
  

  

Abstract—This paper presents a vision-based obstacle 

avoidance design using a monocular camera onboard a mobile 

robot. An image processing procedure is developed to estimate 

distances between the robot and obstacles based-on inverse 

perspective transformation (IPT) in image plane. A robust 

image processing solution is proposed to detect and segment 

navigatable ground plane area within the camera view. The 

proposed method integrate robust feature matching with 

adaptive color segmentation for plane estimation and tracking 

to cope with variations in illumination and camera view. After 

IPT and ground region segmentation, a result similar to the 

occupancy grid map is obtained for mobile robot obstacle 

avoidance and navigation. Practical experimental results of a 

wheeled mobile robot show that the proposed imaging system 

successfully estimates distance of objects and avoid obstacles in 

an indoor environment.  

I. INTRODUCTION 

etection and localization of obstacles are essential for 

mobile robot to navigate in an environment. Ultrasonic 

sensors and laser scanners are most used for environment 

detection and obstacle avoidance of mobile robots. However, 

ultrasonic sensors are relatively slow and suffer from spectral 

reflections and poor angular resolution. Laser scanners can 

provide much better resolution with higher scanning speed, 

but they are quite expensive for practical applications. Beside 

these drawbacks, most range-based systems provide only 

distance information of the environment, making it difficult 

to distinguish between obstacles and objects, with which the 

robot needs to interact.  

On the other hand, vision-based systems provide rich 

information from the environment. They have become 

promising alternatives considering availability of low-cost 

image sensors and high-performance processors. Among 

various vision-based approaches, omni-directional and stereo 

vision systems have been widely used for environment 

detection, due to their wide view angles and the ability to 

estimate depth information. Their hardware structure, 

however, raise both the price and system complexity. 
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Monocular vision-based approaches, on the other hand, do 

not require special camera configuration and are more 

suitable for various low-cost robotic applications.  

Most monocular vision-based approaches to obstacle 

detection need priory knowledge of the scene or obstacles. For 

instance, color cue is commonly used to segment obstacles 

and non-obstacles in a structured environment [1]. In [2], 

moving object tracking techniques are proposed to find 

obstacles which have significant difference in motion. 

However, these approaches can only be applied to limited 

scenes. Optical flow, on the other hand, is a more general 

approach, which can be used to estimate time-to-collision of 

obstacles, or the environmental structure from motion [3, 4]. 

The computational load of optical flow is rather high, but the 

robustness against disturbance is still questionable. Recently, 

some researchers have proposed to use machine learning 

approaches to obtain depth or planar structure with 

monocular cues from single view [5,6]. Their results are quite 

impressive in many cases, but the performance in natural 

environments is still unpredictable. 

Due to the difficulty in generalized obstacle detection, 

many researchers propose to resolve the problem of floor or 

ground detection based on planar property of road or indoor 

environment [7-12]. Liang et al. [7] proposed to use 

reciprocal-polar (RP) image rectification and ground plane 

segmentation by sinusoidal model fitting in RP-space to 

segment the ground plane from a mobile robot’s visual field 

of view. They then measure the height of off-ground plane 

features above the mobile robot’s ground plane. Zhou et al. [8, 

9] derived constraints that the homography of the ground 

plane must satisfy, and then used these constraints to design 

algorithms for detecting the ground plane by assuming that 

the camera is fixed on the robot platform and can at most 

rotate horizontally. These methods, however, can only 

distinguish whether feature points are located on the ground 

or not. This information is insufficient for obstacle 

avoidance. 

For pixel level obstacles representation, warping or inverse 

perspective transform (IPT) technique has been widely used 

in both stereo-based and monocular-based approaches 

[10-14]. This technique uses ground plane homography to 

warp one of the images. Only pixels correspond to points on 

the ground plane will match in both images. This discrepancy 

can then be detected by image subtraction and thresholding. 

For monocular-based cases, one needs to estimate the 
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homography between monocular image sequences. 

Yamaguchi et al.[12] estimate relevant parameters for the 

camera motion as well as the 3D road plane from 

correspondence points between successive images. The road 

region is determined by estimating the ground homography 

matrix and warping the image of previous frames. Although 

subtraction is a simple and effective method to detect 

pixel-wise floor regions, it still suffers from some limitations 

[13]. For instance, due to the nature of subtraction method, 

textureless obstacles cannot be detected since no discrepancy 

can be observed even under erroneous projection. Similarly, 

part of the obstacles may be projected into the floor region 

and cause some floor areas to be recognized as obstacles.  

This paper aims to find a more robust method to detect 

ground plane and estimate range information for mobile 

robot navigation control. The main concept is to integrate 

multiple visual cues to avoid limitations in prior works and 

achieve robustness against illumination and camera view 

changes. First, Speeded Up Robust Features (SURF) [15] is 

adopted for feature extraction and matching to increase both 

robustness and speed in homography estimation step. Further, 

a key-frame selection criterion is proposed to guarantee the 

estimation is proper and avoid the virtual plane problem 

caused by zero/near-zero camera translations. To observe 

ground region pixel-wise, we propose an adaptive 

self-segmentation and tracking algorithm to find the ground 

region according to both the feature points and color 

segments. After IPT and ground region segmentation, results 

similar to an occupancy grid map can be obtained. The robot 

can then use distance information to avoid obstacles. The 

constructed map itself can also be used for many other robot 

control purposes. 

The rest of this paper is organized as follows. Section II 

presents the design concept and architecture of the overall 

system. The proposed ground feature classification 

algorithms are described in Section III. Section IV describes 

the ground region segmentation method. Several interesting 

experimental results are presented in Section V. The 

contribution of the paper in summarized in Section VI. 

II. PROPOSED SYSTEM ARCHITECTURE  

The basic idea of estimating distance using monocular 

image sequence is to apply IPT on those images. In general, 

IPT maps three-dimensional points to image pixels if these 

points all belong to a known plane. We assume that the 

ground is planar, the robot moves parallel to the ground, and 

the camera is fixed on the robot. The distance between the 

camera and the ground plane is then fixed. The IPT of the 

ground (height =0) can therefore be determined beforehand, 

since it is also fixed. By applying IPT to the acquired images, 

the camera can be virtually rotated to the downward-looking 

pose. The projected images can then provide the relative 

position of each pixel on the ground in world coordinate [10, 

11]. Off-ground objects, on the other hand, will be distorted 

after the transformation. However, the transformation itself is 

insufficient to determine whether pixels belong to ground. 

Therefore, the key idea of the proposed system is to robustly 

segment the ground region from monocular sequence via 

multiple visual clues. 

Fig. 1 illustrates the architecture of the proposed system. 

Two parallel procedures will be launched simultaneously 

after the image preprocessing step. In the ground feature 

detection phase, the system extracts all the features in current 

image at time step t, and matches them to features observed in 

previous N frames, According to the correspondence and 

pre-determined ground features, ground homography and 

features on the ground in the newly acquired image can be 

found. The system then uses the homography matrices among 

consecutive frames to classify all other features as on the 

ground or not. Meanwhile, the images are segmented into 

patches according to color homogeneity. These patches can 

be classified into ground or off-ground region by comparing 

 

Fig.1. The architecture of the proposed vision-based obstacle avoidance design 
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with warped images. Once the ground and off-ground areas 

are isolated, the range information can be obtained by 

applying IPT and ray tracing. The detailed algorithm is 

described in following Sections. 

III. ROBUST GROUND FEATURE DETECTION 

A good feature extractor should have invariance to rotation, 

scale, illumination variation and image noise, which lead to 

robust corresponding points matching results. The Harris 

corner detector has been widely used in many previous works 

[7-10]. Its robustness, however, is limited in practical 

applications. Recently, there have been many advances in 

scale/rotation-invariant extractors, such as Scale-Invariant 

Feature Transform (SIFT)[16]. An array of image gradient 

histograms is used as a descriptor instead of a raw image 

patch. However, in many cases, the execution speed of SIFT 

is not suitable for real-time applications. Speeded Up Robust 

Features (SURF) is adopted in this designs for its superior 

execution speed. While the robustness can be preserved, 

SURF is about three times faster than SIFT in feature 

extraction step. SURF also provides an indexing value for fast 

matching purpose.  Nevertheless, these methods may still fail 

under large motion blur or abrupt changes in view angle. The 

speed of the camera motion is therefore limited in this study. 

A. Ground Feature Classification 

Once features are found and matched, the next is to 

determine whether these feature points are on the ground or 

not. Consider a ground plane projected into two views. With 

the pinhole camera model, two views of the same plane are 

related by a unique homography [17]. That is, for a plane Π= 

[n
T
 1]

T
, the rays corresponding to a point p in the image I and 

its corresponding point p’ in the image I’ meet the plane at a 

point xΠ, as shown in Fig. 2. Therefore, if a set of coplanar 

points pi with homogeneous image coordinate (xi, yi, 1)
T
 are 

found, and their correspondences {pi ↔ p'i} in two images 

are also found, there exist a 3 by 3 homography matrix H 

such that 
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where K is the intrinsic camera matrix, R is the rotation 

matrix, t is the translation vector, α is the scale factor, and d 
is the distance between the plane and camera. To determine 

H, four non-degenerated corresponding points are required 

since each point correspondence provides two independent 

constraints. In the proposed system, the features on the 

ground are initially determined, i.e., a subset of pi is known as 

on the ground plane. The homography of the ground plane 

can thus be determined initially. Considering there might be 

some matching error, RANdom SAmple Consensus 

(RANSAC) is applied to eliminate outliers and robustly 

determine H. Note that H matrix is only relevant to the plane 

relationship among two frames. Therefore, it will not be 

diverged after a long run.  

The rest of the corresponding points can then be checked if 

it is on the ground by using the back projection technique,  

⎩
⎨
⎧ <−′

∈′
otherwise

thresholdpp
p
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Fig. 3 shows an example of ground feature classification. We 

observe that there is no corresponding feature on the floor. 

This is in fact a case when the pattern on the ground floor is 

not robust enough. However, the goal here is not to find as 

many features as possible, but to determine H. The number of 

features is therefore not a critical issue.  

On homography estimation, in the case of near-zero 

camera translation, i.e., t ≅0 in (2), no information on 
coplanarity can be inferred since the plane normal n can be 

arbitrary [18]. This case must be determined since all the 

points will be determined as ground. The simplest test is to 

determine whether all observed points conform to the same 

p

p’

Π

C’ C

I’
I

H

xΠ

Fig.2. Homography of coplanar points. 

 
(a)          (b) 

 
(c) 

Fig.3. An example of ground feature detection. (a) and (b) are 

images taken in different views. (c) is the classification result 

of the matched features observed from (a) and (b). The 

features with blue label indicate features on the ground, 

while the features with orange label are features off the 

ground.  
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homography. This test will fail only when there is just a 

single scene plane visible, or when camera intrinsic 

parameters are changed. Both of these cases are rare and can 

be avoided.  

To further improve the robustness, the homography 

estimation step will not be performed among consecutive 

frames straight forwardly, but only when the displacement is 

above a threshold. This step helps to reduce quantization 

error when the distance between pi and p'i is too small.  

IV. GROUND SEGMENTATION 

The quality of segmentation result depends not only on the 

algorithm used, but also the targeted application. In our 

design, the segmentation method should be able to distinct 

objects from image frames in a fast, robust, unsupervised, and 

adaptive way under various environments. In the proposed 

system, an image frame is segmented in HSI 

(Hue-Saturation-Intensity) color space using multi-scale 

Mean-shift algorithm. 

A. Multi-scale Mean-shift Clustering 

Mean-shift algorithm [19] is a nonparametric, iterative 

clustering technique which does not require prior knowledge 

of the number of clusters and constrain the shape of the 

clusters. It is suitable for unsupervised color segmentation. 

Although Mean-shift is nonparametric, the bandwidth of the 

kernel still needs to be determined. In general, the image is 

under-segmented when the bandwidth is too large, and 

over-segmented when the bandwidth is too small. In this 

work, proper bandwidth is determined dynamically, 

according to the frequency analysis results of the image. For 

instance, a clustered image such as crowds often indicates 

larger energy in high frequency, and requires a smaller 

bandwidth value. On the contrary, a simple image such as a 

white wall, will give a larger bandwidth value.  

In order to further boost up the speed for real-time 

applications, images are scaled down beforehand. Small 

objects may thus be neglected. Therefore, the proposed 

algorithm estimates the purity of each semi-object with 

original resolution, and segments again if possible. This 

method achieves 5-20 times faster with better segmentation 

quality than directly process the original scale.  

Clustering under different color space may bring 

extremely different results. Experiments show that clustering 

under HSI color space performs more stable than other color 

space. However, hue is unstable under low intensity and 

saturation. Therefore, if a pixel has a saturation value<0.1 or 

an intensity value <0.1, its hue value will be set to 2, which 

indicates that this pixel is colorless. 

B. Ground Plane Labeling 

After ground/off-ground features are determined, the 

system needs to classify the ground region in a pixel-wise 

manner. Many previous works warp image by using the 

homography matrix and calculating Sum of Absolute 

Differences (SAD) between the warped image and current 

image. However, it is difficult to determine a proper value of 

threshold since the SAD value is correlated to the 

environment. Further, homogenous obstacles may be 

neglected, as mentioned earlier. Therefore, the proposed 

system determines if the region is on the ground according to 

the displacement and the distortion of each segment 

separately. To achieve this, corresponding segments are first 

found using both SURF features and its color distribution. 

Similar techniques have been used in stereo vision when 

estimating disparity maps [20]. Both static and moving 

obstacles can be observed. Those segments which fail to be 

matched will be labeled as undetermined. Note that when the 

robot stops or its motion is a pure rotation, this method cannot 

be used to determine the ground region.  

Fig. 4 shows both the result of segmentation and ground 

plane labeling based on the images in Fig. 3. Note that in the 

image a piece of paper on the ground is classified as ground 

as expected. 

V. EXPERIMENTAL RESULTS 

The proposed system has been implemented on an 

experimental mobile robot. As shown in Fig. 5, the robot is 

equipped with a USB webcam on a two DOF pan-tilt head. 

An Industrial PC (IPC) is used for image processing and 

robot control. All the motors are velocity-servoed by using 

DSP-based motion control boards. In order to make the 

system more responsive, the acquired image is down sampled 

to 320×240 pixels. Images are captured at the beginning of 

each procedure in the vision system. The complete image 

processing will take 100 to 300ms, depending on the 

extracted features and the complexity of input images.  

 
(a) 

 
(b) 

Fig.4. (a) Color segmentation result and (b) ground region 

labeling result based on the images in Fig.3.   
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A. Calibration Experiment of Distance Measurement 

In this experiment, the distance measurement was 

calibrated using the developed system. The experiment was 

performed with static obstacles on the ground, while the robot 

is controlled to stand from 1.6m to 6m from the obstacle. The 

estimated distance is compared with the ground truth values. 

The IPT homography was initially estimated by 4 known 

points on the ground within 3m. Table I shows the 

experimental results. The error is within 3% in 5m range. 

The reasons of the error are mainly due to the imperfect result 

of segmentation and the quantization error in IPT. These 

errors are especially significant when the object is far away 

and cannot be distinguished due to limited resolution of the 

image. This accuracy is comparable to Hokuyo laser scanner 

[21]. Note that the minimal and maximum sensing ranges are 

both related to the height and the tilt angle of the camera. 

B. Experiment of Classification Rate Using a Synthetic 

Environment 

In order to test the proposed system under different 

environments, a synthetic room is used to examine the 

classification rate with ground truth. In each trail of the 

experiment, the path of the robot is randomly generated to 

observe 10 consecutive views, as shown in Fig. 6. The texture 

of the environment also changes randomly in each trail. The 

experiment after 100 trails shows that the false detection rate 

of features is lower than 1%. The experiment also shows that 

false detection area of ground regions are within 3%. 

C. Experiment of Mobile Robot Obstacle Avoidance 

The aim of this experiment is to test if the proposed system 

can be used to replace a laser scanner and accomplish a 

simple autonomous navigation task. In this experiment, an 

autonomous navigation scheme of authors’ previous work 

was adopted [22]. The navigation task is achieved by 

behavior fusion of two navigation behaviors, namely obstacle 

avoidance and goal seeking. The behavior of goal seeking is 

treated as trying to move towards the direction of the target. 

The obstacle avoidance behavior is to move along the 

direction without colliding into any obstacles on the way. The 

main challenge of the proposed vision-based system is that 

the original laser scanner provides a view angle of at least 

180-degree-wide., which the camera, however, can provide 

60-degree-wide at most, due to its field of view. Therefore, 

the robot might not avoid obstacles appeared in the blind 

zone. 

The experimental results are shown in Fig. 7 and Fig. 8. 

The recorded trajectory in Fig. 7 shows that the robot 

successfully avoided several obstacles and reached the 

destination. Various obstacles with different colors and sizes 

were detected and avoided. The robot turned to the left after it 

detected the tool boxes, as shown in Fig.7 (c) and Fig.8 (c). 

Later, the robot turned right since it detected the chairs and 

desks, as shown in Fig.7 (d) and Fig.8 (d). Video clips and 

supplemental materials of these experiments can be found in 

http://isci.cn.nctu.edu.tw/Video/IROS2010/.  

VI. CONCLUSION 

A monocular vision-based robot navigation system has 

been developed by combining IPT and ground region 

segmentation. A local grid map can be built with single 

camera for robot navigation. Experimental results show that 

the system has adequate accuracy of 3% in 5 m range of 

distance measurement of immediate obstacles. The proposed 

system has been successfully tested for mobile robot 

navigation in an indoor environment. In the future, we will 

IPC

Motor Controller
and Driver

Pan-tilt platform

WebCam

Mobile platform

 
Fig.5. The mobile robot used in the experiments 

 

 
(a)          ( (b)  

Fig.6. The synthetic room experiment. (a) The structure of 

the environment. (b) A classification result. The red zone 

indicates the region correctly labeled as ground, while the 

yellow region indicates false detection.  

TABLE I 

EXPERIMENTAL RESULT FOR DISTANCE ESTIMATION OF OBSTACLE 

Ground 

truth(m) 

Estimated 

distance(pixels) 

Estimated 

distance(m) 
Error(m) 

Percentage 

error (%) 

1.6 45 1.63 0.03 1.94 

2 100 1.97 0.03 1.41 

2.4 133 2.42 0.02 0.66 

2.8 158 2.87 0.07 2.57 

3.2 176 3.26 0.06 2.01 

3.6 193 3.68 0.08 2.32 

4 206 4.04 0.04 0.92 

4.4 220 4.45 0.05 1.09 

4.8 232 4.83 0.03 0.55 

5.2 238 5.02 0.18 3.38 

5.6 243 5.19 0.41 7.25 

6 247 5.33 0.67 11.1 
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work on reducing the system execution time in order to use 

high resolution images. The combination of monocular 

vision and pan-tilt platform will be investigated to solve the 

problem of limited camera view angle. The proposed system 

will be extended to provide a simultaneous localization and 

mapping for mobile robot navigation.  

REFERENCES 

[1] S. Lenser and M. Veloso, “Visual Sonar Fast Obstacle Avoidance Using 

Monocular Vision,” In Proc. of the IEEE/RSJ International Conference 

on Intelligent Robots and Systems, Las Vegas, Nevada, USA, 2003, pp. 
886- 891. 

[2] C. Chen, C. Cheng, D. Page, A. Koschan and M. Abidi, “A Moving Object 

Tracked by a Mobile Robot with Real-Time Obstacles Avoidance 

Capacity,” in Proc. of the 18th International Conference on Pattern 
Recognition, Washington, D.C., USA, 2006, pp.1091-1094. 

[3] N. Ohnishi and A. Imiya, “Dominant Plane Detection from Optical Flow 

for Robot Navigation,” Pattern Recognition Letter, vol. 27, pp. 

1009–1021, 2006. 

[4] Y. Kim and H. Kim, “Layered Ground Floor Detection for Vision Based 

Mobile Robot Navigation,” in Proc. of IEEE Int. Conf. on Robotics and 

Automation, New Orleans, Louisiana, USA, 2004, pp. 13-18. 

[5] J. Michels, A. Saxena and A.Y. Ng, “High Speed Obstacle Avoidance 

using Monocular Vision and Reinforcement Learning,” in Proceedings of 

the Twenty-first International Conference on Machine Learning 

(ICML), Bonn, Germany, 2005, pp. 593-600.  

[6] B. Micusik, H.Wildenauer and M. Vincze, “Towards Detection of 

Orthogonal Planes in Monocular Images of Indoor Environments,” in 

Proc. of IEEE Int. Conf. on Robotics and Automation, Los Angeles, USA, 

2008, pp. 999-1004. 

[7] B. Liang, N. Pears and Z. Chen, "Affine Heigh Landscapes for Monocular 

Mobile Robot Obstacle Avoidance", in Proc. of the 8th Int. Conf. on 

Intelligent Autonomous Systems, Amsterdam, The Netherlands, 2004, 

pp.863-872. 

[8] J. Zhou and B. Li, “Homography-based Ground Detection for a Mobile 

Robot Platform Using a Single Camera,” in Proc. of the 2006 IEEE 
International Conference on Robotics and Automation, Orlando, 

Florida, 2006 pp, 4100-4105. 

[9] J. Zhou and B. Li, “Robust Ground Plane Detection with Normalized 

Homography in Monocular Sequences from a Robot Platform,” in Proc. 
of the 2006 IEEE International Conference on Image Processing, 

Atlanta, GA, USA, 2006, pp. 3017-3020. 

[10] N.Simond and M. Parent, “Obstacle Detection from IPM and 

Super-Homography,” in Proc. of IEEE/RSJ International Conference on 
Intelligent Robots and Systems, San Diego, CA, 2007,  pp.4283-4288, 

[11] S. Wybo, R. Bendahan, S. Bougnoux, C. Vestri, F. Abad and T. Kakinami, 

“Improving Backing-Up Manoeuvre Safety with Vision-Based Movement 

Detection,” Intelligent Transport Systems, IET,vol., no. 2, 

pp.150-158,June 2007. 

[12] K. Yamaguchi, A. Watanabe, T. Naito, and Y. Ninomiya, “Road Region 

Estimation Using a Sequence of Monocular Images,” in Proc. of the 19th 

international Conference on Pattern Recognition, Tampa, Florida, USA, 

2008, pp.1-4. 

[13] E. Fazl-Ersi, and J.K. Tsotsos, “Region Classification for Robust Floor 

Detection in Indoor Environments,” in Proc. of the 6th International 

Conference on Image Analysis and Recognition (ICIAR), Halifax, 

Canada, 2009, pp. 717-726 

[14] F. Bonin-Font  and A. Ortiz, “Building a Qualitative Local Occupancy 

Grid in a New Vision-Based Reactive Navigation Strategy for Mobile 

Robots,” in Proc. of IEEE International Conference on Emerging 

Technologies and Factory Automation (ETFA), Palma de Mallorca, 

Spain, 2009, pp. 1511-1514 

[15] H. Bay, A, Ess, T. Tuytelaars and L.V. Gool, “Speeded-Up Robust 

Features (SURF),” Computer Vision and Image Understanding, vol.110,  

pp. 346-359, 2008. 

[16] D. G. Lowe, “Distinctive Image Features from Scale-invariant 

Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, 

pp.91-110, 2004. 

[17] R. Hartley and A. Zisserman, Multiple View Geometry in Computer 

Vision, Cambridge University Press, New York, NY, 2003. 

[18] D. Comaniciu, V. Ramesh and P. Meer, “The Variable Bandwidth 

Mean-shift and Data-Driven Scale Selection,” in Proc. of Eighth Int’l 

Conf. on Computer Vision,  Vancouver, British Columbia, Canada, July 

2001, pp. 438-445.  

[19] O. Kähler and J. Denzler, “Detecting Coplanar Feature Points in 

Handheld Image Sequences,” in Proc. of  Conference on Computer Vision 

Theory and Applications (VISAPP), Barcelona, Spain , 2007, pp. 

447-452. 

[20] L. Hong and G. Chen, “Segment-Based Stereo Matching Using Graph 

Cuts,” in Proc. of  IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition, Washington, D.C., USA, 2004, 

pp.74-78. 

[21] H. Kawata, A. Ohya, S. Yuta, W. Santosh and T.Mori, “Development of 

Ultra-Small Lightweight Optical Range Sensor System,” in Proc.  of the 

2005 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS’05), Edmonton, Canada, 2005, pp. 1078-1083 

[22] K.T. Song and J.Y. Lin, “Behavior Fusion of Robot Navigation Using a 

Fuzzy Neural Network,” in Proc. of IEEE International Conference on 

Systems, Man and Cybernetics , Taipei, Taiwan, 2006, pp. 4910-4915. 

100 200 300 400 500 600 700

400

300

200

100

0

X
(c
m
)

Y(cm)

obstacles

(a) (b) (c)

(d)
(e)

(f)

(g)

(h)

Fig.7. The recorded trajectory of the navigation experiment. 

Label (a)-(g) represent the position of the robot in Fig. 8(a)-(g).

 

 
(a)          (b) 

 
(c)          (d) 

 
(e)          (f) 

 
(g)          (h) 

Fig.8. Snapshots from the navigation experiment. (a) The robot 

started to navigate. (b) The robot was avoiding obstacles. (c-f) 

The robot was avoiding obstacles while heading towards its 

goal. (g) The robot reached the goal position. 
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