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Abstract— We have suggested a novel statics and force control
can be achieved in a more simple way by using the biarticular
muscle coordinate. In order to verify these characteristics, a
robot arm with two links that are driven by planetary gear is
developed in this paper.

First, the complicated muscle structure is simplified as a
three-pair six-muscle model including the biarticular muscle.
Then based on the configuration, statics at the endeffector
is redefined and a force control algorithm is suggested. The
suggested statics and force control have the advantage of its
simplicity.

Then a novel robot arm to emulate the biarticular muscle
is developed. A planetary gear system is adopted to transfer
torque generated by a motor to two joints. Unnecessary cou-
pling caused by the planetary gear is removed by disturbance
observer control. Experiments done by the robot arm verifies
the effectiveness of the suggested statics and force control.

I. INTRODUCTION

Analysis of the human muscle system and development

of a robot manipulator that mimics human musculoskeletal

system have been researched for several years. Some research

focuses on the measurement of human impedance/stiffness

characteristic [1],[2], others focus on the relationship be-

tween the stiffness and actual muscle [3].

However, there has been a big distance between these

analyses of the human muscle system and its application

to the control of robot manipulators [4],[5]. Especially, the

biarticular muscle that has been said to play a significant role

in human walking is not fully incorporated in robotics, since

it is not analyzed from the view point of robotics. There

has been some research on the role of biarticular muscle

[6],[7], however the approach has been done in an inductive

way based on experiments and biomechanical models. The

complicated muscle characteristic has been hard to simplify

and reflect in motor control.

In order to address this problem, we have developed an

analysis methodology and control algorithm that connect

these two systems[8]. Our work is intended to provide a

deductive way of analyzing biarticular muscles by simpli-

fying their force output characteristics in order to make the

incorporation of the biarticular muscle in robotics easier.

In this paper, our suggestion is revisited and to show that

statics and force control can be achieved in a more simple

way by using the biarticular muscle coordinate. In order to

verify these characteristics, a robot arm with two links that

are driven by planetary gear is developed in this paper.
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This paper is organized as follows; in Section II, three-pair

six-muscle model is introduced as a simple model represent-

ing complicated muscle system. In Section III, novel statics is

derived for a manipulator incorporating the biarticular muscle

and verified by experiments. Finally, a novel robot arm

that incorporate the biarticular muscle characteristic using

a planetary gear system is developed in Section IV and the

suggested force control is verified by the robot arm in Section

V.

II. APPLICATION OF BIARTICULAR MUSCLE TO

ROBOTICS

A. Introduction of Biarticular Muscle to Robot Arm

Real muscle configuration is complicated so we adopt

the simplified 3-pair muscle structure describe in Figure 1:

flexors and extensors of two monoarticular muscles and one

biarticular muscle. Each flexor and extensor muscle generates

the forces f
f
1

to fe
3

. These forces can be simplified using the

equivalence suggested in the last section.
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Fig. 1. Two-Joint Manipulator with Muscle Model

Equation (1) and (2) are the torques generated on two

joints by 3 pairs of muscles.
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where ri is the radius of the joint i, K ′

i means Ki +Bis and

θ12 means θ1 + θ2. In Equations (1) and (2), the first two
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terms are the difference mode which generates torques to

rotate the joints, while the last two terms are the sum mode

that is related to the stiffness around the joints.

Each extensor muscle force (fe
i ) and flexor muscle force

(f
f
i ) is defined as follows.

ff = uf+Kuf∆x+Buf∆ẋ = uf
−uf (K+Bs)r∆θ (3)

fe = ue+Kue∆x+Bue∆ẋ = ue+ue(K+Bs)r∆θ, (4)

where ∆x is the contraction of muscle that can be describe

as r∆θ

In this paper, three muscle torques generated by three pairs

of muscles in Figure 1 are defined as the following, based

on the muscle force equation (3),(4).
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where r1 = r2 = r is assumed.

These muscle torque equations and Equation (1), (2) leads

to the relationship between the joint torques T
j
1
, T

j
2

and the

muscle torques τm
1

, τm
2

, τm
3

as the following.
(

T
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j
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)
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+ τm
3

)

(8)

Now, this analysis allows us to introduce a configuration

of a novel manipulator illustrated in Figure 2, where the

biarticular muscle is modeled as a linear motor producing

the force Fm. This biarticular linear force Fm leads to the

torque τm
3

in two joints at the same time.
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Fig. 2. Configuration of Two-link Manipulator with Biarticular Muscle

τm
1

, τm
2

are the torques generated by monoarticular mus-

cles of two joints, and τm
3

is the torque generated by a

biarticular muscle tension Fm. The torques generated by

these two monoarticular muscles and one biarticular muscle

can be projected to the joint torques as Equation (8).

Note again that the torque by the biarticular muscle is

added to two joints at the same time.

III. NOVEL FORCE CONTROL BY BIARTICULAR MUSCLE

A. Simplification of Statics by Biarticular Muscle Configu-

ration

Figure 3 is the configuration of a two-link manipulator.
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Fig. 3. Configuration of Two-link Manipulator

In the conventional manipulator configuration where two

actuators are located in two joints, the balance between

the forces applied on the endeffector and the joint torques

also can be described using Equation (9), the Jacobian.

Equation (10) is the relationship between the force F e on

the endeffector in Figure 3 and the joint torques (T j
1
, T

j
2
);

the force Fe in Figure 3 is described as F e = (fx, fy)T .

J =

(

−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

)

(9)
(

T
j
1

T
j
2

)

= JT

(

fx

fy

)

(10)

The joint torques related to the endeffector force Fe is

distributed to τm
1

, τm
2

, τm
3

in this section. In order to develop

the relationship between the force on the endeffector and the

muscle torques, the Jacobian needs to be modified. To this

end, we use the relationship between τm
3

and the absolute

angle θ12; the absolute angle θ12 = θ1 + θ2 in Figure 2 can

be defined as the output of the biarticular muscle. The point

that τm
3

affects both joints supports this definition, and the

dynamics of τm
3

derived in the following sections also shows

this output definition is right.

Equation (10) can be divided into two parts like the

following equation.

JT

(

fx

fy

)

=

(

−l1 sin θ1fx + l1 cos θ1fy

0

)

(11)

+

(

−l2 sin θ12fx + l2 cos θ12fy

−l2 sin θ12fx + l2 cos θ12fy

)

Considering this, three muscle torques τm
1

, τm
2

, τm
3

which

cope with the external force Fe can be defined as follows.

τm
1

= −l1sin θ1fx + l1 cos θ1fy, τm
2

= 0 (12)

τm
3

= −l2sin θ12fx + l2 cos θ12fy (13)

The muscle torques τm
1

, τm
2

, τm
3

cannot be decided

uniquely from the joint torques T
j
1
, T

j
2

. If, however, we

ignore τm
2

intentionally, the relationship can be simplified

and it will provide a new relationship between Fe and muscle

torques as the following equation.
(

τm
1

τm
3

)

=

(

−l1 sin θ1 l1 cos θ1

−l2 sin θ12 l2 cos θ12

)(
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)

=(Jabs)
T

(
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)

(14)
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The absolute angle Jacobian matches well with the biar-

ticular muscle manipulator; using Jabs, the relationship

between Fe and τm
1

, τm
2

, τm
3

can be written in a simple way

as Equation (14).

B. Novel Static Force Control based on Biarticular Muscle

Force

When the magnitude and direction of Fe are given as Fe =
(F cos θf , F sin θf ), the relationship with the muscle torque

can be more simplified using Jabs.
(

τm
1

τm
3

)

=(Jabs)
T

(

F cos θf

F sin θf

)

=

(

Fl1 sin(θf −θ1)
Fl2 sin(θf −θ12)

)

(15)

Equation (15) is the proposed new kinematic equation

which relates τm
1

, τm
3

to the characteristics of the external

forces: F and θf . With the biarticular muscle torque coordi-

nate, the endeffector force can be designed in a more simple

way; two muscle torques are just two functions of θf , θ1, θ12

and F .

In the following section, experiments are conducted to

verify this relationship.

IV. DEVELOPMENT BIARTICULAR MUSCLE

IMPLEMENTED ROBOT ARM BASED ON PLANETARY

GEAR SYSTEM

A. Introduction of Planetary Gear System To Biarticular

Muscle Implemented Robot Arm

Figure 4 shows the mechanism of the planetary gear

system. The planetary gear system consists of a sun gear,

planetary gears, a ring gear, and a planetary carrier. The sun

gear is located at the center, and planetary gears revolve

around the sun gear in rotation, and the ring gear surrounds

these gears. The planetary carrier transmits a revolution of

planetary gears.

Fig. 4. Mechanism of planetary gear system

B. Correspondence between gears and muscle torques

The relationship among these gears is somewhat compli-

cated; there are four kinds of rotating gears connected with

each other. This relationship in the planetary gear system

does not match with the muscle system in Figure 1 or Figure

2. We need to rematch the gear torques with the muscle

torques by some gear torque design strategy.

Figure 5 shows our strategy about the match of gears

and motors. The motor which drives the ring gear works

as a mono-articular muscle rotating only the first joint or

the shoulder. The motor which drives a sun gear works as a

mono-articular muscle rotating only the second joint or the

elbow. Lastly, the motor which drives a carrier works as the

bi-articular muscle rotating both joints simultaneously.

In order to realize this correspondence, we need to design

torques that will be applied to each gear. The methodology of

this design will be given in Section IV-D. Before the design,

we need to clarify the force relationship in the planetary gear

system.

Fig. 5. Correspondence of gears to muscle torques

C. Motion equation of planetary gear system

The motion equation of the planetary gear system can

be derived based on Lagrangian mechanics. Table I is the

nomenclature for this motion equation.

TABLE I

PARAMETER OF PLANETARY GEAR SYSTEM

θr rotation angle of ring gear

Jr inertia of ring gear

τr input torque of ring gear

θs rotation angle of sun gear

Js inertia of sun gear

τs input torque of sun gear

θc rotation angle of carrier

τc input torque of carrier

Jc inertia of carrier

θp rotation angle of planetary gear

Jp rotation inertia of planetary gear

θo revolution angle of planetary gear

Jo revolution inertia of planetary gear

ρ gear ratio

The planetary gear system is constrained by the following

equations.

θs −
ρ − 1

2ρ
θp −

ρ + 1

2ρ
θo = 0 (16)

θc = θo (17)

θs +
ρ − 1

2
θp −

ρ + 1

2
θo = 0 (18)

Lagrangian function is given as follows.

L =
1

2
Jr θ̇r

2

+
1

2
Jsθ̇s

2

+
1

2
Jpθ̇p

2

+
1

2
Joθ̇o

2

− τrθr − τsθs − τcθc (19)

Based on these constraints and Lagrangian function,

torque transmissions to each joint can be derived as follows.
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Jr θ̈r = K1τr + K2τs + K3τc (20)

Jsθ̈s = L1τr + L2τs + L3τc (21)

K1, K2, K3 are torque transfer constants from each motor

to the ring gear and L1, L2, L3 are torque transfer constants

to the sun gear. If the inertial force of Jr θ̈r and Jsθ̈s are

identified with the joint torques (T
j
1
, T

j
2

), we can discover

that there are some differences in these equations compared

with Equation(8):

• There is unnecessary coupling; sun gear torque τs and

ring gear torque τr that are supposed to work as mono-

articular muscles affect other joints.

• Torque generated in the carrier gear affects two joint

with a different ratio; torque transfer constant (L3, K3)

of the carrier gear torque are different with each other.

In order to resolve these problems, a planetary gear system

needs some design methodology that will make the system

work same with the muscle system.

D. Control of Planetary Gear Robot Arm

1) Block diagram of a planetary gear system: Figure 6

is a block diagram of the planetary gear system. This block

diagram is based on Equation (20) and (21). K2 and L1 are

influences from the other side mono-articular muscle and

should be removed. Meanwhile, K3 and L3 are influences

from the bi-articular muscle that should be identified with

each other to generate the same torque in both joints.

Fig. 6. Block diagram of a planetary gear system

2) Feedforward design of carrier motor torque: This

design utilizes the carrier torque as a mean to separate the

sun gear torque and ring gear torque in a feedforward way.

Since the carrier can transmit its torque to both sides, it can

negate the mutual interference between ring gear torque and

sun gear torque. Design of the carrier torque is given as

follows.

τ∗

c = E1τs + E2τr + τ b
c , (22)

where E1 is transfer constant of the sun gear to the ring gear

and E2 is vice versa. τ b
c is the torque that will act as the

bi-articular muscle torque affecting both joints at the same

time.

We will call these constants “isolation ratio”. τ∗

c is the

actual torque command that is given to the current controller

of a motor that is connected to the carrier gear. With the

appropriate design of the isolation ration E1 and E2, the

relationship of Equation (20) and (21) will be modified as

follows.

Jr θ̈r = (K1 + K3 · E1)τr + (K2 + K3 · E2)τs + K3τ
b
c

= (K1 + K3 · E1)τr + K3τ
b
c (23)

Jsθ̈s = (L1 + L3 · E1)τr + (L2 + L3 · E2)τs + L3τ
b
c

= (L2 + L3 · E2)τs + L3τ
b
c (24)

The optimal design of E1 and E2 can be derived from this

relationship as follows.

E1 = −

L1

L3

, E2 = −

K2

K3

(25)

Figure 7 is a block diagram with this controller.

Fig. 7. Block diagram with FF controller

It is not so easy to derive these optimal ratios based on the

physical value calculation, however, they can be identified

by a PID controller. For this identification, a certain amount

of the torque is applied only to the sun gear or ring gear

respectively. Then the carrier torque is controlled to decouple

the effect of sun/ring gear torque to the other side.

For example, in the case of E1 identification, τr is set to 1

and τs is set to 0. Based on Eq. (21), τr will accelerate θs as

well as θr. Then, τc is decided by the PID control with the

feedback of θs in order to suppress the acceleration of θs.

The optimal ratio E1 is the ratio between the carrier torque

τc to the ring torque (τr) when the carrier torque suppresses

the acceleration of θs. E2 can be identified in the same way.

Figure 8 is the illustration of this PID control.

This control algorithm is very simple feedforward control

and the isolation ratio is subject to change by influence of

friction and the posture of the robot arm. Therefore, we have

to identify these isolation ratios periodically and need to have

a table of the ratio with regard to the posture of the arm.

3) Feedback design of carrier motor torque based on

disturbance observer: A planetary gear system can be driven

in a feedback way to realize a bi-articular driving system. The

proposed method uses disturbance observers. Figure 9 shows
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Fig. 8. Identifying by PID controller

a block diagram of a planetary gear system with disturbance

observers.

Fig. 9. Block diagram with disturbance observer

Disturbance observers observe influences from the other

side mono-articular muscles as a disturbance and remove the

disturbance by the feedback loop. Meanwhile, a disturbance

observer can make a plant act as a nominal model. Due to this

characteristic, if nominal models are set equal in both sides,

the influence of the bi-articular muscle can be transmitted

equally.

The point that should be noted is that the input to the

nominal plant is the addition of τs and τc for the sun gear

plant and τr and τc for the ring gear, which means the

nominal plant for each gear is designed based on Equation

(8). With this nominal plant design, a planetary gear system

described by Equation (20) and (21), are modified into the

bi-articular driving system described in Equation (8). In next

section, we will show that this control method is effective

via simulation results.

V. EXPERIMENTAL VERIFICATION OF BIARTICULAR

MUSCLE COORDINATED FORCE CONTROL

In order to verify the suggested statics, experiments are

conducted with a robot manipulator. We have developed

a robot manipulator that incorporates the biarticular mus-

cle mechanism [10]. Three motors are connected using a

planetary gear system so as to realize two monoarticular

muscles and one biarticular muscle. There are other typs

of biarticulated robot arm that also adopts a planetary gear

system [9]. Our approach, however, focuses more on the

development of control algorithm. The disturbance observer

approach is adopted to make the planetary gear system work

correctly as the biarticular muscle system. The configuration

and detailed control algorithm are reported in our previous

paper [10].

Fig. 10. Experimental Setup of Robot Manipulator with Biarticular Muscle

Figure 10 is the experimental setup (In this robot, the

lengths of two links (l1, l2 in Figure 3) are set same). A force

sensor is attached to the end of the second link so that it can

measure the force at the endeffector. In the experiments, the

torques τm
1

and τm
3

in Equation (15) is applied changing the

direction θf under a constant value of F .

Two kinds of experiments are conducted: (a) θ2 set to 120

degrees and (b) θ2 set to 90 degrees. 180 points between 0

to 360 degrees are given as θf increasing by 2 degrees. The

following figure 11, 12 are the experimental result.
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(a) θ2 is set to 120 degrees (b) θ2 is set to 90 degrees

Fig. 11. Experimental Verification of the Proposed Statics (Magnitude)
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(a) θ2 is set to 120 degrees (b) θ2 is set to 90 degrees

Fig. 12. Experimental Verification of the Proposed Statics (Direction)

Figure 11 shows the magnitudinal tracking performance.

With the design F = 1.2, the force generated at the

endeffector is supposed to draw a circle with a radius of

1.2N. Even though there is some distortion, the result shows

a circular force trajectory. Figure 12 shows the directional

tracking error that shows the error between the reference θf

and the measured angle. The result shows that, even though

there are some magnitudinal errors due to the mechanical

characteristics of torque-transmitting belts, the forces at the

endeffector are generated in the designed directions.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel statics simplified by the biarticular

muscle coordinate is suggested. Based on the simplified

statics, force control at the endeffector is suggested. This

force control algorithm is verified by experiments.

Experiments is conducted using a planetary gear driven

robot arm. Planetary gear is used to emulate the muscu-

loskeletal system that has two monoarticular muscle and one

biarticular muscle. Feedback control algorithm is suggested

to achieve this emulation. The result is successful showing

that the suggested statics can be useful to be used as a novel

simplified statics control.

The simple force control suggested in this paper is signif-

icant in terms of reaction force control. Since the suggested

statics is simple that the reaction force at the endeffector

by the angle feedback control of each joint can be easily

designed [11] , [12], [13]. Experiments of this reaction force

control are future work.

Redundancy problem [14] is another issue. Even though

only two actuators are used among three actuators consisting

of two monoarticular muscle and one biarticular muscle in

order to simplify the statics in this paper, redundancy of these

three actuators can be utilized to make the actuator output

more efficient.
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