
 
 

 

  

Abstract—Intelligent Service Robot (ISR) has become 
increasingly noticed because of new devices and novel 
technologies that make ISR a truly handy human aid in areas 
like medical care, security patrol, tour guide and edutainment. 
Therefore, how to provide an applicable map for ISR to 
autonomously navigate inside a building for task execution 
becomes an imminent issue. This paper investigates an 
information enriched map constructed by the environment 
geometry from laser range finder and the indoor directive signs 
commonly seen in living/working environment from camera 
image. To implement this enriched map, multi-sensor fusion 
techniques are utilized for robust pose and sign estimations. 
Furthermore, an improved alignment technique is applied to 
reduce the computational complexity in a single Graph-SLAM 
process. 

I. INTRODUCTION 
ONSIDER the actual applications of an intelligent 
service robot (ISR), it is expected that an ISR will not 

only autonomously estimate the environment structure but 
also detect the meaningful symbols or signs in the building it 
services. For example, an ISR has to locate all the docking 
stations for recharging itself. For an ISR to lead a customer in 
the department store to any location such as the toy 
department or the nearest restroom, it must have the essential 
recognizing and guiding ability for its service. For this 
purpose, to carry out an applicable self-localization and map 
building technique for the indoor service robot becomes 
important and desirable.  

In recent years the sensing and computing technology have 
made tremendous progress. Various simultaneous 
localization and mapping (SLAM) techniques have been 
implemented. The principle of SLAM is derived from 
Bayesian framework. The EKF-SLAM [1] is based on robot 
state estimation. However, EKF-SLAM will fail in large 
environments caused by inconsistent estimation problem 
from the linearization process [2] [3] [4]. A full SLAM 
algorithm is using sequential Monte Carlo sampling method 
to calculate robot state as particle filter [5] [6]. But the 
technique will grow exponentially with the increase of 
dimensions of the state space. Another full scan matching 
method is suitable for the environment reconstruction [7] [8]. 
But the pose variable will also grow enormously depending 
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on the sampling resolution.  
Based on the practical needs of a service robot application 

in the building, it is desirable to construct an information map 
autonomously in a unitary SLAM process. This information 
map consists of geometrical structure of the environment and 
meaningful sign patterns. This paper investigates a 
multi-sensor approach to combine the estimation of the sign 
patterns and a new optimal alignment approach to build a 
consistent information map. The overall of system 
architecture is shown in Fig. 2 (a) and some meaningful 
Patterns of Interest (POI) are defined as in Fig. 2 (b). These 
patterns are common in any building thus are used in the POI 
database.  

 From the system diagram in Fig. 2 (a), the covariance 
intersection (CI) fusion rule is applied for a more robust 
criterion on robot pose estimation which is described in 
section II. Section Ⅲ presents consistent association method 
and optimal alignment methodology for geometory map 
building. Section Ⅳ  describes POI detection and depth 
estimation from the stereo camera with Covariance Union 
(CU) method. The information map building results are 
demonstrated in section Ⅴ and section Ⅵ is the summary and 
conclusion. 

II.  ROBOT POSE ESTIMATION 

A. Pose Estimation from ICP 
In 3D shapes registration application, the iterative closest 

point (ICP) algorithm was successful apply to align two given 
point data sets. The ICP algorithm was developed by Besl and 
McKay [9] and the principle works as follows. Let 
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},...,{ 10 mppP = represent the observation point set and 
},...,{ 1 nr ppP = be the reference point set. The object of 

the algorithm is to find a geometric transformation to align 
the observed point 0P to the reference point set rP . This 
transformation is composed of rotation and translation matrix.  
J. Nieto [10] took the algorithm as an association criterion of 
EKF-SLAM because ICP algorithm makes the association 
strengthened using the shape as a gate criterion. In this paper, 
the ICP result is regarded as a sensor output on pose 
estimation between two adjacent measurements from laser 
ranger. The error covariance evolution on the ICP alignment 
can be derived as follows:  

},{ iiz θρ= , ερ += ii r  

niP T
iiiii ...1,}]sin,cos[ == θρθρ          (1) 

where 
i

ρ  is the range data, iθ  is the beam angle and ε  is the 

random error with a Gaussian distribution ),0( σN  of the 
laser range finder. Let I  be the error function for ICP 
algorithm as: 
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where k represents the frame or time index and function  
),( 1−+⋅ kk

i PTpRmap  maps the data points ip  in 
frame k into the model points in frame 1k − . The ICP 
algorithm always can find out the transform if the error 
function can be minimized within a threshold, i.e., ICP 
arrives in a fit solution. Under this constraint, the covariance 
approximation depends only on the error function I  being 
minimized and the term XZI ∂∂∂ /2  addresses variation of 
the error function caused by measurement noise ε . Therefore, 
the covariance of pose transformation is represented as: 
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where Z is from laser measurement and X is the pose 
transformation. In (7), the Cramér–Rao lower bound 
constraint is proven satisfied [11]. 

B. Covariance Intersection on Sensor Fusion 
The Covariance Intersection (CI) is a data fusion algorithm 

which takes a convex combination of the means and 
covariance in the information space. The major advantage of 
CI is that it permits filter and data fusion to be performed on 
probabilistically defined estimates without knowing the 
degree of correlation among those estimates. Consider two 
different pieces of measurement A and B from different 
sources. If given the mean and variance: aA}{E = , 

bB}{E = , aaPA}A,{var = , bbPB}B,{var = ,  

abPB},A{cov =  Define the estimate Z  as a linear 
combination of A and B where are present the previous 
estimate of the same target with certain measurement 
uncertainty. The CI approach is based on a geometric 
interpretation of the Kalman filter process. The general form 
of the Kalman filter can be written as: 

ba  ẑ ba ωω +=                               (4) 
T

bbbb
T

bbab
T
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T

aaaazz PPPPP ωωωωωωωω +++=          (5) 
where the weights aω  and bω  are chosen to minimize zzP  . 
This form reduces to the conventional Kalman filter if the 
estimates are independent ( 0Pab = ). The covariance ellipsoid 
of CI will enclose the intersection region and the estimate is 
consistent.  CI does not need assumptions on the dependency 
of the two pieces of information when it fuses them. Given 
the upper bounds 0PP aaaa ≥−  and 0PP bbbb ≥− , the 
covariance intersection estimate output are defined as 
follows: 

b}PaP{Pz -1
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aaazz ωω +=                                         (6) 
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where 1 ,  0,1 baba ≤≤=+ ωωωω  
The parameter ω  modifies the relative weights assigned to A 
and B. Different choices of aω  can be used to optimize the 
covariance estimate with respect to different performance 
criteria such as minimizing the trace or the determinant of zzP . 
In this method, the minimal determinant cost function of 

zzP is chosen. 

III. CONSISTENT MAP ALIGNMENT 

A. Segment Extraction from Laser Measurement 
For building a consistent geometry map, the distinctive 

beacons should be identified and extracted first. Since most of 

 (a)                  (b) 
Fig. 2. (a) System Flow Diagram Overview (b) Some Meaningful Sign Patterns in the Building              
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the indoor environment can be efficiently described using 
polygon segments. The geometry features are defined based 
on line segments. From each laser ranger 
measurement },,...,,{ 110 nn pppps −= , the Iterative End Point 
Fit (IEPF) [23] method is applied ahead. The IEPF 
recursively splits s  into two subsets },...,{ 01 jpps =  and 

},...,{2 nj pps =  while a validation criterion distance maxd  is 

satisfied from point jp  to the segment between 0p  and np . 
Through the iteration, IEPF function will return all segment 
endpoints },{ 0 jpp 、 },{ nj pp . However, IEPF only renders 
cluster points for each segment as candidate. For more 
precision line segment estimation, a Linear Regression (LR) 
method is used to estimate the line equation from each 
segment candidate. Fig. 3 (a) shows the laser measurement. In 
Fig. 3 (b), the starred points are IEPF results and Fig. 3 (c) 
shows the segment extraction after LR. 

B. Consistent Association and mapping 
The objective of the data association is to eliminate the 

accumulated error from measurements. The issue is focused 
on having an accuracy link of beacons between current and 
previous observations. From the physical continuity of robot 
motion, the adjacent measurement of the environment will 
have the maximum correlation. Also, the ICP method will 
reach the maximum matching criterion based on the adjacent 
measurement. Combining odometer measurements in above 
section, the robust pose estimation by CI fusion is achieved 
between the adjacent laser measurements. Fig. 3 (d) shows 
two adjacent laser scans based on robot center. Fig. 3 (e) 
shows two adjacent laser scans after the CI fusion result. If 
there are  r solid segments in previous frame n-1 and there are 
s dash segments in current frame n. A data association 

criterion is built based on the adjacent segment distance as 
below: 

 

landmarknewa is

esle

tomappingis

threshold),(distif

Set segment in  segment for 

1

1

n
sj

n
ri

n
sj

n
sj

n
ri

seg

segseg

segseg

Sj

∈

−
∈∈

∈
−

∈ <

                       (8) 

Via the criterion, the global data association will be 
connected by successive mapping. Furthermore, the global 
feature will grow up when a new segment beacon is observed. 
In order to eliminate the residual error accumulated from pose 
estimation, a global fitness function is generating based on 
the global association via the association look up table. The 
fitness function is composed of Euclidean distance between 
the all segments that associated to the primitive global 
segments. 

 ∑
+

+++++
=

=

k

i ii

iiiiiiiiii

ba

cybxacybxa
fitness

1

2211

           (9) 

where k is the quantity of the segment mapping between the 
adjacent frames. The ia , ib and ic  are the corresponding 
segment parameters in global frame and ),( ii yx are the 
endpoints which are translated by current robot pose. 

C. Pose Alignment Using Particle Swam Optimization  
The PSO technique was proposed by Eberhart and 

Kennedy in 1995 [12] [13] has been widely used in finding 
solutions for multi-variable optimization problems. Some 
improvements and applications have also been proposed [14] 
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Fig. 3. (a) Laser ranger measurement (b) IEPF result from laser measurement (c) Segment extraction result (d) Segment extraction from two adjacent 
pose, the solid is model and the dash is new data (e) CI fusion result on adjacent pose variation (f) PSO alignment for eliminating pose residual error  

2061



 
 

 

[15] [16]. It maintains several particles (each represents a 
solution) and simulates the behavior of bird flocking to find 
the final solutions. All the particles continuously move in the 
search space, toward better solutions, until the termination 
criteria are met. After certain iterations, the optimal solution 
or an approximate optimal solution is expected to be found.  

When applying the PSO technique, each possible solution 
in the search space is called a particle, which is similar to a 
bird’s move mentioned above. All the particles are evaluated 
by a fitness function, with the values representing the 
goodness degrees of the solutions. The solution with the best 
fitness value for a particle can be regarded as the local 
optimal solution found so far and is stored as pBest solution 
for the particle. The best one among all the pBest solutions is 
regarded as the global optimal solution found so far for the 
whole set of particles, and is called the gBest  solution. In 
addition, each particle moves with a velocity, which will 
dynamically change according to pBest and gBest . After 
finding the two best values, a particle updates its velocity by 
the following equation: 

)(()
)(()

22

11

idid

idid
old

id
new

id

xgBestRandc
xpBestRandcVV

−××
+−××+×= ω

     (10) 

where the terms are represented below: 

1) 
new

idV :the new velocity of the i-th particle in the d-th 
dimension in the next generation; old

idV :the velocity of 
the i-th particle in the d-th dimension in the current 
generation; 

2) idpBest : the current pBest value of the i-th particle in the 
 d-th dimension; idgBest : the current gBest value of the 
whole set of particles  in the d-th dimension; 

3) idx  the current position of the i-th particle in the d-th 
 dimension; 

4) ω : the inertial weight; 1c : the acceleration constant for a 
particle to move to its  pBest ; 2c : the acceleration 
constant for a particle to move to the  idgBest ; 

5) ()1Rand , ()2Rand : two random numbers between 0 to 
1. 

After the new velocity is found, the new position for a particle 
can then be obtained by the following formula: 

    new
id

old
id

new
id Vxx +=                                                                     (11) 

The proposed approach works well to find out the optimal 
fitness based on beacons alignment. The pose fusion result 
from odometer and ICP method described  in section Ⅲ gives 
a good initial guess on the optimal search as shown in Fig. 3 
(e). Fig. 3 (f) shows the alignment result after PSO, the 
residual error of robot pose translation is almost eliminated. 

IV. ESTIMATION ON PATTERN OF INTEREST 

A. POI detection using SIFT 
Recently, the Scale Invariant Feature Transform (SIFT) 

has emerged as an effective tool in general object recognition, 
as well as for other machine vision applications [19] [20]. 
SIFT presents a method for extracting distinctive invariant 
features from matching images between different views of an 
object or scene. An important aspect of this approach is that it 
generates large numbers of features in local region such as 
location, scale, rotation, magnitude, and orientation in order 
to record information of key points. Followings are the major 
stages of computation used to obtain the set of image features: 
1) Scale-space extreme detection: The first stage task is to 

search the potential interest points that are invariant to 
scale and orientation by repeatedly using a difference of 
Gaussian function. 

2) Key point localization: Key points are selected based on 
measuring their stability (maximum or minimum) of 
difference of Gaussian images at each candidate location. 

3) Orientation assignment: An orientation is assigned to 
each key point location based on local image gradient 
directions in cluttered background. 

4) Key point descriptor: These are recorded as a feature 
vector around each key point by transformation to resist 
the local shape distortion and change in illumination. 

With known paired camera parameters, the SIFT features of 
POI in the left and right images are matched using the 
following criteria: disparity constraint, orientation constraint 
and scale constraint. A POI image is matched by individually 
comparing each feature from the camera image to the 
database to look for the maximal match based on Euclidean 
distance. Fig. 5 (c) in section V shows the SIFT features of a 
fire extinguisher in database which are matched by the pair of 
camera images. It is seen that the lines are all horizontal as 
expected due to the epipolar constraints. 

B. Range Estimation from Stereo Vision Constraints 
To calculate the distance from a pair of camera, the first step 

is calibrating the cameras. After calibration, assuming that the 
cameras are perfectly undistorted, aligned and the two 
camera’s image planes are exactly coplanar with each other. 
The epipolar constraint reduces to check whether both 
features are in the same row.  However, consider the 
measurement uncertainty of the feature point in the world due 
to errors in the image quantization and detection formula. Fig. 
4 shows the world coordinates ( X , Y , Z ) of a feature point 
can be computed from two matched points in the left and right 
images as: 

 
d
fbZ

d
brrY

d
bccX =

−
=

−
=

)()( 00                 (12) 

where ),( 00 cr  are the coordinates of the reference image 
center, ),( cr  are the coordinates of the key point in the 
reference image (the left one), b  is the baseline between the 
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CCD, d  is the disparity, and f  is the focal length of both 
cameras. The errors in the variables r , c , and d , are usually 
modeled as uncorrelated zero-mean Gaussian random 
variables with the variance 2

cσ , 2
rσ  and 2

dσ . Using the 
first-order error propagation to approximate the distribution 
of the variables as multivariate Gaussians, the following 
covariance matrix can be obtained: 

      
T222
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where J is the Jacobian matrix of the functions in (12), 
and 2

Xσ , 2
Yσ , 2

Zσ , 2
XYσ , 2

XZσ , 2
YZσ are the variances and 

co-variance of the corresponding coordinate variables. Eq. 
(13), can describe the uncertainty model in the coordinate 
measurements of the key points on the paired camera system 
approximately.  

C. Covariance Union Fusion on Visual POI Estimation 
Covariance Intersection represents the general form of the 

data fusion problem for mean and covariance estimates, but in 
practice a different fusion format can even be performed. 
Specifically if there are two pairs of estimation a),(Pa  
and b),(Pb   which represent covariance and mean to the same 
real-world object, but the differences between their means is 
much larger than what can be expected based on their 
respective error covariance estimates. For example, if we 
estimate two mean positions with the difference in several 
metering scale, but their respective covariance indicate each 
mean is accurate within a few centimeters. Obviously, 
something is wrong when CI is applying. On the other hand, 
if it is not possible to prune estimates, then the only 
alternative is to associate the similar property within a 
description. The main question is how to achieve this 
coalescence such that the integrity of the information is 
maintained. A mechanism called Covariance Union (CU) can 
be applied under this situation. For example, given n 
estimations represented by estimates )a,(P 11a  )a,(P 22a . . . 

)a,(P nna , CU produces an estimate u),(Pu  that is guaranteed 
to be consistent as long as the estimate )a,(P iia  is consistent. 
This is achieved by guaranteeing that the estimate u),(Pu is 
consistent with respect to each of the estimates. The CU 
constraint is: 
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The CU optimization has simple linear constraints that are 
compatible with any generic constrained optimization 
package. The constraint is applied into a linear matrix 
inequality (LMI) for a minimum volume ellipsoid 

0E containing k  given ellipsoids. Each ellipsoid equation 
with a quadratic functions as: 

 kiCXbXAX|XE iii
T

i ,,0,}02{ K=≤++=            (15) 

The minimum volume can be found by solving the following 
determinant maximization problems: 
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where 0c  is given by )1( 0
1

000 −= − bAbc T [21]. The 
maxdet-problem is a convex optimization problem. It can 
consider convex optimization to be a generalization of linear 
programming which can be solved by several algorithms with 
efficiency such as in [22]. 

),( cr σσ

         
Fig. 4. Stereo Vision Estimation 

(a) 
Global Map at Time Index 2Global Map at Time Index 2

 (b) 

 (c) 
Global Map at Time Index 22Global Map at Time Index 22

 (d) 
Fig. 5. (a) The sign of restroom is detected (b) Locate the restroom 
position in global map (c) The fire extinguisher is detected (d) Locate 
the fire extinguisher in global map 
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V. EXPERIMENTAL RESULTS 
A SICK LMS-100 laser range finder and a paired camera 

are quipped with robot platform as shown in Fig. 1. In each 
sampling time index, the odometer, laser measurement and 
stereo images are compounded and recorded. Applying the 
consistent alignment methodology described in section Ⅲ, 

the robot pose can be optimally corrected in global frame 
after each measurement. Accompanied with the POI 
detection and estimation from stereo images, the position of 
POI will also be located in the global map. The experiment 
environment is a 30m x 30m floor space inside the building. 
From Fig. 5 (a) to Fig. 5 (d), the part sequences of the map 
build-up process are demonstrated. When robot is moving 
forward at time index 2, the sign of restroom is correctly 
recognized by SIFT constraints as shown in Fig. 5 (a) and the 
corresponding depth uncertainty is estimated by CU in the 
global map as shown in Fig. 5 (b). When robot is moving at 
time index 22, the actual fire extinguisher is recognized as 
shown in Fig. 5 (c) and the corresponding depth uncertainty is 
located in the global map as shown in Fig. 5 (d).  Finally, 
when the robot finishes the loop tour, the enriched map of the 
floor space will be autonomously generated as shown in Fig. 
6. 

VI. CONCLUSION 
A novel idea is presented in this paper to have an ISR will 

not only autonomously estimate the environment structure 
but also simultaneously detect the meaningful symbols or 
signs in the building it services. The result is an information 
enriched map which consists of geometry by laser range 
finder and directive signs from camera, ready for ISR to 
navigate and service. The experiment result showed the 
methodologies proposed in this work can construct 
information enriched indoor 2D map accurately and 
efficiently. 
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