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Abstract— This paper explores the efficient construction of
the database structure for the human-like arm motion gen-
eration using an evolutionary algorithm-based an imitation
learning in real-time. The framework of the arm motion
generation consists of two processes, imitation learning of
human arm motions and generating of a human-like arm
motion using the motion database evolved by the learning
process in real-time. We aim at constructing the optimized
database structure which have the minimum number of one.
We compare a human-likeness, similarity of a motion and robot
property which minimize a sum of a robot’s joint torques for
three database structure. We applied our method to the task
of teaching a humanoid robot how to make naturally looking
movements like catching the cup on the table.

I. INTRODUCTION

People expect that humanoid robot moves like human.

In spite of a rapidly developing humanoid technology, the

present situation is not enough to put to practical use in

real life. Generating of motion for humanoid is particularly

difficult problem because of large numbers of joints, redun-

dancies and self-avoidance. Besides, the problem of how to

make apt motions depending on the circumstances is very

important issue. Generating of a human-like motion is one

of the key schemes for the humanoid robot to act as a human

and collaborate with people.

Imitation learning might be an efficient approach to make

a robot enable to generate natural and abundant motions [1].

When someone needs to learn a new skill or a new sports

motion, he/she first watches the actions of an expert and

subsequently uses those actions as a seed for learning.A.

Ijspeert et al.[2] presented a control policy that was defined

in form of a differential equation to represent robot joint

angles and end-effector’s positions. The parameters and the

Gaussian functions in the differential equation were deter-

mined in aspect of minimizing the trajectory error. S. Calinon

et al.[3] presented a method of probabilistic representation

of the movement using Gaussian Mixture Model(GMM) and

Gaussian Mixture Regression for reproduction of robot arm

motions. The studies above have been done for generating

human-like robot motions in the robot kinematics point of

view from imitation learning of human behaviors. Although

the human motions contain kinematics and dynamics proper-

ties, the dynamics property of a robot was not reflected into

the generated motions. Therefore, a method to involve the
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dynamics property as well as human-likeness in generating

motions is needed.

We proposed the motion generation framework by the

imitation learning using the Evolutionary Algorithm(EA).[4]

The proposed framework consists of off-line process and

on-line process. In off-line imitation learning, we evolved

the motion database that was initially full of the motions

kinematically converted from human motion capture data,

considering the minimal joint torques for human motion

data. For this, we also introduced a genetic operator which

consists of the principal component analysis(PCA)-based a

local optimization with respect to robot dynamic properties.

After several evolving the database, the resultant database

could contain not only the human-likeness, but also the

dynamic property of a robot, which have the minimum

sum of joint torques. Using the principal components of the

motion primitives in the evolved database, a humanoid robot

was able to generate naturally looking arm motions with

requiring the minimum sum of joint torques in real-time.

In this proposed framework, there are two important factors.

One is to construct the database structure. The other is to

evolve the database, which reflects a dynamic property of a

robot.

In this paper, we discuss how to construct the optimized

database structure. We design the three kinds of the database

structure. One is composed the existing database structure.[4]

Another is composed the clustering database structure, which

divides the workspace into six clusters which is a fixed size.

The other also is composed the clustering database structure,

but its size of the cluster is bigger than previous thing. The

number of the database’s elements also has smaller than it.

The following section introduces the off-line process that

is to train the obtained motion primitives so as to reflect both

the properties of human and robot by using the Evolutionary

Algorithm(EA)-based imitation learning. Section III then

describes as to generating motions by using evolved motion

database in real-time. Section IV carries out the task of

generating the motion which catches the cup on the table.

II. EVOLUTION OF MOTION DATABASE USING

EA-BASED IMITATION LEARNING

When a humanoid robot is requested to do such tasks as

moving an object on the table, grasping something on the

shelf, handling a switch on the wall or an appliance, catching

a ball etc., the robot needs to be able to reach the arm to

the target position from the initial pose. People want the

humanoid robot to perform those tasks as a human does.

This work proposes a framework to learn human motions
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Fig. 1. Evolutionary Process

and generate a human-like reaching motion in real-time. The

framework consists of two processes of imitation learning

and the real-time motion generating.

To optimize the motion primitive database, we use the

Evolutionary Algorithm(EA). EA is stochastic search meth-

ods that mimic the metaphor of natural biological evolution.

It has several merits. To begin with, EA is possible to

search a population of points in parallel, not just a single

point. Second, It does not require derivative information

or other auxiliary knowledge. Only the objective function

and corresponding fitness levels influence the directions of

search. Third, it is generally more straightforward about

an application, because there are no restrictions for the

definition of the objective function. Finally, it provides a

number of potential solutions to a given problem.

The imitation learning constructs the motion database that

contains human-likeness derived from human arm motions

and is optimized for proving minimal torques. The human

arm motion capture data are first converted to the motions

available to the humanoid robot, considering the geometric

differences between the robot and a human. More details on

this conversion process refer to [5]. The motion conversion

provides not only human-like motions to the humanoid

robot in the kinematics sense, but also the accumulated

and optimized motion experiences immanent in the human

motions, since the human motions are dynamically consistent

and optimized through a motion repetition for a long life-

time.

In addition to the geometric differences, there are many

differences in the dynamic properties between a human and

a robot like a mass, a center of mass, a type and a capacity

of actuators. To involve one of robot’s dynamic properties,

this work requires a torque minimization for moving robot

arms. For this purpose, the database of arm joint trajectories

converted above is then updated by using an Evolutionary

Algorithm(EA). Consequently, the humanoid robot is able to

generate skillful motions using this database. In other words,

the humanoid robot can learn task skills from a human. More

details on the imitation learning based on EA are explored

in the following subsections.

A. Evolutionary Process

The evolutionary process to update the database converted

from human motion capture data is given as a typical form

as seen in Fig. 1.

1) Capturing Human Motions: For a given task, an actor

executes the required motions several times and those mo-

tions are captured with a motion capturing system. Each of

the captured motions has its own condition. The condition

denotes the factors that correspond to the human motion.

For example, when the task is to grasp a cup on the table,

the condition can be the pose (position and orientation) of

cup. As another example, for the case of catching a ball, the

condition can be the ball position and the flying direction or

velocity of ball. A user defines appropriate conditions for a

given task. In this step, the human arm motion capture data

are converted to the motions for a humanoid robot using the

method in [5].

2) Parent: Parents consist of the collection of individuals,

which are defined as motion primitives. The initial indi-

viduals are the motions converted from the human motion

capture data and will be updated by a genetic operator and

survivor selection in the Fig. 1. Therefore, the initial parents

before evolution contain only the kinematic and dynamic

characteristics of the actor. It is noticed that the number

of individuals is the same as that of conditions, since each

motion primitive has its own condition.

3) Applying of Genetic Operator: The genetic operator to

create new individuals (motion primitives) from the parents

is designed, aiming at satisfying user’s requirement. The

requirement of this study is to minimize the toques that are

necessary to finish the given task. Section II-C describes the

details on designing this operator.

4) Offspring: As many new individuals (so called off-

spring) as parents are obtained, since the genetic operator

is applied the same number of times as that of conditions.

In other words, two individuals (motion primitives) for

offspring and parent, respectively, corresponding to one of

the conditions is given.

5) Survivor Selection: The offspring and the parent are

compared with each other and one of them is selected in

sense of most satisfying the user requirement. This selection

makes the survivor become the better individual for the next

generation like the survival of the fittest. The evolutionary

process stops, if the fitness evaluation defined by a user

converges into a certain limit. As an example, the fitness

evaluation for the reaching problem discussed later is the

minimal torques without violating joint limits.

6) Repeating: The above procedures are repeated until the

value of fitness evaluation converges into a limit defined by

a user. As the evolution processes, the individuals (motion

primitives) gradually lose the characteristics of human mo-

tions and finally become adapted to the physical feature of

the humanoid robot. For this purpose, a proper number of

generations of the evolution need to be chosen.
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Fig. 2. PCA-based Genetic Operator

B. Clustered Database Structure

The database structure is an important problem in the

proposed imitation learning. A memory of the humanoid

robot has a fixed volume. The humanoid robot also has to

carry out the many tasks in a human environment.

In previous paper, we construct the database structure

which is uniform in an interval. This database structure

provides a stable and an excellent performance. However, it

is not efficient. If the tasks of humanoid robot is increased,

it will be needed much memory.

Our aim is to generate naturally looking motions by using

the minimum and optimal database structure. Generally, In

the fixed area, the motions of human being are very similar

to each other for a same task. By deriving inspiration from

the fact, we compose the clustered database structure. Its size

and the number of individuals for one cluster are decided by

user. In this paper, we designed the three database structure.

One is a existing database structure and the others are a

clustered database as you see in Fig. 5.

C. PCA-based Genetic Operator

We defined a motion primitive itself as an individual

before. Because a motion primitive is the vector of joint angle

trajectories in time, the genotype of an individual in EA is

represented by real-valued vectors. For instance, if a motion

primitive is a 2 minute joint angle trajectory with sampling

rate 120Hz, its genotype is 14400-dimensional real-valued

vector (14440 = 2 min × 120 Hz × 60 sec). And if the

motion primitive also has 3 degrees of freedom, its genotype

consists of three of 14400-dimensional vector.

The genetic operator proposed for the evolution in this

work is shown in Fig. 2. In Fig. 2(a), it is a kind of recom-

bination operator, since it merges information from several

genotypes into one offspring genotype. When there are a set

of n motion primitives for a task T , the ith motion primitive

mi in the set has its own condition ci. Assuming that we

need the motion to satisfy with the condition c3, then we

select k motion primitives whose conditions are analogous

to the condition c3 from the set of n motion primitives.

the condition means a target position of DB motions. The

analogousness is determined by a suitable distance metric

d(ci, c3). If the condition is the 3-dimensional position

vector, the Euclidean distance between two conditions may

be a good distance metric to determine their similarity.

In Fig. 2(b), it uses the clustered database structure. If

we generate the motion satisfying the condition Gi,j and

the condition is included in the cluster Gi, we select the k
individuals in Gi. The rest of the entire process is the same

above.

By applying Principal Component Analysis (PCA) on the

selected k motion primitives, the sample mean and the princi-

pal components of joint angle trajectories are obtained. This

analysis is performed for each joint of arm. The principal

components are used as the basis functions in order to

reconstitute a robot motion satisfying the condition c3. PCA

projects high-dimensional data onto a lower-dimensional

subspace in a way that is optimal in a sum-squared error

sense. We use it to extract the dominant principal compo-

nents(PC) from a group of motion primitives. The dominant

PCs have the highest eigenvalues during PCA. High rank

four PCs occupy more than 90% on the related contribution.

An arbitrary joint angle trajectory is described by a

low-dimensional superposition of principal components as

follows:

q(t) = qmean(t) +

4∑
i=1

xi qpci(t) + x5 (1)

where q(t) is a joint trajectory, qmean(t) is a mean trajectory,

qpci(t) is the ith most dominant principal component and

x = [x1 x2...x5]
T is an unknown scalar weighting coeffi-

cient vector. Especially, x5 denotes an unknown constant to

represent a remaining error. The boundary conditions at the

initial time, t0, and the final time, tf , are given as follows :

q(t0) = q0, q(tf ) = qf , q̇(t0) = q̇0, q̇(t0) = q̇0 (2)

These boundary conditions are not sufficient to determine

five unknowns xi. So we introduce local optimization with

respect to robot dynamics. The equations of motion for a

robot, which are modeled as a coupled rigid body system

with s joints, are given as

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = τ (3)

where M(q) ∈ �s×s is the mass matrix, C(q, q̇) ∈ �s is the

Coriolis vector, N(q, q̇) ∈ �s includes the gravitational and

other forces, and τ ∈ �s is the joint torque vector. To acquire

optimal motions with respect to some physical criterion (in

this paper, we are intent on minimum torque motion), we

interest in minimizing the objective function in the following

form subject to (3) :

min
x

1

2

∫ tf

t0

∥∥τ(q, q̇, q̈)∥∥2dt (4)
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where the boundary conditions in (2) are also used as op-

timization constraints. Through descent-based optimization

method with analytic gradient and hessian information [6][7],

the offspring corresponding to c3 is constructed for the next

generation.

The offspring m′
3,G′

i,j in Fig. 2 has the same condition c3
as the parent m3. They, however, might be different, since the

offspring m′
3 is made up from several individuals (i.e. motion

primitives) including the parent m3. In other words, the

offspring might be another motion suited to the condition c3.

The offspring m′
3 competes with its parent m3 for the next

generation. One of them is selected as the survivor selection

component. The genetic operator is applied repeatedly from

a condition c1 to a condition cn, so that as many offspring

as parents are made.

As a quality criterion for the evolutionary process, the

fitness function is defined as the total sum of the torques

to operate all the motion primitives that correspond to all

the conditions. When a value of fitness function becomes

less than before, the loop is stopped it in the evolutionary

process. Using this fitness function we may gradually evolve

the motion primitives into torque efficient and optimal ones.

At each generation of the evolutionary process, the optimal

motion primitive, which requires the minimal torque, for

each condition is obtained. The optimal motion primitives

construct a new motion database(next generation) that has

better properties than the previous generation. In other words,

through this process the Evolutionary Algorithm(EA) works

as a global optimizer and the genetic operator works as a

local optimizer for evolving motion primitives into torque-

efficient and human-like ones.

III. REAL-TIME MOTION GENERATION USING EVOLVED

MOTION DATABASE

A. Real-time Motion Generation

When a task with a condition, c, is given, we can generate

an appropriate motion in real-time using the motion database

evolved in Sec.II, the boundary conditions in (2) and the

following equation,

q(t) = qmean(t) +

3∑
i=1

xi qpci(t) + x4 (5)

where all the variables and boundary conditions denote the

same as (1). Since the unknown terms are four, we can obtain

the solution of the equation above by using the boundary

conditions. PCA here is done in the same manner as in

Sec.II-C using the distance metric d(ci, c) for i = 1 ∼ n.

The resultant joint angle trajectory from (5) can reflect both

of the human-likeness and the dynamic property of minimal

torque, since the motion primitives already contains such

characteristics from the evolutionary process and the human

motion capture data.

IV. EXPERIMENT

We simulate that a man catch the cup on the table.

And we designed the three database structure. In Fig.5(a),
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Fig. 4. The average of total torque sum at each generation

The man is captured motions for 30 times. In Fig.5(b),(c),

each cluster include three individuals which is a motion

data. The size of Fin.]reffig:st(c) is just lager than Fig.5(b).

Using the proposed imitation learning, the motion primitive

database was evolved up to the 6th generation. Through the

imitation learning procedure, the motion primitive database

was updated gradually by replacing old ones with better

offspring. It is observed as seen in Fig. 4 that the average

of total torque sum at each generation of evolution becomes

smaller as the generation goes. This means that the database

contains better optimal motions in the aspect of human-

likeness and minimal torque. Imitation learning took five

hours at Pentium IV computer with 2GB ram. We imple-

mented the imitation learning using C++. DONLP2 library,

a nonlinear optimizer library, was used for local optimization

in the genetic operator and implemented as a sequential

equality constrained quadratic programming problem[8]. As

you see in Fig. 6, Fig. 7, we compared with four trajectories

for the general database structure, the clustered database

structure type1 and the clustered database structure type2. As

you can see, the trajectories of the general database structure
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and the cluster database structure type1 has a similar shape.

For the clustered database structure type2, we can see the

motion is very rough and strange. It is a cluster size that is

a important factor. If the size is very large, then a generated

motion is strange or rough.

V. DISCUSSION

We presented a clustered database structure for the imi-

tation learning based on the evolutionary algorithm which

enables a humanoid robot to learn human motions as a

human learns new motions and performs them. The clustered

database structure is that the workspace of a humanoid robot

is divided into the fixed area. The fixed area has minimum

individuals.

In a simulation, we evolved the motion database that was

initially full of the motions kinematically converted from

human motion capture data, considering the minimal joint

torques for human motion data. For this, we introduced

a genetic operator, which consisted of PCA-based local

optimization with respect to robot dynamics. After several

generations of evolution, the resultant database could contain

the human-likeness and the dynamics characteristics of min-

imal joint torques. Using PCA on the motion primitives in

the evolved database, a humanoid robot was able to generate

the human-like reaching arm motion with requiring minimal

torques in real-time.[4] To optimize the number of motion

primitives of database, we designed the cluster database

structure into the workspace.

Through the simulation, we compared the general database

structure with the clustered database structure. As a result,

we know that the clustered database structure has not only

a similar trajectory with comparing the general database

structure, but also an efficient structure.

Although the proposed method, which is a clustered

database structure, is a good method to decrease the size of

database, there are several weaknesses such as the stability

of generated motions within the sector of cluster, the limit of

joint, the collision avoidance. The research to solve them is in

progress. In the future work, we will deal with the stability,

the limit of joint, modifying the trajectory on moving the

robot.
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