
 
 

 

  

Abstract—A laser tracking system is employed for measuring 
robot arm’s tip with high accuracy. Geometric parameters in a 
robot kinematic model are calibrated by minimizing errors 
between measured positions and predicted ones based on the 
model. Residual errors caused by non-geometric parameters are 
further reduced by using neural networks, realizing high 
positioning accuracy of sub-millimeter order. To speed up the 
calibration process, the smaller number of measuring points is 
preferable. Optimal measuring points, which realize high 
positioning accuracy with small point number, are selected 
using genetic algorithm (GA). 

I. INTRODUCTION 
t present state, almost industrial robot tasks are 
performed by a teaching playback method, in which a 

robot repeats positioning joint angles, which are taught 
manually in advance using a teaching pendant, etc. This 
method is based on comparatively high repeatability of a 
robot arm. The problem here is that laborious and 
time-consuming online manual teaching is inevitable 
whenever the specification of a product is changed. It is 
desirable to teach a task quickly to a robot manipulator when 
a production line and production goods are changed. 

Considering these circumstances, an offline teaching based 
on high positioning accuracy of a robot arm is desired to take 
the place of the online manual teaching [1]. In the offline 
teaching, the joint angles to achieve a given Cartesian 
position of the arm’s tip are calculated using a kinematic 
model of the robot arm. However, a nominal geometrically 
model according to a specification sheet does not include the 
errors arising in manufacturing or assembly. Moreover, it also 
does not include non-geometric errors, such as gear 
transmission errors, gear backlashes, arm compliance, etc., 
which are difficult to geometrically consider in a kinematic 
model. 

Therefore, some method of calibrating precisely geometric 
and non-geometric parameters in a kinematic model is 
required, in which three dimensional (3-D) absolute position 
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referring to a world coordinate system should be measured 
[2-6]. The parameters are obtained so as that the errors 
between the measured positions and the predicted positions 
based on the kinematic model are minimized by a computer 
calculation using a nonlinear least square method. 

In the present paper, a laser tracking system was employed 
for measuring the 3-D position with high accuracy of 
approximately 5 µm [7-9]. As a target of calibration, a 7-DOF 
articulated robot was employed. After the geometric 
parameters were calibrated, residual errors caused by 
non-geometric parameters were further reduced by using 
neural networks (abbreviated to NN hereinafter), which is the 
major originality of this study. 

Several researches have used NN for robot calibration. For 
example, it was used for interpolating the relationship 
between joint angles and their errors due to joint compliance 
in [10]. Two joints liable to suffer from gravitational torques 
were dealt with, and the interpolated relationships were 
finally incorporated into the forward kinematic model. So the 
role of NN was supplemental for modeling non-geometric 
errors. In [11], the relationship between Cartesian coordinates 
and positioning errors arising there was interpolated using 
NN. Joint angles themselves in forward kinematic model, 
however, were not compensated, and experimental result was 
limited to relative (not absolute) measurement using a 
calibration block in a rather narrow space. Compared with 
their researches, in the proposed method in this study, the 
joint angles in the forward kinematic model are precisely 
compensated using NN so as that the robot accuracy would be 
fairly improved in a comparatively wide area in the robot 
work space.  

To speed up the calibration process, selecting smaller 
number of measuring points is preferable, while maintaining 
the accuracy. It is reported that the sensitivities of parameters 
affecting on the accuracy are desired to be averaged, i.e., not 
varied widely, for achieving good accuracy [12, 13]. As the 
index of showing the extent how sensitivities are averaged, 
observability index (OI) was employed [12]. Under the 
limitation of point number, optimal spatial selection of 
measuring points achieving the largest OI was investigated 
using genetic algorithm (GA), which is also the major 
originality of this study. 
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II. MEASUREMENT APPARATUS FEATURING LASER 
TRACKING SYSTEM 

Seven degrees of freedom (DOF) articulated robot 
(Mitsubishi Heavy Industries, product name: PA10-7C) was 
employed as a calibration object. A laser tracking system 
(Leica Co. Ltd., product name: SMART310) was used as a 
position measuring instrument, as shown in Fig. 1. The basic 
measuring principle of laser tracking system is based on that 
proposed by Lau [14]. A laser beam is emitted and reflected 
by a tracking mirror, which is installed in a reference point. 
Then, this beam is projected to a retro-reflector called 
Cat’s-eye, which is fixed at the robot arm’s tip as a target (see 
Figs. 2 and 3). The horizontal and azimuth angle of laser 
direction is obtained by optical encoders, which are attached 
to the two axes of the tracking mirror. The distance of laser 
path is obtained by an interferometer. Then, the position of 
the center of Cat’s-eye, i.e., the position of robot arm’s tip, 
can be calculated with considerably high accuracy. According 
to the specification sheet, this system can measure 3-D 
coordinates with repeatability of ±5 ppm (µm/m) and 
accuracy of ±10 ppm, which are sufficient enough for the 
application of robot calibration. 

III. CALIBRATION OF ROBOT KINEMATIC PARAMETERS 

A. Kinematic Model Using DH parameter 
The kinematic model of the robot is constructed by using 

Denabit-Hartenberg (DH) parameters [15]. The outline of DH 
notation is shown in Fig. 4. Each axis is defined as Z  axis 
and two common perpendiculars are drawn from 1iZ −  to iZ  

and from iZ  to 1iZ + , respectively. The distance and the angle 
between these two perpendiculars are defined as id  and iθ , 
respectively. The torsional angle between iZ  and 1iZ +  
around 1iX +  is defined as iα . The length of the perpendicular 
between iZ  and 1iZ +  is defined as ia . Using these four 
parameters, the rotational and translational relationship 
between adjacent two links is defined. Nominal values of DH 
parameters of the PA10 robot on the basis of its specification 
sheet are shown in Table I. The deviations between the 
calibrated values (see the next section) and the nominal ones 
are also shown in this table. 

The kinematic model of relationship between the 
measurement coordinate system (i.e., SMART310 coordinate 
system) and the 1st axis coordinate system of the robot is 
expressed by a homogeneous transformation matrix using 6 
parameters (not 4 parameters of DH notation), which are 3 
parameters , ,r p yθ θ θ  for expressing the rotation, and 3 
parameters 0 0 0, ,x y z  for expressing the translation. 

The kinematic model from the robot base coordinate 
system to the 7th joint coordinate system is calculated by the 
product of homogeneous coordinate transformation matrices, 
which includes 4×7 = 28 DH parameters. As for the 
relationship between the 7th joint coordinate system and the 
center position of Cat’s-eye, it can be expressed by using 
translational 3 parameters 8 8 8, ,x y z . Thus, as the result, the 
kinematic model of the robot is expressed by using 6+28+3 = 
37 parameters in total, which is as follows:  

0 0 0 1 1 1 1

7 7 7 7 8 8 8

( , , , , , , , , , ,
, , , , , , , )

r p y
T

x y z a d
a d x y z

θ θ θ α θ
α θ

=P
　　　　　

  (1) 

B. Nonlinear Least Square Method for Calibrating 
Geometric Parameters 
The Cat's-eye is attached to the tip of PA10 robot, and it is 

positioned to various points by the robot, then the 3-D 
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TABLE I 
DH PARAMETERS OF PA10 ROBOT 

Joint θ [deg] d  [mm] a [mm] α [deg] 

 Nominal
value Deviation Nominal

value Deviation Nominal 
value Deviation Nominal

value Deviation

1 0.0 -0.44 315.0 1.24 0.0 -0.56 -90.0 0.10
2 0.0 0.04 0.0 0.39 0.0 0.34 90.0 -0.16
3 0.0 0.57 450.0 0.96 0.0 0.32 -90.0 0.01
4 0.0 -0.15 0.0 0.35 0.0 -0.14 90.0 -0.32
5 0.0 2.12 500.0 -0.33 0.0 -0.17 -90.0 -0.52
6 0.0 0.21 0.0 0.32 0.0 0.61 90.0 -0.17
7 0.0 -1.29 80.0 -0.82 0.0 1.02 0.0 -1.25

Fig. 4. DH notation 
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position of robot arm’s tip is measured by the laser tracking 
system. The parameters are obtained so that the errors 
between measured positions and predicted positions based on 
kinematic model are minimized by a computer calculation. 

The concrete procedure of calibration is described as 
follows (also see Fig. 5): Let the joint angles be 

1 2 7( , , , )θ θ θ=Θ , designated Cartesian 3-D position of 
robot arm’s tip be ( , , )r r r rX Y Z=X , measured that be 

( , , )X Y Z=X , nominal kinematic parameters based on DH 
notation be nP  (see (1)). Then, the nominal forward 
kinematic model based on the specification sheet is expressed 
as ( , )n=X f Θ P . 

By using the nominal kinematic model, the joint angle rΘ  
to realize rX  are calculated, i.e., the inverse kinematic is 
solved, which is expressed in the mathematical form as 

1( , )r r n
−=Θ f X P .  

The joint angles are positioned to rΘ , then, the 3-D 
position of robot arm’s tip is measured as X . Let the 
calibrated parameters be P̂ , and the predicted position based 
on the calibrated model be X̂ , then the forward kinematic 
model using them is expressed as ˆ ˆ( , )r=X f Θ P . The P̂  is 
obtained so that the sum of the errors between the measured 
positions X  and the predicted positions X̂  is minimized by 
using a nonlinear least square method.  

C. Method I  -Modeling of Non-Geometric Errors-  
Referring to other researches [3, 4], typical non-geometric 

errors of gear transmission errors and joint compliance are 
modeled herein, for the comparison with the method using 
NN proposed in this study, the detail of which is explained in 
the next Section III.D.  

It is considered that the gear transmission error of θ gt arises 
from the eccentricity of each reduction gear. This error is 
expressed by summation of sinusoidal curve with one period 
and that with n periods as follows:  

( ) ( )1 1 2 2sin singt gt gt
i i i i i i i iP P n∆θ α φ α φ= + + + ,         (2) 

where i is joint number ( 1 7i≤ ≤ ), iα is the joint angle 
detected by a rotary encoder sensor, in  is the reduction ratio, 

1 2 1 2, , ,gt gt
i i i iP P φ φ  are parameters to be calibrated. 
As for the joint no. 2 and no. 4, which largely suffer from 

torques caused by arm weights, the joint angle errors of 
2

con∆θ  and 4
con∆θ  due to joint compliances are expressed as 

follows: 

( )2 1 2 2 2 4sin sincon con conP P∆θ α α α= + + ,             (3) 

( )4 3 2 4sincon conP∆θ α α= + ,                                         (4) 

where 1 2 3, ,con con conP P P  are parameters to be calibrated. 
In a forward kinematic model, iθ  is dealt with as follows: 

gt
i i iθ α ∆θ= + ( 1, 3, 5, 6, 7)i = , gt con

i i i iθ α ∆θ ∆θ= + +  
( 2, 4)i = . As the parameters, 1 2 1 2, , ,gt gt

i i i iP P φ φ  (0 7)i≤ ≤  , 

1 2 3, ,con con conP P P  are added to P  in (1), forming 68 
parameters in total. 

D. Method II -Using Neural Networks for Compensating 
Non-Geometric Errors- 
Non-geometric errors have severely nonlinear 

characteristics as shown in (2)-(4). Therefore, a method is 
proposed herein as follows: after the geometric parameters 
are calibrated, the residual errors caused by non-geometric 
parameters are further reduced by using NN, considering that 
NN gives an appropriate solution for a nonlinear problem.  

The concrete procedure using NN is described as follows 
(also see Fig. 6): Typical three layered forward type NN was 
applied. The input layer is composed of 3 units, which 
correspond to Cartesian coordinates of X, Y, and Z. The 
hidden layer is composed of 100 units. The output layer is 
composed of 7 units, which correspond to compensation 
values of 7 joint angles, which is expressed as 

1 2 7ˆ ˆ ˆ ˆ( , , , )P∆ ∆θ ∆θ ∆θ=Θ  and is added to the Θ  parameter in 
DH model. 

In the learning of NN, measured data of robot arm’s tip 
( , , )X Y Z=X  is adopted as the input data to NN. Then, the 

parameter ˆ
P∆Θ  to satisfy ˆ ˆˆ( , )r P= +∆X f Θ P Θ  is calculated 

numerically by a nonlinear least square method, where 
1ˆ ˆ( , )r r

−=Θ f X P  is the joint angle to realize rX  based on 

the kinematic model using calibrated parameters P̂  (see the 
previous Section III.B).  

Then, the obtained many of pairs of ( X , ˆ
P∆Θ ) are used as 

1( , )r r n
−=Θ f X P  PA10 robot 

ˆ ˆ( , )r=X f Θ P

rX  rΘ  min 

X̂

X +

−

:nP nominal parameter 
ˆ :P calibrated parameter 

1 2 7( , , , )θ θ θ= ⋅⋅ ⋅Θ  

2

1

ˆ( ) min
m

i=

− →∑ X X

Fig. 5. Calibration procedure by nonlinear least square method 
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the teaching data for NN learning, in which the connecting 
weights between units, i.e., neurons, are calculated. For this 
numerical calculation, RPROP algorithm [16], which 
modifies the conventional back-propagation method, is 
employed. 

E. Implementation of Neural Networks for Practical Robot 
Positioning 
Figure 7 shows the implementation of NN for practical 

robot positioning. When rX  is given, the compensation 
parameter ˆ

P∆Θ  is obtained by using NN, then, the accurate 

kinematic model including ˆ
P∆Θ  is constructed. Using this 

model, the joint angle 1ˆ̂ ˆˆ( , )r r P
−= +∆Θ f X P Θ  is calculated 

numerically, and it is positioned by a robot controller. Then, 
rX  is ideally realized. 

IV. EXPERIMENTAL RESULTS OF CALIBRATION 

A. Group of Points for Teaching and Verification 
Measurement area of 400×400×300 mm was set, as shown 

in Fig. 8. This area was divided at intervals of 100 mm for x, y, 
and z coordinates. As the result, 5×5×4 = 100 grid points were 
generated. The group of the grid points was used for teaching 
set for calibration. 

On the other hand, the group of 100 points were taken as 
shown in Fig. 9, which are located at regular intervals on a 
circular path, of which radius is 100 mm and center is (500, 
100, 600) mm. They were used for verification set for the 
calibration result. 

B. Results of Verification of Calibrated Model 
The joint angles to realize the verification set were 

calculated based on the calibrated model, and they were 
positioned by a robot controller. Note that, this calculation of 
inverse kinematics is not solved analytically, so it should be 
numerically solved, since the adjacent joint axes in the 
calibrated model are no longer accurately parallel or 
perpendicular to each other. 

Then, the Cartesian 3-D positions of the robot arm’s tip, i.e., 
the verification set, were measured by the laser tracking 
system. By comparing the measured data with the designated 
data, the validity of the calibrated kinematic model was 
estimated.  

Figure 10 and Table II show the results in the first trial 
(called Trial 1). In this figure, error means the norm of 

2 2 2( ) ( ) ( )r r rX X Y Y Z Z− + − + − . This definition is valid 
for the following of this article. 

C. Discussion (Comparison between Method I  -Modeling 
of Non-Geometric Errors- and Method II -Using Neural 
Networks for Compensating Non-Geometric Errors-) 
It was proven that the error was drastically reduced from 

5.2 mm to 0.29 mm by calibrating geometric parameters 
using a nonlinear least square method. It was proven that the 
error was further reduced to 0.19 mm by compensating 

non-geometric parameters using NN, indicating effectiveness 
of Method II. 

The error was reduced by calibrating both geometric and 
non-geometric parameters using a nonlinear least square 
method, i.e., by applying Method I. The improvement from 
calibrating only the geometric parameters (not non-geometric 
parameters) using a nonlinear least square method, however, 
was subtle and incremental, which was from 0.29 to 0.24 mm. 

To verify that the experimental result is repeatable, the 

Fig.9. Measurement points for verification data set 

Fig.8. Measurement points for teaching data set 
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TABLE Ⅱ 
AVERAGE OF ERRORS IN POINTS FOR VERIFICATION 
 Trial 1 Trial 2 Trial 3 
Before calibration 5.23  8.37  7.86  

Nonlinear least square method 0.29  0.35  0.33  

Modeling of non-geometric errors 
 (Method I) 0.24  0.26  0.27  

Applying NN (Method II) 0.19  0.17  0.15  

 

Fig.10. Result at points for verification 
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calibration process was carried out again for the same 
verification data set on the same circular path, called Trial 2. 
And it was carried out for data set on another circular path, of 
which z coordinate is shifted from original 600 to 700 mm, 
called Trial 3. These results are added and shown in Table II. 
Compared Trials 2 and 3 with Trial 1, it is proven that the 
experimental trend of average errors is repeatable.  

Eventually, it is proven that Method II of first calibrating 
the geometric parameters and next further compensating the 
non-geometric parameters using NN is the best among these 
procedures. The reason of superiority of Method II is thought 
to be as follows: there are many unexpected non-geometric 
errors besides the gear transmission errors and joint 
compliances. Therefore, Method I of only considering these 
two type non-geometric errors did not work so well. On the 
other hand, NN can compensate all types of non-geometric 
errors by imposing the resultant errors in its learning process 
appropriately to the variety of connecting-weights of neurons.  

Even in case of using NN, there remain still positioning 
errors of approximately 0.2 mm. They supposedly arise from 
the limitation of generalization ability of NN, since the points 
for verification are considerably apart from those for 
teaching.  

V. SELECTION OF OPTIMAL MEASURING POINTS USING  
GENETIC ALGORITHM (GA) 

A. Meaning of Reducing the Number of Measuring Points 
For shortening the time required for the calibration process, 

reducing the number of measuring points while maintaining 
the accuracy is effective. For increasing calibration accuracy, 
it is important that the sensitivity of (tip position 
displacement)/(parameter fluctuation) is uniform for all the 
parameters in a kinematic model. As the index of showing the 
extent how the sensitivity is uniform among the parameters, 
observability index (OI) was reported [12]. The larger OI 
means the higher uniformity. In this section, under the 
limitation of point number, optimal spatial selection of 
measuring points achieving the largest OI is investigated 
using genetic algorithm (GA). 

The procedure of obtaining OI is described hereinafter. Let 
the forward kinematic model be ( , )=X f Θ P , as already 
explained in Section III.B. Then, the error of robot arm’s tip 
∆X  with respect to the error of geometric parameters ∆P  
is expressed as follows: 

∂
= =

∂
X∆X ∆P J ∆P
P

,            (5) 

where (3 )n×J  is the Jacobian matrix, n is the number of 
geometric parameters. Assuming the number of measuring 
points be m, equation (5) is extended as follows: 

=∆Y B∆P ,                (6) 

where [ ]1 2, , , (3 1)TT T Tm m= ×∆Y ∆X ∆X ∆X… , and 

[ ]1 2, , , (3 )TT T Tm m n= ×B J J J… . By applying singular value 
decomposition to the extended Jacobian matrix B, singular 
values 1 nσ σ∼  are obtained, which are equivalent to the 
sensitivities of geometric parameters 1 np p∼ , respectively. 
By using 1 nσ σ∼ , OI is defined as follows: 

21
OI

n n

m
σ σ σ

=
…

.             (7) 

B. Selection of Optimal Measuring Points Using GA 
It is impossible to analytically define the optimal 

measuring points that maximize OI. Therefore, GA was 
applied, which is known as an effective method for searching 
an optimal (or nearly optimal) solution of a severely nonlinear 
problem. 

The procedure of pursuing the optimal spatial selection of 
measuring points is described hereinafter. Let us assume that 
the number of measuring points is limited to 8, for example. 
Then, a chromosome is provided, which consists of X, Y, and 
Z coordinates of 8 points. As 8 bit is assigned to each 
coordinate, the chromosome consists of totally 8 points×3 
coordinates×8 bit = 192 bit, as shown in Fig. 11. 

Note that the 14 singular values were almost zero; therefore 
the effective (not-redundant) number of singular values [13] 
is 37-14=23. Three equations are obtained for X, Y, and Z 
coordinates at each point measurement, so the minimum 
number of measurement points is 8, since 23/3=7.67. 

Six chromosomes are randomly employed at first. By 
repeating crossover and mutation at each generation with 
referring to the fitness function of OI, they are finally 
converged to such a chromosome that realizes the largest OI. 

C. Experimental Results 
At several numbers of generations, GA search was stopped, 

and the resultant 8 measuring points and corresponding OI 
were checked. At these 8 points, the robot arm’s tip was 
measured by the laser tracking system. Using the measured 
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data, the kinematic model was calibrated by a nonlinear least 
square method. Then, based on the calibrated kinematic 
model, the robot arm’s tip was positioned to 100 points for 
verification, where the absolute error was estimated again by 
the laser tracking system. These procedures were repeated 
during the progress of GA search. 

The resultant relationship between OI and the positioning 
error is shown in Fig. 12. At first, the 8 points were selected at 
random, then, the GA search progresses, finally it is truncated 
when the number of generation reaches 1,000. From this 
figure, it is proven that OI is increased and the resultant error 
is reduced as the GA search progresses.  

The data in cases that the number of measuring points is 12 
and 15 are also shown in this figure. In these cases, the 
resultant error is less dependent on OI value, indicating that 
the random selection of 15 points is rather possible for 
maintaining the accuracy. It is supposedly because the 
number of measuring points is enough compared with 
minimum 8 points. For reference, OI of 100 points in teaching 
points shown in Fig. 8, and the resultant error using these 
points, are also depicted in this figure. It indicates that 100 
points are not necessary and even 8 points are enough if they 
are optimally selected.  

Figure 13 shows an example of 8 measuring points, which 
were selected by the GA search. The resultant OI for these 8 
points is 1.75. For the reference, randomly selected 8 points at 
the beginning of the GA search are also shown in this figure, 
the OI for which is 0.3. Looking at this figure, measuring 
points with larger OI are distributed widely in the 3D space, 
whereas those with smaller OI are gathered in a 
comparatively small area. 

VI. CONCLUSIONS 
A laser tracking system is employed for measuring the 

robot arm’s tip with high accuracy. By using the measured 
data, the kinematic model of the robot arm is calibrated, and 
the high positioning accuracy within 0.3 mm is realized. 

To briefly summarize, 1) the geometric parameters are 
calibrated by minimizing errors between the measured 
positions and the predicted ones based on the kinematic 
model. 2) The residual errors mainly caused by 
non-geometric parameters are further reduced using neural 
networks. 3) Optimal measuring points, which realize high 
positioning accuracy with small point number, are selected 
using genetic algorithm (GA). 

If the orientation of robot arm’s tip could be precisely 
measured using some sensor such as a gyroscope [9], the 
robot kinematic model of realizing both position and 
orientation can be calibrated, which is planned to do in a 
future projected work.  
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---Schematic boundary 

■ Selected by GA (OI is 1.75) 
▲ Selected at random (OI is 0.30)

Fig. 13. Distribution of selected measuring points 
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