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Abstract— Imitation learning has been recognized as a
promising technique to teach robots advanced skills. It is based
on the idea that robots could learn new behaviors by observ-
ing and imitating the behaviors of other skilled actors. We
propose an adaptive probabilistic graphical model which copes
with three core issues of any imitative behavior: observation,
representation and reproduction of skills. Our model, Growing
Hierarchical Dynamic Bayesian Network (GHDBN), is hierarchi-
cal (i.e. able to characterize structured behaviors at different
levels of abstraction), and growing (i.e. skills are learned or
updated incrementally - and at each level of abstraction - every
time a new observation sequence is available). A GHDBN,
once trained, is able to recognize skills being observed and
to reproduce them by exploiting the generative power of the
model. The system has been successfully tested in simulation,
and initial tests have been conducted on a NAO humanoid robot
platform.

I. INTRODUCTION

The state-of-the art robotic systems, while exhibiting
impressive performances in hardware design and control
algorithms, posses restricted capabilities of perception, rea-
soning and action in novel and unstructured environments. In
order to overcome these limitations, robots should understand
the actions performed by others, infer their intentions, and
formulate appropriate responses based on the current context
and their own internal motivations and drives. Furthermore,
robots should be able to acquire new skills, behaviors and
knowledge through an active interaction with other agents.

Imitation learning has been recognized as a promising
technique to teach robots advanced skills. It is based on
the idea that robots could learn new behaviors by observing
and imitating the behaviors of other skilled actors. Each
imitative process, no matter how complex it is, is essentially
composed of three fundamental steps: observation, represen-
tation and reproduction. Classical methods of Programming
by Demonstration have usually been focused on reproducing
the surface of the demonstrated behavior [6]. However, in
order to achieve the highest level of imitation, we must go
beyond the surface of the perceived sensorial patterns. Our
aim is to have robots capable of advanced social interactions
and imitation, where imitation is seen not only as the process
of copying an observed motor act without any understanding,
but rather as a process of inference intention where the
goal hidden in the observation of the act is imitated. This
goal-level imitation, in our view, is a major prerequisite for
having artificial agents capable of advanced interaction with
the world, and able to adapt and learn from it.
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Recent hypotheses, corroborated by several empirical find-
ings, postulate that the understanding of the external world
(in terms of objects, actions performed on objects, and
intentions) is achieved by employing one’s own internal
structures used to actively interact with the external world,
i.e. one’s own motor apparatus. These ideas originated in
non-robotics scientific communities, such as cognitive sci-
ence and neuroscience, by trying to explain advanced social
cognition capabilities in humans [7]. This has inspired the
use of internal models (which simulate aspects of planning,
control and learning) for action recognition and reproduction
in robotics [5]. However, recent studies have discovered that
novel behaviors are recognized by an inferential interpretive
system rather than by the Mirror Neuron System (MNS)
[8]. Indeed, the MNS does not infer the high level intention
of a complex action (see [9] for a review). An observer,
to understand the intention of an action, must be able to
describe it either at the goal level (i.e. representing, as done
by the MNS, the short term goals necessary to realize the
intention) or at the more abstract intention level (not encoded
by the MNS, as claimed in [8]) by having only access to the
visual information.

Recognizing the goals and intentions of an acting agent
could be computationally interpreted as a problem of model
matching. Demiris describes two approaches for classifying
an observation: descriptive or generative [4]. In the former,
a set of low-level features are extracted from the observed
pattern and then matched against pre-existing representations
(which are labeled with the goals and intentions that underlie
their execution) to generate the actions corresponding to
these representations. Within a generative approach, a set of
latent variables encode the causes capable of producing the
observed data. Billard et al., in [6], defines two typologies of
skill representation: trajectory-level encoding (processes are
represented as a non-linear mapping between sensory and
motor data) and symbolic-level encoding (tasks are described
symbolically using classical machine learning techniques).
By using the symbolic approach, one can abstractly represent
hierarchies of behaviors and sequences of states making the
intention recognition easier.

We propose an adaptive probabilistic graphical model
which copes with the core issues of any imitative behavior:
observation, representation and reproduction of skills. Our
model, Growing Hierarchical Dynamic Bayesian Network
(GHDBN), is hierarchical (i.e. able to characterize structured
behaviors at different levels of abstraction), and growing (i.e.
skills are learned or updated incrementally - and at each
level of abstraction - every time a new observation sequence
is available) [1]. A GHBDN, once trained, is able both to
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Fig. 1. Growing Hierarchical Dynamic Bayesian Network

recognize skills being observed, and to reproduce them by
exploiting the generative power of the model. In addition,
we will show how the model encodes the proximal goal of
an action together with the global intention of a motor act,
e.g. its distal goal.

The rest of the paper is structured as follows: section II
shows how complex actions can be represented and learned
by using our probabilistic framework; section III shows how
to perform imitation by using GHDBNs; in section IV we
show some preliminary experiments on representing and
reproducing tasks in simulation; finally, section V outlines
the conclusions and future works.

II. REPRESENTING COMPLEX ACTIONS

An efficient representation of actions is a typical problem
arising in imitation learning settings. This section provides
an overview of our approach to action representation, which
is the result of merging two existing probabilistic graphical
models: Growing Hidden Markov Models1 [10] and Hierar-
chical Dynamic Bayesian Network2 [3], resulting in a unique
model: Growing Hierarchical Dynamic Bayesian Network
(GHDBN) [1]. Learning in the model, at different layers of
abstraction, is performed incrementally without the need of
a priori labeled data.

A. GHDBN model

Dynamic Bayesian Network is a probabilistic graphical
model used in representing time series which depend on
certain hidden variables. In general, a probabilistic graphical
model is identified by its structure and its parameters. The
former characterizes the number of variables of the networks,

1A GHMM is a HMM whose hidden discrete variable depends on a
topological representation of the feature space. Its parameters are updated
by using an Incremental version of the Expectation-Maximization algorithm
where inference is performed by a modified Forward-Backward operator.
Unfortunately, using this approach involves processing all the past informa-
tions when observing a new example which may result in severe memory
issues with the growing number of observation. Moreover, it is extremely
difficult to model complex multi-level stochastic processes with a unique
hidden variable of the GHMM.

2A HDBN is a DBN whose variables are grouped into levels. Each level
is composed of two types of variables: a variable Xt , representing the state
of the system (at that level of abstraction) at time t, and a binary valued
variable Et , representing whether or not the sequence of states of its level
has run until its end.

Fig. 2. Learning the GHDBN model

their domain, and their conditional dependencies, while the
latter quantifies their conditional probability distributions.

The GHDBN (Figure 1) is a two-level HDBN where
each level is described by: two discrete stochastic variables,
namely XH (high level representation of the skill/action)
and XL (low-level behavior); two binary variables, EH and
EL, representing the end-of-states-sequence markers for each
level; and Y , which models a multivariate Gaussian distribu-
tion from which are drawn the observations. The peculiarity
of this model is that the number of states of XH and XL

and their state transition structures are not constant: complex
actions and elementary behaviors are learned incrementally
without any prior information.

B. Learning the model

Representing a process with a probabilistic graphical
model means learning its parameters and/or its structure. In
the GHDBN, both structure and parameters are learned on-
line in an unsupervised fashion, by processing the continuous
flow of information.

Structure learning includes several problems related to
graph construction and to definition of the number of states
and connections between them. Within the GHDBN, the
graph is fixed in terms of number of stochastic variables,
their domains and interconnections. Our goal is to find
an unsupervised method to learn the number of states
(i.e. behaviors at both levels of abstraction) and their con-
nections. The problem is challenging since we need to
learn the structure of both XH ’s and XL’s states, that
is, to discover/modify/remove complex behaviors (states
of XH ) and possible transitions between them, and dis-
cover/modify/remove low-level events (elementary behav-
iors, or states of XL) and possible transitions between them.
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Starting with the structure of the low-level variable XL,
we claim that it should reflect the spatial structure of the fea-
ture space discretization. In other words, transitions between
basic behaviors are only allowed if the corresponding nodes
of a topological map over the feature space are connected.
Actually, the observation space is clustered incrementally by
using the Instantaneous Topological Map algorithm [2], [10],
which provides a discrete representation of the continuous
feature space 3 in the form of a graph where feature space
regions are represented as nodes and adjacent regions are
connected by edges. The topological map is updated at every
new observation Ot in order to minimize the number of
nodes and try to keep the same average distance between
neighbors. The overall complexity is linear in time and
memory with respect to the number of nodes.

Each variable is associated with a probability distribu-
tion conditioned by the variable’s parents. As the hidden
variables are discrete, these distributions are represented as
N -dimensional tables (named conditional probability tables,
CPT), where N is the number of states of a variable. In a
dynamic model, the parent of a variable could be another
variable in the same time slice, or the same variable in the
previous time slice (transition probability table). In the first
time step, this CPT represents the prior probability table
(e.g. the probability that an action starts with a particular
behavior). Finally, the end-of-sequence probability distribu-
tions represent the probabilities of terminating a high-level
or low-level sequence of actions.

Each topological update, made by the ITM algorithm,
corresponds to an update of the structures of the conditional
probability tables. Adding (removing) a node of the topo-
logical map causes increasing (decreasing) the number of
XL states, while adding (removing) an edge causes setting
a not null (null) value in the corresponding element of the
conditional probability table associated with the variable XL

(where a null value corresponds to an impossible transition
between the considered states). In general, constraining the
possibility of state transition on the neighborhood between
regions of the feature space is not always a correct assump-
tion. In action recognition, however, we are often measuring
features (which somehow depend on some physical laws) in
a continuous domain. Passing from a state to another apart in
the map should be impossible, as changes in the observation
are usually gradual (if analyzed in a short time window) and
correspond to a series of state transitions.

The structural learning of XH is more complicated as
this variable is not directly observed. The GHDBN could
be imagined as many GHMM (as the number of XH states)
unified in a single structure. Having a sequence of observa-
tions, it’s possible to calculate a likelihood score for each of
the submodels to determine the most probable high level state
which has generated the observations. The solution used here
is based on measuring the Likelihood Ratio Test, between the
likelihood of the sequence conditioned on a new XH state

3As an example, in a monodimensional feature space representing the
velocity, the basic behaviors (nodes) could be: still (null value), walking
(medium value), running (high value).

(representing the current sequence of observations) and the
likelihoods conditioned on the others states. If this score is
below a threshold, we are probably observing a complex
action which has still not been modeled, so a new XH state
will be added and its relative parameters will be learned4.
Moreover, the scores for all XH states are compared to each
other. If the scores of two states differ by a quantity smaller
than a specific threshold, probably these states represent a
similar complex action so they could be merged.

Once the structure of the model has been learned, the
second problem is how to learn the entries of the various
CPTs which will be used as the transition model. The
classical approach for parameters learning in probabilistic
graphical models is the Expectation-Maximization (EM)
algorithm. Several variants of the EM exist. Here we classify
an EM algorithm as batch or online, emphasizing how the
whole set of observations are computed to learn the model.
EM algorithms, basically, iterate for maximizing a function.
Batch-EM considers the whole set of observations in each
iteration, so it requires the initial knowledge of the whole
set of observations (we should collect the data of all the
actions we have to model before starting the learning phase).
Although Batch-EM ensures convergence at least to a local
maximum of the observed data likelihood function, it results
in slow learning; moreover, the learned model does not adapt,
hence making it inapplicable in real-world applications.

We need a purely online EM algorithm which updates
the parameters by processing only the current observation.
Several purely online EM algorithms exist, but the majority
encompasses both the stochastic gradient algorithm and the
EM algorithm. An example, used for parameters estimation
in Bayesian Networks, is the EM(η) algorithm [11], later
improved by the Voting-EM [13]. A similar version has been
implemented for DBNs (see [12]).

Let Xi be a node of a generic DBN, Pai the set of the
parents of Xi. An entry in the CPT of the variable Xi is

θijk = P (Xi = xki |Pai = paji ) (1)

So, the updating rule is:

θTijk = (1− η)θT−1
ijk + η[

P (xki , pa
j
i |yt, θ

T−1
ijk )

P (paji |yt, θ
T−1
ijk )

] (2)

Such online updating rule referred to stochastic learning,
with P (xk

i ,pa
j
i
|yt,θ

T−1)

P (paj
i
|yt,θT−1)

be the instantaneous gradient estimate
of the optimization problem constrained by

∑
k θijk = 1.

Since our target is learning complex processes in real time,
a recursive filter approach is needed as inferential algorithm
so that received data can be processed sequentially. The
technique used here is the well known Particle Filter (PF)

4Other two methods have been tested: the first comparing the Bayesian
Information Criterion score conditioned on each XH states, the second
comparing the LRT with a specific percentile of the χ2 distribution. Let λ
be the Likelihood Ratio between two models; χ̂2 = −2log(λ) approximates
the χ2 distribution (function of k degrees of freedom, equals to the
difference between the number of parameters of the two models). If χ̂2

is greater than χ2, so we are probably observing a new complex process.
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Fig. 3. Imitation in GHDBNs. The current XL probability distribution
is used to generate the motor command to be applied to the robot. Red
circles represent ITM nodes where edges specify their connections. Gray
circle is the observation extracted from the current scene configuration.
Probability distributions depicted next to the nodes represent the current
XL probability distribution. In this example, node #1 is the most probable
one; the observation will first reach node #1, then will move towards the
node #2 (following the transition CPT), . . .

algorithm [14]. PFs are sequential Monte Carlo algorithms
used to represent probability densities with point masses
(or particles) in state-space models. Online EM algorithms
exhibit asymptotic behavior towards the real parameter below
a certain variance. This variance is proportional to η, thus
the estimate will oscillate around the true parameter. η can
be viewed as a forgetting bias of the learning algorithm. The
system forgets the past at an exponential rate proportional to
η. However, the oscillation of the parameter permits to get
out from local maxima when the environment changes and
the model needs to adapt again its parameters.

The learning algorithm for GHDBN is a mix of the
previous procedures; figure 2 shows a schematic view of
the whole learning algorithm. Note that ITM starts with 2
random nodes, XH is initialized to have one state (the first
action known is the initial observation sequence) and the
XL states reflect the topological map. We suppose that an
observation sequence (in the learning process) is complete
(i.e. it represents a complex event from the beginning to the
end).

III. IMITATION

In this section we will show how actions can be repro-
duced by using the GHDBN framework presented before.
Our approach reflects the goal-level imitation paradigm:
reproducing a complex action means either reproducing the
sequence of sub-goals needed to achieve the high-level goal,
or the sequence of high-level goals implicit in the complex
action. At each discrete time step, the learner has a set of
hierarchically distributed goals: a high-level goal (part of a
sequence of complex actions) and a low-level goal (part of a
sequence of simpler action conditioned to the current most
probable high-level goal).

For imitation to take place, learned processes must be
mapped onto the appropriate motor system (i.e. this is the
well-known correspondence problem). Imitation process is
initialized with an initial position of the robot, with features
extracted and projected into the learned Instantaneous Topo-
logical Map. The current state distribution is sampled from

the prior distributions XH and XL by using the particle
filter algorithm (weights are computed by using the current
observation). The first complex action to be performed is
selected as the most probable state in the current XH states
distribution.

The current XL probability distribution is used to generate
the motor command to be applied to the robot. For each
state of XL, a control (with the intensity proportional to
the probability of that XL state, see figure 3) is generated
to move the current observation towards the node of the
ITM which corresponds to that XL state. The overall control
is given by the linear combination of the controls relatives
to all XL states. We remark that the observation space is
usually different from the configuration space of the robot,
meaning that the desired movement in the ITM space has to
be translated into an appropriate motor command (see section
IV-B for experimental results).

The whole imitation algorithm is shown in Figure 4.
Imitation is performed by iterating three steps: sampling
(after the initial time step, the proposal distribution is given
by the transition probability tables conditioned to the most
probable XH state), control generation and observation up-
date (extracting features from the new position in the robot’s
configuration space). The process ends where the end-of-
XH -sequence distribution is triggered by a termination state.
This ensures that the state of the system starts from the prior
distribution of the GHDBN and follows its transition proba-
bility, actually reproducing the whole modeled sequence of
low-level states conditioned on the most probable XH state.

The proposed framework is able to learn rapidly, and can
reproduce novel behavior without any reprogramming and
without manually labeling a desired motor control for a
given behavior. GHDBN is updated when novel actions are
discovered, and it can be used in directly linking the low-
level state space with the feature space, which corresponds
to a particular configuration in the motor commands of the
robot. Moving into the low-level state space means changing
controls accordingly. As stated before, high-level behaviors
can be reproduced as a sequence of low-level behaviors.
GHDBN provides robots with a method to produce motor
controls following a high level plan, that is, translating a
high-level state sequence into a sequence of low-level states,
where each state corresponds to a change in the motor
control.

IV. SYSTEM AT WORK

In this section we will show the performance of our
framework on both learning and representing the behaviors,
and in an imitation task.

A. Learning and representing actions

In this experiment, goal directed actions are performed
by a human, where the experimental setup (observed from
an external camera) is a table with several objects that can
be manipulated. Several state-of-the art machine vision algo-
rithms have been adopted in order to extract a 3-dimensional
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Fig. 4. Imitation algorithm

feature vector represented by the following signals: hand ve-
locity, hand-to-object distance variation, and hand-to-object
angle variation. The latter represents the angle between the
direction of the hand motion and the hand-to-object direction
5.

As an example, figure 5 shows the temporal
evolution of the probability distribution related to
the XH variable (the model has previously been
trained on three simple actions, approach-object,
grasp-and-dislocate-object, and hit-object).
The whole sequence of actions represents a complex activity.

The performances of the GHDBN model have been tested
with observations taken from 24 videos containing various
sequences of complex actions, for a total of 1655 frames
(observations) analyzed. Each frame is classified as the
observation of a particular action, if the corresponding state
in the current probability distribution of XH is the most
probable. Table I represents a confusion matrix, which
shows, in percentages, the guessing right of the model.
In particular, 67.58% of the observations concerning the
action dislocate have been classified, correctly, as part
of a dislocate action; instead, the model has classified,
erroneously, the 5.80% of actions as approach and the
26,62% of actions as hit. This GHDBN has been trained
sequentially with observations classified as (chronologically)
a dislocate action, an approach action and a hit
action. Note that the hit action has a grater recognition
rate since it has been the last observed sequence. In order to
justify this, recall that the learning rate η of the online EM
algorithm introduces a forgetting bias. For major details and
the ROC analysis of the model the reader should consult [1].

TABLE I
CONFUSION MATRIX PERCENTAGE

Actual
Dislocate Approach Hit

Predicted
Dislocate 67.58% 22.26% 12.07%
Approach 5.80% 76.26% 6.90%

Hit 26.62% 1.48% 81.03%

5Experiments are implemented on a Intel Core2Duo 2.53GHz with 4Gb
RAM under Ubuntu 8.10. Image processing is done in real-time with a
framerate of 25fps.

B. Imitation

We have tested our probabilistic framework in reproducing
learned behaviors by exploiting its generative abilities. In
order to apply the model in a goal-level imitation setting, we
have expanded our feature space with information containing
a possible “target position” of a displacement action.
Our modified feature space includes the following signals:
normalized hand-target distance, angle between hand-motion
and hand-target direction and the binary hand-object contact
trigger.

Imitation starts with a randomly generated configuration of
robot’s hand, object and target position. In this experiment,
neither predefined attractors, nor potential fields have been
used to move the hand or the object to their target positions.
In addition, no information is provided about which element
of the scene (object or target goal) is the target of the
current action. The target of the current high-level action
is automatically recognized by performing inferences in the
GHDBN: for example, in a scene with an object, a target
position and an initial hand position, we can infer which is
the most probable XH action for each couple hand-object
or hand-target by predicting the future states and selecting
those with the highest likelihood. For example, when the
imitation starts with an empty hand, one can guess that the
next high-level action to be performed is approach (because
it is the only action which starts with the null “hand-object
contact” signal), and that the destination of the action should
be the object (because this will trigger the signal “hand-
object contact” to 1) instead of the target position (because no
hand-object contact could be observed in order to terminate
the action).

Once the most probable XH action and its target are
selected, low-level controls are generated by using the al-
gorithm described in the section III. Here, for simplicity,
controls are reduced to applying a velocity and a direction to
the robot’s hand in order to reproduce the desired movement
in the feature space. Figure 6 (left) shows a sequence of
frames and the probability distribution of the XH variable in
reproducing an approach-and-dislocate action. The intention
(not known a priori, but inferred) to move the object toward
the target position has been reproduced correctly.

V. CONCLUSIONS

We have presented GHDBN, an adaptive probabilistic
framework for learning and reproducing complex behav-
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Fig. 5. An example of observing a sequence of complex actions. The second row depicts the probability distribution of XH for each discrete time step.
For instance, between frames ]85 and ]120, the most probable action is dislocate since the signal hand-to-object distance variation is constant (which is
the main characteristic of the action dislocate). However, dislocate is erroneusly recognized as the most probable action also between frames ]20-]30 and
]40-]60 (since the hand is in an idle state, and the hand-to-object distance variation is constant). To prevent this it would suffice to train a dummy state
corresponding to the no-motion condition in the world.

Fig. 6. (Left) Imitating a sequence of high-level actions. The upper row represents the evolution of the robot’s “mental states“ in simulating the action
reproduction. Red circle represents the robot’s hand, blue circle the object, and green square is the target location where the object should be placed. The
signals in the bottom row represent, for each time step, the probability of reproducing an approach or dislocate action. (Right) Our current experimental
setting involves the humanoid robot NAO.

iors. Algorithms for performing inferences, and learning the
structure and the parameters from the data are presented,
together with the experimental results in using GHDBN for
modeling and recognizing complex actions from data, and in
reproducing intentions of actions.

Experimental results demonstrate the ability of the
GHDBN model to adapt itself to novel observations, its
flexibility over similar models, and provide a method to
reproduce complex behavior by recognizing the target of an
action and predicting its proximal and distal goals.

Our current work is focused on porting the system from
the simulated environment to the NAO humanoid robotic
platform6 (see Figure 6 (right)). Future works will include
the adoption of Rao-Blackwellised Particle Filter (see [15]),
inclusion of an adaptive learning rate η, and testing the model
in other real-world sequential learning tasks.

ACKNOWLEDGMENTS

This work has been partially supported by the EU
funded project HUMANOBS: Humanoids That Learn Socio-
Communicative Skills Through Observation, contract no.
FP7-STREP-231453 (www.humanobs.org).

REFERENCES

[1] H. Dindo, G. Schillaci, An Adaptive Probabilistic Graphical Model for
Representing Skills in PbD Settings, in 5th ACM/IEEE International
Conference on Human-Robot Interaction (HRI 2010), Osaka, Japan,
March 2-5, 2010

[2] J. Jockusch and H. Ritter. An instantaneous topological mapping model
for correlated stimuli, In Proc. of the International Joint Conference
on Neural Networks, Washington (US), vol. 1, pp. 529-534, 1999.

6http://www.aldebaran-robotics.com

[3] K. P. Murphy. Dynamic bayesian networks: representation, inference
and learning, University of California, Berkeley, 2002.

[4] Yiannis Demiris. Prediction of intent in robotics and multi-agent
systems, Cognitive Processing, Vol. 8, No. 3., pp. 151-158, Cognitive
Processing, September 2007.

[5] D. M. Wolpert, K. Doya, M. Kawato. A unifying computational
framework for motor control and social interaction. Philos Trans R
Soc Lond B Biol Sci 358:593602, 2003.

[6] A. Billard, S. Calinon, R. Dillmann, S. Schaal. Robot Programming
By Demonstration. Handbook of Robotics, 2008.

[7] G. Rizzolatti, L. Craighero The Mirror-Neuron System Annu. Rev.
Neurosci. 27, 169-192, 2004.

[8] M. Brass, R. Schmitt, S. Spengler, G. Gergely, Investigating Action
Understanding: Inferential Processes versus Action Simulation. Cur-
rent Biology, n.17, 2117-2121, 2007.

[9] J. M. Kilner, C. D. Frith, Action Observation: Inferring Intentions
without Mirror Neurons. Current Biology, n.18, 2008.

[10] Vasquez, Fraichard, Laugier, Incremental learning of statistical mo-
tion patterns with growing hidden markov models, Transactions on
intelligent transportation systems, 2007.

[11] E. Bauer, D. Koller, and Y. Singer, Update rules for parameter esti-
mation in bayesian networks, in Uncertainty in Artificial Intelligence
(UAI), pages 313, 1997.

[12] H. C. Cho and S. M. Fadali, Online estimation of dynamic bayesian
network parameter, in International Joint Conference on Neural Net-
works, Vancouver, Canada, 2006.

[13] I. Cohen, A. Bronstein, and F. G. Cozman, Adaptive online learning of
bayesian network parameters, University of Sao Paulo, Brasil, 2001.

[14] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,
IEEE Transactions on signal processing, Vol. 50, N. 2, 2002.

[15] A. Doucet, N. de Freitas, K. P. Murphy, S. J. Russell, Rao-
blackwellised particle filtering for dynamic bayesian networks, in
Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 176-183, San Francisco, USA, 2000

4457




