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Abstract— In this paper we present an approach to object
segmentation and recognition that combines depth and color
cues. We fuse information from color images with depth
from a Time-of-Flight (ToF) camera to improve recognition
performance under scale and viewpoint changes. Firstly, we
use depth and local surface orientation extracted from the
ToF image to normalize color and depth image features with
regard to scale and viewpoint. Secondly, we incorporate local
3D shape features into the classifier. The use of a Random Forest
classifier facilitates the seamless combination of depth and
texture features. It also provides image segmentation through
pixel-wise classification. We demonstrate our approach on a
labeled dataset of seven object categories in table-top scenes
and compare it with a vision-only approach.

I. INTRODUCTION

In unconstrained, daily life environments, the segmenta-

tion and recognition of objects is an important yet difficult

to achieve capability for a service robot. Much effort in

computer vision has been devoted to this task over the last

decades with tremendous progress. In this paper, we present

an approach to object segmentation and recognition that com-

bines depth information from a Time-of-Flight (ToF) camera

with images acquired with a color camera. The availability

of dense depth measurements enables us to normalize texture

and depth features for scale and viewpoint changes.

We base our approach on discriminative Random Forest

classifiers which have been introduced to the computer vision

community by Lepetit et al. [1]. This kind of classifier has

many properties which can be useful in robotics applica-

tions: Both, training and classification can be performed

with high computational efficiency which facilitates real-time

operation. Random forests output a probability distribution

over multiple class categories for each pixel and thus solve

object segmentation and recognition concurrently. They also

allow to seamlessly integrate a variety of features like color,

texture, and depth from heterogeneous sensor modalities.

In our approach, we combine color and depth cues to

improve classifier performance. From color images, we de-

termine simple appearance features at pixels and by binary

comparisons between pixels. Complementarily, we extract

local shape features from the depth image.

We not only fuse color and ToF images, but also normalize

features for scale and viewpoint changes of the object

towards the camera. This can be achieved by scaling and

rotating relative query points with respect to the local surface

orientation on the object. We determine the local surface

orientation efficiently from the dense depth image.

All authors are with the Autonomous Intelligent Systems Group, Univer-
sity of Bonn, Germany. Email: stueckler@ais.uni-bonn.de

Fig. 1. Object segmentation and recognition with texture (top left) and
depth (top right) cues. Depth is acquired with a Time-of-Flight camera. We
apply Random Forest classification to segment the ToF image (176x144)
pixel-wise with a subsampling factor of 2. The classifier outputs a proba-
bility distribution over class labels for each pixel. The segmentation shows
the class label with maximum likelihood for each pixel (background: black,
apple: green, puncher: magenta).

In experiments on a labeled dataset of seven object cat-

egories acquired in a table-top scene, we demonstrate that

our approach outperforms the standard approach to Random

Forest classification with unnormalized texture features.

This paper is organized as follows: In Sec. II we review

related work on object segmentation and recognition from

color/texture and depth. Fundamentals and properties of Ran-

dom Forest classifiers are detailed in Sec. III. We describe

our main contribution, the combination of depth and color

cues for object segmentation and recognition, in Sec. IV.

Finally, we report experimental results in Sec. V.

II. RELATED WORK

Image segmentation is a well-studied topic in computer

vision. Early methods segment images by subsuming regions

with similar brightness, color, and texture or by separating

regions at discontinuities of such features [2]. However, the

basic assumption underlying these approaches is that objects

appear uniform in such features, which is typically not the

case for images of real-world scenes.

For class-based segmentation of color images, many ap-

proaches have been developed (e.g., [3], [4], [5], [6]). Se-

mantic Texton Forests [4] use simple features of luminance

and color at single pixels or comparisons between two pixels
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in a Random Forest classifier. Using image-level priors and

a second stage of Random Forests, local and scene context is

incorporated into the classification framework. In [5] the ba-

sic Random Forest classifier is enhanced by further features

such as Histograms of Oriented Gradients [7] and filterbanks.

Spatial smoothness of the resulting segmentations is achieved

using Conditional Random Fields (CRFs). Both approaches

demonstrate state-of-the-art results on the MSRC [8] and

VOC2007 [9] datasets. We extend the basic Random Forest

classification approach in [4] by incorporating depth features

and by normalizing features for scale and viewpoint changes.

Object and shape recognition in 3D point clouds has

also been studied for some time in computer graphics and

robotics. Wahl et al. [10] propose to represent 3D shapes

by histograms of surflet-pair-relations, i.e. distance and ori-

entation between points and corresponding local surface

normals. In [11], such surflet-pair-relation histograms are

used to describe the local neighborhood of points. The

authors demonstrate that the proposed Point Feature His-

tograms (PFH) yield a persistent description of geometric

shape primitives useful for segmentation. Fast Point Feature

Histograms (FPFH), a fast approximation of PFH features,

have been proposed in [12]. We combine FPFHs with texture

features in our object recognition and segmentation frame-

work.

Gould et al. [13] integrate range and vision sensing

modalities for object detection of household objects. Features

extracted from range data are used to focus the attention of

image-based object detectors and, in this way, reduce compu-

tation. They furthermore combine image and 3D features in

binary logistic classifiers to improve detection accuracy. Our

approach seamlessly integrates vision and range information

in an object segmentation and recognition framework.

III. RANDOM FORESTS

Random Forests extend decision trees [14] to mitigate

their shortcomings. Decision tree classifiers typically suffer

from over-fitting. To overcome this problem, Random Forests

combine the output of an ensemble of randomized decision

trees. The randomness is incorporated into the selection of

decision criteria during training. By this, Random Forests

achieve lower generalization error than decision trees and

comparable performance to SVMs on multi-class prob-

lems [15].

One major advantage of decision tree-based classifiers is

their high computational efficiency. The computational load

is mainly governed by the typically small depth and count of

trees, and the feature extraction method. This property makes

Random Forests ideally suited for real-time applications of

object segmentation and recognition as often required in the

robotics context.

A. Structure of Random Forests

A Random Forest F consists of K randomized decision

trees Tk. Each node n in a tree classifies an example by a

binary decision on a scalar node function over features. In

addition, each node is associated with a distribution P (c|n)
over class labels c ∈ C.

To determine the posterior distribution over class labels

for an example, it is evaluated on each decision tree Tk in

the ensemble. In this process, the example is passed down

the tree, branching at each node according to its binary

decision criterium until a leaf node l is reached. The posterior

distribution is averaged over the individual distributions at

the leaf nodes lk the example reaches, i.e.,

P (c|F) =
1

K

K
∑

k=1

p(c|lk, Tk).

For classification, this posterior distribution is evaluated

for each pixel in an image. Without further processing, the

class label with maximum likelihood can be chosen to obtain

an image segmentation into classes.

B. Learning Random Forests

Each randomized decision tree in the forest is trained

independently. Starting from the root node, the training of a

tree either proceeds depth first or breadth first by successively

choosing binary decision criteria in a randomized manner.

The trees are limited to a maximum depth.

To select the decision criterion of a node, only a random

subset of the training data and the available node functions on

feature values is presented. The training algorithm needs to

determine the node function and a threshold on its value that

separates the training examples best. Commonly, information

gain is maximized for this purpose. The class distributions

of the nodes are estimated from the empirical distribution

given by all training examples.

We follow the approach of [4] and sample a distinct

number of threshold values. From these thresholds we select

the one with highest information gain. We also weight each

training example for a class label with the inverse class label

frequency in the training dataset. This prevents the preference

of the classifier to better separate classes with larger portions

of the training set.

IV. OBJECT SEGMENTATION AND RECOGNITION FROM

DEPTH AND COLOR CUES

In our approach to object segmentation and recognition

we combine two complementary sensor modalities. While

a color camera provides detailed texture information on the

viewed scene, a Time-of-Flight camera measures depth of the

scene densely. We use the perceptually uniform CIELab color

space in our implementation. Fig. 2 shows the sensor setup

on the head of our domestic service robot Dynamaid [16].

In our Random Forest classification framework, features

are computed from both types of images. From the depth

image, we extract features that describe 3D shape locally.

In addition, for each depth image pixel we determine local

texture features through projection of the pixel’s 3D point

coordinate into the color image. The available depth enables

us to normalize the texture features for scale and viewpoint.

We assume that the rotation between object and camera only

changes in pitch and yaw.
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Fig. 2. Sensor setup used in our experiments. A MESA SR4000 camera
and PointGrey Flea2 13S2C-C cameras acquire depth and color images. The
sensor head is mounted on a pan-tilt unit.

A. Sensor Data Preprocessing and Fusion

Time-of-Flight (ToF) cameras are compact, lightweight,

solid-state sensors which measure depth to surfaces densely

at a high frame rate and are therefore ideally suited for

robotic applications. They employ an array of LEDs that il-

luminate the environment with modulated near-infrared light.

The reflected light is received by a CCD/CMOS chip. Depth

information is acquired by measuring the phase shift of the

reflected light for every pixel in parallel. The use of ToF

cameras has been studied in various fields of robotics. Main

limitations of this sensor are its limited measurement range,

measurement inaccuracies, limited non-ambiguity range, and

its restricted field-of-view (FoV).

Measurements of ToF cameras are subject to several error

sources [17]. From the image, we filter out measurements

with low amplitude, as these indicate either highly noisy

measurements of poorly reflecting objects or measurements

of objects beyond the non-ambiguity range of the camera.

Furthermore, we remove measurements at so-called jump-

edges at object boundaries. They can be determined by

examining local pixel neighborhoods. We detect jump-edges

when two points approximately lie along the line-of-sight of

the camera [18]. Since this procedure is sensitive to noise,

we apply a median filter to the depth values beforehand.

To be able to fuse information from both cameras, we

calibrate the cameras extrinsically similar to a stereo camera

rig.

B. Scale and Viewpoint Normalization through Depth

The dense depth information acquired by the ToF camera

enables us to estimate local surface properties. We exploit

this to normalize texture and depth features for affine trans-

formations of the objects under view.

At each ToF image pixel, we estimate the local surface

normal nS from 3D points in a local neighborhood of the

pixel’s 3D coordinate. The neighborhood is defined by a

sphere with radius r. We determine the surface normal by

q

q̂

p̂
c

I n
I

n
S

S

p

q- p-

Fig. 3. Two-dimensional illustration of feature normalization. We normalize
color and depth image features by rotating relative query positions p and q

onto the local surface orientation. We use the shortest rotation from image
plane normal nI onto surface normal nS . For depth features, we determine
the nearest neighbors of the rotated query points p and q. To determine
texture features, the query points are projected onto the image plane I

yielding pixel positions p̂ and q̂.

the eigenvector of the 3D covariance of the neighboring

points corresponding to the smallest eigenvalue. If necessary,

we flip the extracted surface normal to point towards the

viewpoint. The range query has been efficiently implemented

through kd-trees.

In our approach, features are unary functions at or com-

parisons between pixels. In standard image processing ap-

proaches, values are extracted at relative pixel coordinates

in a local image patch around a pixel. To compute scale and

viewpoint invariant features, we rotate 3D query positions

that are relative to the pixel’s 3D coordinate from the image

plane onto the local surface (cf. Fig. 3). We then determine

nearest neighbors in the depth image or project the rotated

query points into the color image.

We determine the rotation between surface and image

plane by the shortest rotation from the image plane nor-

mal nI := (−1, 0, 0)
T

onto the surface normal nS . This

is achieved by rotating with an angle θ along the axis v

perpendicular to the image plane normal and the surface

normal,

v :=
nI × nS

‖nI × nS‖
.

From

RI→S(v, θ) ·





−1
0
0



 =





− cos(θ)
−vz · sin(θ)
vy · sin(θ)



 = n (1)

we obtain θ = arctan2
(

−
ny

vz

,−nx

)

. In our formulation, we

assume that the object is upright with respect to the camera,

i.e. no roll rotation occurs between object and camera.

C. Feature Types

We extract four kinds of texture and surface describing

features from color and ToF depth images:

1) Texture: Features in the color image are simply com-

puted from pixel values and comparisons at projected query

points.
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2) Local Surface Curvature: We use the second-order

measure of surface curvature as feature. From the eigenval-

ues Λ = {λi}
3

i=1
of the local 3D covariance at each pixel,

we determine the curvature κ as

κ =

∣

∣

∣

∣

∣

min Λ
∑

3

i=1
λi

∣

∣

∣

∣

∣

.

3) Moment Invariants: Three-dimensional moment invari-

ants [19] are features of object surfaces that are invariant to

rigid transformations. From the central moments in a local

neighborhood P

mijk =
∑

p∈P

(px − µx)
i
(py − µy)

j
(pz − µz)

k

the 3D moment invariants are determined by

I1 =m200 + m020 + m002

I2 =m200m020 + m020m002 + m002m200

− m2

011
− m2

101
− m2

110

I3 =m200m020m002 + 2m011m101m110

− m2

011
m200 − m2

101
m020 − m2

110
m002,

where µ is the mean of the neighorhood P .

4) Fast Point Feature Histograms: Recently, Fast Point

Feature Histograms (FPFH) have been proposed as persistent

3D shape descriptors. The histograms are computed from 4-

dimensional features determined from pairs of surflets, i.e.

points p with associated local surface normals n.

For a pair of points pi and pj we extract surflet-pair-

relation features in the following way: First we determine the

source point ps as the point with the smaller angle between

its normal and the line between the points, i.e. if

arccos (ni · (pj − pi)) ≤ arccos (nj · (pi − pj)) ,

the point pi is chosen as source and pj as target pt. From

the points and their normals we construct the Darboux frame

with u = ns, v = (pt − ps) × u, and w = u × v.

The four surflet-pair-relation features then describe the

relative orientation and distance between the two surflets:

α = arctan2 (w · n2, u · n2) ,

β = v · n2,

γ = u ·
(pe − ps)

‖pe − ps‖
,

δ = ‖pe − ps‖ .

We then compute so-called Simplified Point Feature His-

tograms (SPFH) over the angular surflet-pair-relation features

between a point and its local neighbors in a specific range r.

As proposed in [12], we neglect the distance feature δ. We

bin each feature into K equally sized intervals of its value

range.

The SPFHs are further compressed to Fast Point Feature

Histograms (FPFH): At each point p, the FPFH is the

weighted sum of the SPFHs in the point’s local neighbor-

hood P

FPFH(p) = SPFH(p) +
1

|P|

∑

q∈P

1

d(p, q)
SPFH(q),

where d(p, q) is a distance metric between points.

D. Node Functions

We use the above features in unary node functions or to

compare shape or appearance between two local points at a

pixel.

1) Unary Node Functions: As unary node functions we

use value or absolute value of luminance, color, curvature,

moment invariants, and the individual FPFH bin values at

query positions relative to the pixel’s 3D coordinate.

To determine feature values for the query positions in

the depth image, we determine the nearest pixel in 3D

coordinates. In the color images, depth is not available at

every pixel. For this reason, we choose the relative query

positions to reside in the local surface plane given by the

pixel’s normal. The query position is then projected into the

color image to find its corresponding pixel.

It suffices to select relative positions and to rotate these

positions onto the surface plane according to the image-

plane-to-surface rotation RI→S in (1). During training of the

random forest, we randomly select relative query positions

within a selection range rsel.

2) Binary Node Functions: Binary node functions com-

pare features at two relative query positions. Analogously

to the unary node function case, we determine the query

positions either on a plane for texture features or in 3D

for depth features. We use a variety of node functions over

different types of depth and texture features:

• Texture: We compare query positions in the color

image by the value or absolute value of addition, sub-

traction, and multiplication. By this, each path through

the decision tree is able to generate patch features

similar to derivative filter kernels [4].

• Point Statistics: Similar to binary node functions on

color, node functions are calculated on curvature and

moment invariants as value or absolute value of addi-

tion, subtraction, and multiplication.

• FPFH Matching: We also use the chi-squared distance

χ2(p, q) =
∑

k

(FPFH(p)k − FPFH(q)k)
2

(FPFH(p)k + FPFH(q)k)

between the FPFHs at the query points p and q as binary

node functions.

V. EXPERIMENTS

We evaluate our approach with a dataset of seven object

categories which we acquired in a table-top scene. The object

categories comprise cups, apples, bins, books, computer

mice, punchers, and staplers (cf. Fig. 4). Each category

consists of four example objects that add intra-class variety

in shape and appearance. In the object-view dataset (221

images), the objects are placed at the same spot and are

rotated in 45◦ angle intervals around their yaw axis. In an

object-mix dataset (32 images), we place two or three objects

in random positions and orientations on the table.

We train the Random Forest classifier with standard unnor-

malized texture features in the image-plane (patchsize 16 ×
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Fig. 4. Objects from the seven categories used in the experiments.

with backgr. w/o backgr.
glob. avg. glob. avg.

standard texture 0.80 0.63 0.65 0.63

texture (0.025m) 0.81 0.59 0.62 0.57
texture (0.1m) 0.92 0.75 0.78 0.74

depth (0.07m) 0.90 0.51 0.81 0.75

texture, depth (0.025m, 0.07m) 0.95 0.66 0.73 0.64
texture, depth (0.1m, 0.07m) 0.95 0.69 0.77 0.67

TABLE I

GLOBAL AND AVERAGE ACCURACY OF MAX-LIKELIHOOD OBJECT

SEGMENTATION ON TEST IMAGES OF THE OBJECT-VIEW DATASET.

16) and several combinations and parameter settings for

normalized texture and depth features. In experiments with

the object-view dataset only, we split the dataset into test and

training subsets. By this, the classifier has to generalize on

unknown object views. Otherwise, we use the object-views

dataset as training set and test segmentation on the object-

mix dataset. The forest consists of 5 trees and we use a

random 25% fraction of the training data for each tree. We

set the maximum depth of the trees to 10 and select from 400
node functions and 5 thresholds drawn at random. Since it

may be of interest to segment objects from background like

the table-top, we add background as an additional class to

the object categories in a second set of experiments.

Table I shows global and average accuracy obtained on

the object-view dataset. The use of normalized texture and

depth features clearly outperforms the standard classifier with

unnormalized texture features. It is remarkable that depth

alone yields better segmentation accuracy than the combined

approach when the background is neglected. However, the

use of normalized texture improves the classification of

background. The combination of depth and texture achieves

the highest overall accuracy in segmenting background and

objects. Fig. 5 depicts examples for good and bad segmen-

tation results obtained with this configuration.

On the object-mix dataset (Table II), our approach again

achieves better accuracy than the standard approach. Again,

the use of depth alone results in the highest accuracy when

the background is neglected. Considering background, the

highest overall and average accuracy is achieved by combin-

ing texture and depth (example segmentations can be found

in Fig. 6).

VI. CONCLUSIONS

In this paper, we proposed an approach to object seg-

mentation and recognition that fuses information from color

and Time-of-Flight cameras. From both types of images,

with backgr. w/o backgr.
glob. avg. glob. avg.

standard texture 0.77 0.54 0.51 0.52

texture (0.025m) 0.80 0.50 0.46 0.46
texture (0.1m) 0.84 0.47 0.52 0.44

depth (0.07m) 0.81 0.45 0.73 0.62

texture, depth (0.025m, 0.07m) 0.89 0.57 0.64 0.60

texture, depth (0.1m, 0.07m) 0.86 0.42 0.52 0.37

TABLE II

GLOBAL AND AVERAGE ACCURACY OF MAX-LIKELIHOOD OBJECT

SEGMENTATION ON THE OBJECT-MIX DATASET.

we extract shape and appearance features that we use in a

Random Forest classification framework. Furthermore, we

use depth to estimate local surface orientation at each ToF

pixel. By rotating features onto the surface orientation, we

normalize texture and depth features for scale and viewpoint.

Our experiments demonstrate that the combination of

depth and texture information yields classification results

superior to the use of unnormalized texture alone. However,

the small resolution of the Time-of-Flight camera and the

inherent restrictions due to its measurement principle limit

our approach. Depth from structured light or 3D laser range

finders could further enhance the performance of our ap-

proach. Also, while the maximum likelihood segmentations

obtained by our approach seem to be noisy and unsmooth

at first glance, the probabilistic output of the Random Forest

classifier could be used in a spatial smoothing stage using a

CRF, for example. By this, a larger spatial context could be

incorporated into our recognition and segmentation approach.
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