stable grasp of an object. Given the push-grasp, the
object’s geometry and physical properties, which we term O,
and the object’s initial pose, we can utilize the mechanics of
manipulation described before to predict the object’s motion.
Coupling the simulation with a suitable measure of stability,
like caging or force-closure, we can compute the set of all
object poses that results in a stable push-grasp. We call this
set the capture region C(G,O) ⊂ SE(2) of the push-grasp.

We present the capture region of a juice bottle produced
by our pushing simulation in Fig. 3(b), which is a 2D region
as the bottle is radially symmetric. The capture region is the
area bounded by the black curve. The shape of the curve
represents three phenomena. The part near the hand (inside
regions IV, V, and VI) is the boundary of the configuration
space obstacle generated by dilating the hand by the radius
of the bottle. The line at the top (inside region II) represents
the edge of the fingers’ reach. We conservatively approximate
the curve traced out by the fingers while they are closing by
the line segment defining the aperture.

Regions I and III of the capture region curve are the most
interesting Let us consider the left side of the symmetric
curve. If an object is placed at a point on this curve then
during the push-grasp the left finger will make contact with
the object and the object will eventually roll inside the hand.

2125

Fig. 4. Given an object pose, the minimum required pushing distance d
to grasp that object can be found using a precomputed capture region of a
push-grasp with pushing distance Dmax. In the figure, d = 0 for P1 since
it is already in the hand; P2 can not be grasped with a push shorter than
Dmax since it is outside the capture region; for P3 and P4 the required
pushing distances can be found by computing d = Dmax − d3sub and
d = Dmax − d4sub respectively.

If an object is placed slightly to the left of this curve, then
the left finger will push that object too, but it will not end
up inside the hand at the end of the push: it will either roll
to the left and out of the hand or it will roll right in the
correct way but the push-distance will not be enough to get
it completely in the hand. We can observe the critical event
at which the object starts to slide on the finger, producing a
discontinuity on the upper part of the curve.

We also present the three-dimensional capture region of a
rectangular box in Fig. 3(d). We compute it by computing
the two-dimensional regions of the object at different orien-
tations. In §V, we will talk about the possibility of doing
inclusion checks between capture regions and other three-
dimensional regions. Fig. 3(d) shows that capture regions,
in general, do not have trivial geometry; hence they are not
suitable for fast inclusion checks.

C. Efficient Representation of Capture Regions

Each push-grasp G for an object O produces a unique
capture region C(G,O). By computing C(G,O) relative to
the coordinate frame of the hand, we can reduce the depen-
dence to the aperture a and the pushing distance d. Every
other capture region is obtained by a rigid transformation of
the hand-centric capture region. This can be formally stated
as C(G(ph, a, d), O) = T (ph)C(G(0h, a, d), O).

To illustrate the effects of the pushing distance d on the
shape of a capture region, we overlaid the capture regions
produced by different pushing distances in Fig. 3(c). We can
see that as the pushing distance gets smaller, the upper part
of the larger capture region (regions I, II, and III in Fig. 3(b))
is shifted down in the vertical axis. To understand why this
is the case, one can think of the last part of a long push as
an individual push with the remaining distance.

This lets us pre-compute the capture region for a long push
distance, Dmax, and use it to produce the capture regions of
shorter pushes. Given all the other variables of a push-grasp,
our planner uses this curve to compute the minimum push
distance d required by an object at a certain pose (Fig. 4).

The cases to handle are:

• If the object is already inside the hand (see P1 in Fig. 4),
no push is required; d = 0m.

• Else, if the object is outside the capture region (see P2
in Fig. 4) there is no way to grasp it with a push shorter
than Dmax. Reject this object.

• Else, the minimum pushing distance required can be
found by using the formula

d = Dmax − dsub

where dsub is the distance between the object and
the top part of the capture region curve along the
pushing direction v (see P3 and P4 in Fig. 4). dsub can
be interpreted as the value we can shorten the push-
distance Dmax such that the object is exactly on the
boundary of the capture region.

We use Dmax = 1m, as an overestimate of the maximum
distance our robot arm can execute a pushing motion.

The effect of changing the hand aperture, a, is straightfor-
ward. Referring again to the regions in Fig. 3(b), changing a
only affects the width of the regions II and V, but not I and
III. Therefore, we do not need to compute capture regions for
different aperture values. Note that this is only true assuming
the fingertips are cylindrical in shape, hence the contact
surface shapes do not change with different apertures. If the
fingertip contact surfaces dramatically change with different
apertures of the hand, one can compute the capture regions
for a predefined set of different apertures.

D. Validating Capture Regions

We ran 150 real robot experiments to determine if the pre-
computed models were good representations of the motion of
a pushed object, and whether they were really conservative
about which objects will roll into the hand during a push.

To validate the capture region, we repeatedly executed a
push of the same d and placed the object in front of the
hand at different positions on a grid of resolution 0.01m
(Fig. 5(b)). Then we checked if the object was in the hand
at the end of a push. The setup and two example cases where
the push grasp failed and succeeded are shown in Fig. 5(c).

The results (Fig. 5(a)) show that, the simulated capture re-
gion is a conservative model of the real capture region.There
are object poses outside the region for which the real object
rolled into the hand (green circles outside the black curve);
but there are no object poses inside the curve for which the
real object did not roll into the hand. This is in accordance
with our expectations, since, for the system parameters that
are hard to know (the pressure distribution underneath the
object, and the coefficient of friction between the finger
and the object) our simulation of pushing uses conservative
values. This guarantees success, in the sense that our planner
always overestimates the pushing distance needed.

V. OBJECT POSE UNCERTAINTY

For a robot, object poses are often not exactly known. This
section explains how we represent uncertainty about object
poses and their relationship to capture regions.

2126

(a) Simulation and real-world experiments.
Green circles: real world successes; red crosses:
real world failures.

(b) Push-grasping validation setup (c) Two example cases where the push fails (top
row), and succeeds (bottom row).

Fig. 5. Capture region generated with our push-grasping simulation and validated by robot experiments. 150 validation tests were performed in total.

A. Object Poses and Uncertainty Regions
Errors produced by a pose estimation system can usually

be modeled, either analytically or by collecting statistics on
deviations from ground truth. Then, given an estimate we
can represent the uncertainty as a probability distribution.
This distribution is six-dimensional in general, but for push-
grasping we assume that the objects are on a surface and their
poses are described as a three dimensional vector (x, y, θ).

Continuous probability distributions, in general, can ex-
tend to infinity. In that case we define the uncertainty region
about an object pose to be the region bounded by a certain
isocontour of the probability distribution. If the distribution
is already bounded, we define it as the uncertainty region.

B. Overlapping Uncertainty and Capture Regions
The overlap between a capture region and an uncertainty

region indicates whether a push-grasp will succeed under
uncertainty. To guarantee that a push-grasp will succeed it
is sufficient to make sure that the uncertainty region of the
goal object is included in the capture region of the push-
grasp, assuming that there is no other clutter.

We illustrate this idea in Fig. 6. Here the robot detects a
juice bottle (Fig. 6(a)). We illustrate the uncertainty region
of the juice bottle in Fig. 6(b), and the capture region of
the push-grasp in Fig. 6(c). If the uncertainty region is
completely included in the capture region as in Fig. 6(c),
then we can guarantee that the push-grasp will succeed.

The uncertainty and capture regions are two-dimensional
in Fig. 6 only because the bottle is radially symmetric.
In general, these regions are three-dimensional, nonconvex
and potentially even disjoint (e.g. multimodal uncertainty
regions). Checking inclusion/exclusion of two generic three-
dimensional regions is a computationally expensive problem.

We use a sampling strategy to overcome this problem. We
draw n random samples from the uncertainty region, and
check if all of these samples are in the capture region of a
push-grasp. Samples are drawn according to the probability
distribution of the uncertainty region: poses of higher prob-
ability also have a higher chance of being sampled.

Using this sampling strategy, we can not guarantee the
success of a push-grasp anymore, since we are not check-
ing the inclusion of the full uncertainty region but only
of samples from it. On the positive side, probabilities of
poses play a role, contrary to taking all the region as a

(a) Detected object (b) Uncertainty region (c) Capture region

Fig. 6. If the uncertainty region of an object is included in the capture
region of a push-grasp, then the push-grasp will be successful.

uniform distribution. The number of samples n we draw is
an important parameter here that can be tuned. If n is large,
we approach guaranteeing the success of a push-grasp, but
we may be acting too conservatively and the planning may
take longer. If n is small, the planning will be fast, but we
move away from guaranteeing the success of a push-grasp.

VI. A PUSH-GRASP PLANNER

This section details our push-grasp planner. Given an
environment, the planner computes a collision-free trajectory
for the robot arm and hand that can perform the successful
push-grasp of a desired object.

A. Finding a successful push-grasp
The planner searches for a push-grasp such that (i) it

can grasp all the samples drawn from the uncertainty region
of the goal object; (ii) the hand does not collide with any
samples from the uncertainty regions of the obstacle objects;
(iii) the resulting hand motion can be executed with the arm.

Given a goal object in the environment, the planner
searches for a push grasp by changing the parameters v, a,
and the lateral offset in approaching the object, o. The lateral
offset o changes the initial pose of the hand by moving it
along the line perpendicular to the pushing direction v.

During the search, these parameters are changed between
certain ranges, with a user defined step size. v changes
between [0, 2π); a changes between the maximum hand
aperture and the minimum hand aperture for the object; and
o is changed between the two extreme positions, where the
object is too far left or right relative to the hand.

The push-grasp planner is presented in Algorithm 1. The
planner starts with loading the precomputed object capture
region (line 1), and sampling from the uncertainty region of

2127

Algorithm 1: t ← PlanPushGrasp(goalObject, obsta-
cleObjects)

1 c ← goalObject.captureRegion;
2 gSamples ← Sample(goalObject, n);
3 oSamplesi ← Sample(obstacleObjectsi, n);
4 while {v, a, o} ← GetNextParam(goalObject) do
5 p ← FindInitialHandPose(goalObject, v, a, o);
6 maxd ← NULL;
7 for i← 1 to n do
8 if IsInCaptureRegion(p, a, gSamplesi, c) then
9 di ← PushDistNeeded(p,a,gSamplesi,c);

10 maxd ← max(maxd, di);
11 else
12 maxd ← NULL;
13 break;
14 end
15 end
16 if maxd ! = NULL then
17 d ← maxd;
18 t ← GenerateTraj(p,a,d);
19 if CheckIK(t) and CollisionFree(t, oSamples)

then
20 return t;
21 end
22 end
23 end

the goal and obstacle objects (lines 2-3). The planner loops
over different parametrizations of the push-grasp relative to
the goal object (line 4). For each such parametrization, first,
an initial hand pose is found which is not in collision with
any object samples (line 5). Here, the FindInitialHandPose
function returns a hand pose (p = (x, y, θ)) by first placing
the hand over the goal object with direction v, offsetting
in the perpendicular direction by o, and then backing up in
the −v direction until it is collision-free. Lines 6-15 checks
whether it is possible to grasp all the goal object samples
from this initial hand pose. If it is possible, the pushing dis-
tance needed is computed. The IsInCaptureRegion function
returns true if the sample is in the capture region.

The maximum of the push distances required by all the
goal samples is set as the push distance d (line 17), to ensure
that all samples end up in the hand. A trajectory is generated
from the initial pose p, with aperture a, and push distance
d (line 18). Then we check if a smooth inverse kinematic
solution for the trajectory exists, and also check for collision
with the environment and the obstacle object samples.

One potential problem this planner does not deal with is
the object-to-object contacts. In principle this can be han-
dled by extending the precomputed object models with the
trajectory the pushed object travels. Then, during planning
we can check for collision at each point on this trajectory.
This would increase the number of collision-checks needed,
though. In general, the volume of space that the pushed
object sweeps but the hand does not is very small. Hence
object-to-object contacts are rarely a real problem, or are
already handled by the hand-to-environment collision check.

TABLE I
PLANNER PERFORMANCE.

No Clutter Medium Clutter High Clutter

TSR PG TSR PG TSR PG

σ1
10 10
0.01 0.02

10 10
0.01 0.04

5 8
0.54 1.98

σ2
9 10

0.52 0.58
9 10

1.02 1.17
0 5

1.97 12.93

σ3
0 10

0.86 1.00
0 10

1.61 5.17
0 3

3.22 28.16

σ4
0 5

0.86 1.44
0 0

1.63 3.91
0 0

3.08 7.46

VII. RESULTS

This section presents extensive experiments in simulation
and on HERB to evaluate the performance of our planner.
Simulation experiments are performed in OpenRAVE [13].

A. Robotic Platform
In this study we use the robotic platform HERB [14]

developed at Intel Labs Pittsburgh. HERB has a 7-DoF WAM
arm, and a 4-DoF Barrett hand with three fingers. A camera
is attached to the palm to detect objects and estimate their
poses. We use the vision system from Collet et al. [15].

B. Planner performance
We compared the performance of our grasp planner with

another grasp planner that can handle uncertainty about the
object pose. We used the uncertainty task space regions
(TSRs) algorithm from Berenson et al. [4].

In §I we described how TSRs use hypotheses about object
poses to address uncertainty. In our implementation, to
supply the TSRs with a set of hypotheses we used samples
from the uncertainty region of our objects. We used the same
number of samples that we use for our push-grasp planner.

Table I presents results in simulation comparing the per-
formance of our push-grasp planner (PG) and the Uncertainty
TSR planner. We categorize scenes as no clutter (1 object),
medium clutter (2-3 objects placed apart from each other),
and high clutter (3-4 objects placed close to each other). For
each category we created ten different scenes. For each scene
we added increasing amount of uncertainty, where σ1 is no
uncertainty, and σ4 is the highest uncertainty.

In each cell of Table I we present four numbers. The
top left number indicates in how many of the ten scenes
Uncertainty TSR planner was able to come up with a plan.
The same value for the Push-Grasp planner is in the top right.
We indicate the average planning time in seconds, for TSR,
on the lower left corner. The same value for the push-grasp
planner is at the lower right. We used normal distributions
as the uncertainty regions. For different uncertainty levels
the standard deviations in object translation and rotation
are: σ1: no uncertainty; σ2: (0.005m, 0.034rad); σ3: (0.02m,
0.175rad); σ4: (0.06m, 0.785rad). The number of samples,
n, we used for these uncertainty levels are: 1, 30, 50, 50.

Table I shows that the push-grasp planner is able to plan in
environments with higher uncertainty. When the uncertainty
is high, the Uncertainty TSR planner is not able to find any
static pose of the hand that grasps all the samples of the

2128

Fig. 7. A high-clutter scene where the TSR planner fails but push-grasp
planner is able to find a plan.

object. The push-grasp planner, on the other hand, is not
limited to static grasps, and can sweep larger regions over
the table than any static hand pose can. Note also that a
push-grasp with no real pushing (d = 0) is possible, hence
the push-grasp planner is able to find a solution whenever
the TSR planner finds one.

We can see from Table I that push-grasp planner also
performs better in high clutter. One example scene of high
clutter, where push-grasp planner is able to find a grasp but
the Uncertainty TSR planner cannot, is presented in Fig. 7.
Here the goal object is right next to other objects. The
Uncertainty TSR planner cannot find any feasible grasps in
this case since any enveloping grasp of the object will collide
with the obstacle objects. In this case, the push-grasp planner
comes up with the plan presented in Fig. 7, which moves the
object away from the clutter first and then grasps.

The planning times also shown in Table I. The push-grasp
planner takes more time than the TSR planner. This is due
to the fact that it searches a larger space. It is usually able to
find a plan in about ten seconds. The planning time increases
to be around a minute for difficult scenes.

C. Real Robot Experiments

We conducted two sets of experiments on our real robot. In
the first, we used the actual uncertainty profile of our object
pose estimation system. In the second set of experiments, we
introduced artificial noise to the detected object poses.

In the first set of experiments we created five scenes,
detected the objects using the palm camera and planned to
grasp them using both the Uncertainty TSR planner and our
push-grasp planner. Uncertainty TSR planner was able to find
a plan three out of five times, and the push-grasp planner was
able to find a plan four out of five times. All the executions
of these plans were successful. Again the Uncertainty TSR
planner was not able to find a plan when the goal object was
right next to another obstacle object, making it impossible
to grasp the goal object without colliding with the obstacles.

In another set of experiments on the real robot we intro-
duced artificial uncertainty by adding noise to the positions
of the objects reported by the object detection system. For
Gaussian noise with σ = 0.02m, the Uncertainty TSR
planner was not able to find a plan for any of the five scenes,
while the push-grasp planner found a plan and successfully
executed them in three of the five scenes. This shows that
with push-grasping the robot can increase its success rate in
grasping objects, under high uncertainty about object pose.

Execution of some of the push-grasps can be seen in Fig. 8.
Videos of our robot executing push-grasps are online at:

http://www.cs.cmu.edu/%7Emdogar/pushgrasp

VIII. DISCUSSION AND FUTURE WORK

This work is a starting point for a long-term study of the
ways forceful interaction can be used in object manipulation.
In this section we discuss the opportunities this approach
offers, the challenges in realizing these, and the limitations
of our current planner.

We present a framework to plan pushing actions on an
object in order to increase the grasping performance under
uncertainty and clutter. However, a robot can utilize pushing
in many other ways for object manipulation, especially in
highly cluttered scenes. It is our intention to identify different
ways that pushing can be useful, and extend our planner to
cover these cases. Possible extensions include:

• Using pushing to move obstacles out of the way: Our
current planner treats obstacles as hard constraints,
with which contact should be avoided at all times. In
fact, it is possible that the robot pushes these objects
away, either by using separate hand/finger motions, or
simultaneously while it is moving towards the goal
object.

• Poking objects out of tight spots: Our current planner
uses a hand configuration where the fingers are placed
symmetrically on two sides, so that the push rolls the
object directly into the grasp. This may not be possible
in very highly cluttered environments. An example case
is when a small object is stuck between two immovable
obstacles, where the robot would need to stick its fingers
between the obstacles and poke the object out, before
grasping it.

• Sweep multiple objects simultaneously: When there is
very high clutter the robot can perform a large sweeping
motion using its arm and hand to move many objects
out of the way simultaneously.

• Two-handed pushing: A two-armed robot can use differ-
ent pushing strategies, including using one of the hands
as a barrier and using the other to push objects towards
this barrier. This is similar to parallel-jaw grasping using
pushing (see Brost [8]).

Our work was also inspired from the way humans grasp
objects. Humans engage in pushing-like non-grasping inter-
actions with objects continuously in everyday life, and utilize
these as different strategies in manipulating objects under
clutter. Identifying these strategies is important, as they can
inspire the demonstration of similar capabilities on robots.
We plan to conduct a study in future work, to investigate
how humans use pushing actions in different settings.

Humans use continuous feedback during their interaction,
and we also plan to extend our study to use a closed loop
control of pushing using tactile and visual feedback.

Our current implementation computes the capture regions
using a particular pushing height on the object. However,
one can compute capture regions for different heights of the
object, and plan to push objects at a higher or lower point.
Toppling can be a problem if the object is pushed too high
though, and we came across this problem with one of our
objects (for an analysis of using toppling in manipulation,
see Lynch [16]).

2129

Fig. 8. Example push-grasps executed by our robot.

IX. CONCLUSION

In this work we enhance the use of geometric planners in
object grasping by using insights from task mechanics. We
present a push-grasp planner that can reduce the uncertainty
about an object’s pose by acting on it, and can deal with clut-
ter by moving the object away from clutter before acquiring
a complete grasp. Our planning times are reasonable, and
our approach is generalizable to other robots.

X. ACKNOWLEDGMENTS

This material is based upon work partially supported by
the National Science Foundation under Grant No. EEC-
0540865 and IIS-0916557. Mehmet R. Dogar is partially
supported by the Fulbright Science and Technology Fellow-
ship. Special thanks to Chris Atkeson, Charlie Kemp, Matt
Mason, Jim Rehg, and members of the Personal Robotics
project at Intel Labs Pittsburgh for insightful comments and
discussions.

REFERENCES

[1] L. Kavraki and J.-C. Latombe, “Randomized preprocessing of config-
uration space for fast path planning,” in ICRA, 1994.

[2] S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, 2000.

[3] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” IJRR, vol. 23, no. 7-8, 2004.

[4] D. Berenson, S. S. Srinivasa, and J. J. Kuffner, “Addressing Pose
Uncertainty in Manipulation Planning Using Task Space Regions,” in
”IROS”, 2009.

[5] L. Y. Chang, S. Srinivasa, and N. Pollard, “Planning pre-grasp manip-
ulation for transport tasks,” in ”ICRA”, 2010.

[6] V.-D. Nguyen, “Constructing stable grasps,” IJRR, vol. 8, no. 1, 1989.
[7] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic synthesis

of fine-motion strategies for robots,” IJRR, vol. 3, no. 1, 1984.
[8] R. C. Brost, “Automatic grasp planning in the presence of uncertainty,”

IJRR, vol. 7, no. 1, 1988.
[9] M. T. Mason, “Mechanics and Planning of Manipulator Pushing

Operations,” IJRR, vol. 5, no. 3, pp. 53–71, 1986.
[10] K. M. Lynch and M. T. Mason, “Stable Pushing: Mechanics, Control-

lability, and Planning,” IJRR, vol. 15, no. 6, pp. 533–556, 1996.
[11] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry

friction. Part 1. Limit surface and moment function.” Wear, no. 143,
pp. 307–330, 1991.

[12] R. D. Howe and M. R. Cutkosky, “Practical Force-Motion Models for
Sliding Manipulation,” IJRR, vol. 15, no. 6, pp. 557–572, 1996.

[13] R. Diankov and J. Kuffner, “OpenRAVE: A Planning Architecture for
Autonomous Robotics,” Robotics Institute, Tech. Rep. CMU-RI-TR-
08-34, July 2008.

[14] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe,
“HERB: a home exploring robotic butler,” Autonomous Robots, 2009.

[15] A. Collet, D. Berenson, S. Srinivasa, and D. Ferguson, “Object
recognition and full pose registration from a single image for robotic
manipulation,” in ICRA, 2009.

[16] K. M. Lynch, “Toppling manipulation,” in IROS, 1999.

2130

