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Abstract— In order to exert large force on an environment,
it is effective to apply impulsive force. We describe the motions
that perform tasks by applying impulsive force as “impact
motion.” The objective of an impact motion is to exert large
force on an environment, however if the impulsive force is
too large, the robot may fall down due to the reaction force.
This paper presents an optimization scheme to generate impact
motions for humanoid robots. The advantage of the proposed
scheme is that impulsive force exerted on a target by a
humanoid robot’s whole body is maximized while guaranteeing
the stability. A punching motion is generated by the scheme as
an example and evaluated by performing simulations.

I. INTRODUCTION

When a robot applies force statically on an environment,
the magnitude of the force is limited by the maximum
torque of its actuators. In order to exert large force on
the environment beyond this limitation, it is effective to
apply impulsive force. For example, if a robot pushes a nail
statically by a hammer, the nail cannot be inserted into a
wood. However, the nail can be driven by hitting by the
hammer since momentum of a hammer and a robot is exerted
in a short time. We describe the motions that perform tasks
by applying impulsive force as “impact motion.” There are
difficult problems introduced by impacts between robots and
environments.

Uchiyama proposed a control algorithm constitution
method and dynamic control modes for performing a nailing
task by a 3 DOF manipulator [1]. Asada and Ogawa pro-
posed the virtual mass for analyzing dynamic behavior of a
manipulator arm and its end effector that interacts with the
environment [2]. Around the same time, Khatib and Burdick
proposed the effective mass [3]. These works mentioned
above used robotic manipulators fixed on the ground.

When a humanoid robot exerts impulsive force on a target
object, reaction force may bring the humanoid robot down.
A few attempts on tasks applying impulsive force by a
humanoid robot have been reported in recent years. Konno
et al. proposed an optimization scheme of impact motions
for humanoid robot [4]. In this research, impact motions are
optimized based on the virtual mass. However, this scheme
did not consider stability at the time of impact. Arisumi
and Yokoi investigated a method to push a door utilizing
impulsive force by a humanoid robot [5]. In this research,
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Fig. 1. Outline of the motion generation scheme.

the humanoid robot is treated as a rigid single body. However,
when a humanoid robot exerts a impulsive force by its end
effector, the effect of the servo stiffness cannot be ignored.
This paper presents optimization scheme of impact motions
considering multibody dynamics and stability for humanoid
robots. By using a dynamics computation method [6], the
force exerted on a target by a humanoid robot’s whole body
is maximized while guaranteeing the stability. In order to
avoid falling during the impact motion, relationship between
ZMP(Zero-Moment Point) [7] and a support polygon is
evaluated in all phase in the optimization process.

II. OUTLINE OF MOTION GENERATION SCHEME
An impact motion is divided into three phases as follows

in this paper.
Acceleration phase: A robot accelerates its joints to hit a
target object during this phase.
Impact phase: During this phase, the robot hits the target.
This phase is short time just before and after contact.
Slowdown phase: The robot decelerates its joints after
hitting the target and stands still during this phase.

Fig. 1 shows an outline of the proposed motion generating
method. This method consists of two parts.

i) Optimizing an impact posture and joint velocities at
the time of impact.

ii) Generating motions for acceleration and slowdown
phases.

In the first stage, the posture and joint velocities are
decided under constraints to maximize the impulsive force
or impulse exerted on a target. By using the simplified
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dynamics computation (SDC) model [6], the impulsive force
and impulse can be estimated. Moreover, behavior of ZMP
during the impact phase can be obtained. However, it is not
known how stable the robot is during the acceleration and
slowdown phases at this stage. Hence, there is a possibility of
generating motion which is unstable during the acceleration
and slowdown phase even if the impact posture and velocities
are stable during the impact phase. Therefore, the following
steps are considered to overcome the problem.

1) Setting decision variables(posture, end effector’s ve-
locity, momentum, angular momentum and velocity
of CoM(Center of Mass)) at the time of impact and
estimating impulsive force and ZMP during impact
phase by the SDC model.

2) Interpolating the decision variables from zero and
to zero and computing ZMP during acceleration and
slowdown phases.

3) If the impulsive force is maximum under constraints,
e.g., stability, the motion generation process proceeds
to Step 4). If the force is not maximum, the decision
variables are slightly changed and motion generation
process returns to Step 1).

4) Generating motions for acceleration/slowdown phases
to satisfy the interpolated trajectories in Step 2).

Since Step 1) and 2) are executed in optimization process,
these steps are computed numerous times. The advantage
of this scheme is that ZMP trajectory during accelera-
tion/slowdown phases can be estimated in process 2) without
computing the inverse dynamics.

ZMP can be expressed in the form.

PZMPx =
MgPGx − L̇y

Mg + Ṗz

, PZMPy =
MgPGy + L̇x

Mg + Ṗz

, (1)

where PZMPx, PZMPy , PGx and PGy are position of ZMP
in Xb and Yb directions and GCoM(Ground projection of
Center of Mass) in Xb and Yb directions, respectively.
L̇x, L̇y and Ṗz are differentiations of angular momentums
around Xb and Yb axes and momentum in Zb direction,
respectively. M and g are respectively total mass of the
system and acceleration of gravity. This formula indicates
that a time series ZMP trajectory can be computed using
the CoM, angular momentum and momentum trajectories.
Hence, by interpolating these values, ZMP trajectory can
be obtained with low computation cost. Therefore, stability
during the acceleration and slowdown phase can be evaluated
in the optimizing process. By considering stability based on
ZMP and a support polygon as a constraint condition, the
optimizing problem outputs a stable motion in all phases.

III. IMPACT MOTION OPTIMIZATION
In this section, detail of the proposed impact motion

optimization scheme is presented. Notations of the decision
variables in Step 1) are denoted in Subsection III-A and III-
B and a motion generation scheme in Step 4) is presented in
Subsection III-C. Formulation of the optimization problem in
Step 1) ∼ 3) is presented in Subsection III-D. Superscripts
rl, ll, ra and la express the robot’s right leg, left leg, right
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Fig. 2. A robot punches a target box.

arm and left arm numbers, respectively and the total degree
of freedom of the robot is n.

A. Posture (Joint Angles)

Let’s consider a situation when the humanoid robot hits a
free floating target box in Xb direction as shown in Fig. 2. In
the figure, Σb is the world coordinate system, Σ0 is the robot
body coordinate system, 0pfr

is the position vector of the
right foot with respect to Σ0, frsfl

is the position vector of
the left foot with respect to the right foot coordinate system
and 0αfr is the Z-Y-X Euler angle vector of the right foot
with respect to Σ0. Left superscripts 0 and fr denote Σ0

and the right foot coordinate system, respectively. Elements
of 0pfr

, frsfl
and 0αfr are denoted as follows.

0pfr
≡ [

0px,fr
0py,fr

0py,fr

]T
,

frsfl
≡ [

frsx,fl
frsy,fl

frsz,fl

]T
,

0αfr ≡ [
0αx,fr

0αy,fr
0αz,fr

]T
,

where 0px,fr is the position of the right foot in Xb direction
with respect to Σ0 and the others are defined similarly.

The position and orientation of Σ0 with respect to Σb is
expressed as follows on the assumption that the right foot is
fixed on the ground.

p0 = − (
0Rfr

)T 0pfr
, R0 =

(
0Rfr

)T
(2)

where p0 and R0 are the position vector and the rotation
matrix of Σ0 with respect to Σb. 0Rfr

expresses orientation
of the right foot with respect to Σ0. In this paper, position
vectors and rotation matrices which does not have a left
superscript are expressed with respect to Σb.

By this operation, the origin of the right foot is same
with the origin of Σb. The joint angles of the right leg
φrl =

[
φrl

1 , · · · , φrl
i , · · · , φrl

nrl

]T
can be obtained

by inverse kinematics using 0pfr
and 0αfr . The subscript i

express the joint number which is numbered from a root link
to a tip link and nrl expresses maximum number of the right
leg joints. The position of the left foot 0pfr

can be calculated
in the form:

0pfl
= 0pfr

+0Rfr

frsfl
. (3)

The joint angles of the left leg φll =
[

φll
1 , · · · , φll

nll

]T

can be obtained on the assumption that the orientation of
the left foot is the same with the right foot. nll expresses
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maximum number of the left leg joints. Therefore, the both
legs’ postures are defined by 0pfr

, 0αfr and frsfl under the
kinematic closure constraint. In addition, by defining the joint
angles except for the leg joints, the posture can be defined
at the impact. The remaining joint angle vector is expressed
as φrem.

B. Joint Velocities

The joint angle velocities are computed from the following
values.

• Velocity of the end effector
• Momentum and angular momentum
• Velocity of the center of mass

The relationship between the joint angle velocities and the
above mentioned values are expressed in the form:⎡

⎢⎢⎢⎢⎢⎣

vc

ωc

P

L

vg

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎣ Jc(φ)

JPL(φ)
JTg(φ)

⎤
⎦ φ̇, (4)

where

φ̇ ≡
⎡
⎣ φrl

φll

φrem

⎤
⎦ , JPL ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

JPx

JPy

JPz

JLx

JLy

JLz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, JTg ≡

⎡
⎢⎣

JTgx

JTgy

JTgz

⎤
⎥⎦ ,

φ̇ ∈ Rn×1 : joint velocity vector,
vc ∈ R3×1 : velocity of the collision point,
ωc ∈ R3×1 : angular velocity of the collision point,
P ∈ R3×1 : momentum of the whole system in Σb,

P =
[

Px Py Pz

]T
,

L ∈ R3×1 : angular momentum of the whole system

in Σb, L =
[

Lx Ly Lz

]T
,

vg ∈ R3×1 : velocity vector of the center of mass,

vg =
[

vgx vgy vgz

]T

Jc(φ) ∈ R6×n : relational expression of φ̇ and[
vc ωc

]T
,

JPL(φ) ∈ R6×n : relational expression of φ̇ and[
P T LT

]T
,

JTg(φ) ∈ R3×n : relational expression of φ̇ and vg .
JPL(φ) and JTg(φ) for a multibody system are presented
in [8]. In order to hit the target box as shown in Fig. 2, the
end effector has collision velocity vc in Xb direction. It is
assumed that a humanoid robot illustrated in Fig. 2 moves its
hand along Xb axis and hits a free floating target box with
velocity vc. Therefore, the velocity and angular velocity of
the end effector in Σb are expressed as follows:[

vc

ωc

]
=

[
vcnx

0

]
, (5)

where nx is an unit vector of Xb direction.

The velocity of CoM is dependent to the momentum of
the whole system. The velocity can be obtained by dividing
the momentum by the total mass. Therefore, the rows of P
and vg are not independent. From (1), only the velocity of
GCoM, momentum in Zb direction and angular momentum
around Xb and Yb affect the ZMP. Therefore, the dimensions
of (4) can be reduced as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vc

ωc

Pz

Lx

Ly

vgx

vgy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Jc

JPz

JLx

JLy

JTgx

JTgy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

φ̇ ≡ Jhuφ̇, (6)

In addition, the constraint conditions must be considered
when there are kinematic closures.[

V

0

]
=

[
Jhu

Cα

]
φ̇, (7)

where

V ≡

⎡
⎢⎢⎢⎣

vc

ωc

M
vTgxy

⎤
⎥⎥⎥⎦ , M ≡

⎡
⎣ Pz

Lx

Ly

⎤
⎦ , vTgxy

≡
[

vgx

vgy

]
,

and Cα ∈ Rα×n is the constraint formula and the size of
column depends on the situation. For example, the kine-
matics closure of the legs is expressed by this constraint
formula as follows to avoid generating internal forces in the
situation where a humanoid robot stands with its both feet
as shown in Fig. 2. In this case, the relative velocities which
are generated by the both legs must be zero. Therefore, this
constraint condition can be formulated in the form:

0 =
[

J0 −J
′
0 0, · · · ,0

]
φ̇ ≡ Cαφ̇, (8)

where J0 expresses relationship between the velocities of
Σ0 generated by the right leg and the right leg joints and J

′
0

expresses relationship between the velocities of Σ0 generated
by left leg and the left leg joints.

J0 ≡
[ −E 0̃pfr

T

0 −E

]
0Jfr

, J
′
0 ≡

[ −E 0̃pfl

T

0 −E

]
0Jfl

,

where 0Jfr
express relationship between the joints and the

velocities of the right foot with respect to Σ0 and 0Jfl

express relationship between the joints and the velocities of
the left foot with respect to Σ0. And E ∈ R3×3 denotes an
identity matrix. p̃ is the skew-symmetric matrix to rewrite
the cross product by matrix multiplication as p̃b = p × b
where b is an arbitrary vector.

The simultaneous equation (7) describes the relationships
between the joint angle velocities and the end effector
velocities, the CoM velocity and the momentums under the
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constraint. From (7), the minimum norm solution of the joint
angle velocity can be obtained as follows:

φ̇ =
[

Jhu

Cα

]† [
V

0

]
≡ A†

[
V

0

]
, (9)

where A† indicates pseudoinverse matrix [9] of A. In
order to consider the angle movable range of all joints, the
pesudoinverse matrix in (9) can be modified as follows:

A†
w = W−1AT

(
AW−1AT

)
, (10)

where W is a matrix of weights [10]. The elements of the
matrix can be denotes as follows:

wk
i =

⎧⎪⎨
⎪⎩

1
φk

i,um

φk
i,um ≤ φk

i,lm

1
φk

i,lm

φk
i,um > φk

i,lm

∞ φk
i,um < 0 or φk

i,lm < 0

,

where wk
i is a diagonal element corresponding to φ̇k

i (k =
rl, ll, ch, ra or rl) and subscript i and superscript k denotes
the joint number and the arm number, respectively. And
φk

i,um and φk
i,lm are computed using upper joint angle limit

of ith-joint φk
i,ulim and lower limit φk

i,llim as follows:

φk
i,um ≡ φk

i,ulim − φk
i , φk

i,lm ≡ φk
i − φk

i,llim, (11)

Therefore, the solution can be obtained as follows:

φ̇ = A†
w

[
V

0

]
. (12)

C. Generating Acceleration and Slowdown Motions

After deciding the velocity of the end effector, the momen-
tum, the angular momentum and the velocity of CoM, these
values are interpolated from zero and to zero. In order to
avoid discontinuous of first order derivatives of these values,
the trajectories are interpolated by third-order polynomial [9]
as shown in Fig. 3. The dotted line expresses interpolated
trajectory. By using the interpolated trajectories, the joint
velocities are computed by (12). The motion is generated
from t = 0 to t = ts. This motion generating method is based
on combinatorial control of resolved momentum control [11]
and COG Jacobian [12]. In this study, interpolation time
ts is decided empirically. However, the parameter should
be decided considering performance of the actuators. This
parameter will be considered as a decision variable in the
future study.

The acceleration and slowdown motions are generated
based on a result of optimization problem described in

X

Z

Y

Arm rl
Arm ll

Arm ra

Arm ch

Arm la

Target

cp
Zta

b b

b

fp l

Fig. 4. Notations of a HRP-2 model.

the next subsection. The assumed actual behavior of the
interpolated trajectories is shown in Fig. 3. The discontinuous
change is occurred at the time of impact by impulsive force.
However, the actual trajectory returns to the reference one
immediately by the servo controller.

D. Formulation of the Optimization Problem

By using the simplified contact dynamics computation
model [6], peak force or impulse exerted on a target object
can be obtained. Therefore, the object of this optimization
problem is to maximize the peak force or impulse by varying
robot’s posture and angle velocities. As stated in Subsection
III-A and III-B , the posture and angle velocities can be
obtained by giving the following values.

• The position vector of the right foot with respect to Σ0.
• The right foot’s Z-Y-X Euler angle with respect to Σ0.
• The position vector of the left foot with respect to the

right foot coordinate system.
• The joint angles except for the leg joints.
• The collision velocity vc in Xb direction.
• The momentum in Zb direction, the angular momentum

around Xb and Yb axes.
• The velocity of the center of mass.

Therefore, the decision variables are expressed as follows:

x =
[

0pfr

T 0αfr
T frsfl

T φremT vc MT vTgxy

T
]

,

(13)
and the ranges of the variables are denoted as follows:

min,0pη,fr
≤ 0pη,fr

≤ max,0pη,fr
(η = x, y, z),

min,0αη,fr ≤ 0αη,fr ≤ max,0αη,fr (η = x, y, z),
min,frsη,fl

≤ frsη,fl
≤ max,frsη,fl

(η = x, y, z),
minφrem

i ≤ φrem
i ≤ maxφrem

i ,
minvc ≤ vc ≤ maxvc,

minPz ≤ Pz ≤ maxPz,
minLη ≤ Lη ≤ maxLη (η = x, y),

minvgη ≤ vgη ≤ maxvgη (η = x, y),

where min,0px,fr
and min,0px,fr

indicate respectively the
minimum value and maximum value of 0px,fr

and the others
are defined similarly. The position of the target box relative
to the robot is illustrated in Fig. 4.
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The objective function for impact motions is obviously
the peak force fmax or impulse f̄n. The objective value is
decided based on a task whether the force or impulse. This
optimization problem is expressed as follows and this opti-
mizing problem can be solved by SQP (Sequential Quadratic
Programming).

minimize f(x) = −fmax or − f̄n,

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(zta − zte) ≤ nT
z pc ≤ (zta + zte) ,

minRce ≤ nT
xRcnh ≤ maxRce,

−vη,ce ≤ vη,c ≤ vη,ce, (η = y, z)
−ωη,ce ≤ ωη,c ≤ ωη,ce, (η = x, y, z)

⎫⎪⎪⎬
⎪⎪⎭ 1

−zfe ≤ nT
z pfl

≤ zfe,
minRfe ≤ nT

xRfl
nz ≤ maxRfe,

‖ṗfl
‖ ≤ vfe,

‖ωfl
‖ ≤ ωfe,

⎫⎪⎪⎬
⎪⎪⎭ 2

lZimp ≥ lZimpe,
}

3

lZas ≥ lZase,
}

4

(
φk

i,llim + Cφ

) ≤ φk
i ≤ (φk

i,ulim − Cφ

)
, (k = rl, ll)

−Cvφ̇k
i,lim ≤ φ̇i

k ≤ Cvφ̇k
i,lim,

}
5

minPη ≤ Pη ≤ maxPη, (η = x, y)
minLz ≤ Lz ≤ maxLz,

}
6

(14)

where
pc ∈ R3×1 : position vector of the contact point (Fig. 4),
Rc ∈ R3×3 : rotation matrix of the end effector,
zta : hight of the target point,
zte : allowed error in the hight,
nz ∈ R3×1 : unit vector pointing Zb direction,
nx ∈ R3×1 : unit vector pointing Xb direction,
cnh ∈ R3×1 : unit vector pointing the collision direction

with respect to the local coordinate
of the end effector,

minRce,
maxRce : allowed rage of the collision direction,

vη,c : velocity of the contact point in η direction,
ωη,c : angular velocity of the contact point

around η axis,
vη,ce : allowed velocity of the contact point

in η direction,
ωη,ce : allowed angular velocity of the contact

point around η axis,
zfe : allowed error in the foot from the ground,
pfl

∈ R3×1 : position vector of the left foot,
Rfl

∈ R3×3 : rotation matrix of the left foot,
minRfe

maxRfe : allowed rage of the left foot’s orientation,
ωfl

∈ R3×1 : angular velocity of the left foot,
vfe : allowed norm of the left foot’s velocity,
ωfe : allowed norm of the left foot’s

angular velocity,
lZimp : minimum distance of ZMP from a support

polygon during impact phase,
lZimpe : margin for lZimp ,
lZas : minimum distance of ZMP from a support

polygon during acceleration/slowdown phases,

Rce,max

Rce,min

nh

pc

X

Y
Z

b

b

b

Rc
c

Fig. 5. Allowed range of the colliding direction.

lZase : margin for lZas ,
φk

i,llim : lower joint angle limit of i-th joint of arm k,
φk

i,ulim : upper joint angle limit of i-th joint of arm k,
Cφ : margin for the leg joint angle limit,
φ̇k

i,lim : joint angle velocity limit of i-th joint of arm k,
Cv : margin for the leg joint angle velocity limit,
Pη : momentum in η direction,
minPη ,maxPη : allowed range of momentum in η direction,
Lz : angular momentum around Zb axis,
minLz ,maxLz : allowed range of angular momentum around Zb.

In (14), the kinematics and ZMP are computed on the
assumption that the right foot is fixed on the ground. The
part 1 expresses constraints depended on the task. In this
case (Fig. 2), this part defines behavior of the hand and the
box at the time of impact. Fig. 5 explains allowed range of
the colliding direction. In the figure, cnh is an unit vector
pointing the collision direction in the local coordinate of the
end effector. In this case, since the robot punches the box
to negative direction in Z direction with respect to the local
coordinate of the end effector, cnh is

[
0 0 −1

]T
. The

part 2 expresses constraints for the both legs and avoids
generating internal forces. Though the kinematic closure is
defined by (8), the solution (12) using pesudoinverse does not
guarantee the constraints. Therefore, the constraint is defined
here. The parts 3 and 4 express stability during impact
phase and acceleration/slowdown phases, respectively. These
parts keep ZMP inside of a support polygon. lZimp is
computed by SDC model and lZas is computed by the ZMP
estimation scheme for acceleration/slowdown phases stated
in Section II CoM, angular momentum and momentum at the
time of impact are interpolated by third-order polynomial as
shown in Fig.3. By using the interpolated trajectories, ZMP
during acceleration/slowdown phases are computed by (1)
without computing the inverse dynamics and distance be-
tween support polygon and ZMP is evaluated. Therefore, the
part 4 guarantees the stability during acceleration/slowdown
phases in the optimization process.

The part 5 defines hardware limitation of the robot’ legs.
The part 6 expresses limitation of momentums in Xb and
Yb directions and angular momentum around Zb axis. These
are related to friction between a floor and the feet.

IV. SIMULATION RESULT
In order to evaluate the proposed scheme, a punching

motion is generated to perform by the humanoid robot HRP-
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TABLE I
DECISION VARIABLES 0pfr

, 0αfr , frsfl
, vc ,M AND vTgxy

init. min. max. result init. min. max. result
0px,fr (m) 0py,fr (m)

0.00 −0.15 0.15 −0.15 −0.095 −0.25 −0.095 −0.14
0pz,fr (m) 0αx,fr (◦)

−0.30 −0.60 −0.30 −0.60 0.00 −0.01 0.01 0.01
0αy,fr (◦) 0αz,fr (◦)

0.00 −10.00 10.00 −8.73 0.00 −0.01 0.01 0.01
frsx,fl

(m) frsy,fl
(m)

0.00 −0.30 0.30 0.30 0.19 0.19 0.45 0.19

vc (m/s) Pz (Ns)
2.00 ∞ 0.00 2.4 0.00 −3.00 3.00 2.68

Lx (Nms) Ly (Nms)
0.00 −3.00 3.00 3.00 0.00 −3.00 3.00 3.00

vgx (m/s) vgy (m/s)
0.00 −∞ ∞ 0.09 0.00 −∞ ∞ −0.06

2 [13]. A HRP-2 model of this simulation is modified from
an original HRP-2 model. The arrangement of wrist axes is
modified original HRP-2 [14]. Fig. 4 illustrates the HRP-2
model and its notations. The objective function is chosen as
follows as an example.

f(x) = −fmax. (15)

In order to simplify the problem, the joint angles of the left
arm, neck and hand are not included in decision variables.
Tables I and II show the initial, minimum and maximum
values of the decision variables. φch

i expresses the chest
and neck joint angles. The range of these decision variables
are decided based on hardware limitation of HRP-2 and the
initial values are chosen heuristically. If Px, Lx and Ly are
huge, the robot cannot accelerate the body during accel-
eration phase. Therefore, Px, Lx and Ly are limited. The
ranges of these momentums are decided in moderation. It is
a future work to decide these limits theoretically considering
the robot’s actuator performance. Table III shows the joint
angles which are not included in the decision variables. φch

3∼4,
φra

7 and φla
i are neck joint angles, right hand joint angle and

left arm joint angles including its hand, respectively. The
angles are decided intuitively to avoid collision between the
left arm and the body.

The constraint conditions are shown in Table IV. The
height and mass of the target box are 0.7 (m) and 5 (kg),
respectively. Therefore, zta is 0.7 (m). The other constraint
conditions are examples of the conditions for the punching
motion.

This optimization problem is solved by using the technical
computing language MATLAB (The MathWorks, Inc.) and
Optimization Toolbox. The motion is generated in 633 (s)
by two 3 (GHz) Intel Xeon X5365 CPUs.

Fig. 6 shows transition from the initial posture to an
optimal posture. The initial posture does not satisfy the
constraint conditions. For example, the height of the hand is
lower than the required position. The optimal posture satisfy
all the constraint conditions. As shown in Fig. 6 (b), the

TABLE II
DECISION VARIABLEφrem

φch
1 φch

2 φra
1 φra

2

init. (◦) −21.5 17.1 3.2 −17.9

min. (◦) −25.0 15.0 −160.0 −75.0

max. (◦) 25.0 40.0 40.0 −10.0

result (◦) −22.4 15.0 −12.4 −10.0

φra
3 φra

4 φra
5 φra

6

init. (◦) −14.1 −74.4 26.2 −46.8

min. (◦) −72.0 −97.0 −52.0 −52.0

max. (◦) 72.0 −38.0 52.0 52.0
result (◦) −8.6 −56.1 30.8 −52.0

TABLE III
THE JOINT ANGLES OF THE NECK, RIGHT ARM AND HANDS.

Joint φch
3 φch

4 φra
7 φla

1 φla
2

(◦) 0.0 0.0 0.0 18.4 45.0

Joint φla
3 φla

4 φla
5 φla

6 φla
7

(◦) 1.2 −27.5 0.0 −10.0 0.0

robot’s torso shifts forward. ZMP moves backward when the
robot receives impulsive force. In order to extend the margin
of the support polygon backward, the robot’s center of mass
shifts forward. Table I and II show the optimized result of
the decision variables. The hand collides with the box at
2.4 (m/s). In order to extend the support polygon in front-
back direction, frsx,fl

reaches its maximum limit 0.3 (m). To
hit the box strongly, Lx and Ly reach their maximum limit.

In order to generate motions for acceleration and slow-
down phases, interpolation time ta and ts of vc are
−0.7/4 (s) and 0.7/4 (s), respectively. And ta and ts of Px,
Lx, Ly , vgx and vgy are 0.7 (s) and −0.7 (s), respectively.
In Fig. 7, the dotted lines show the momentum and angular
momentum of the generated motion. The momentums and
angular momentum are obtained by inverse dynamics on the
assumption that the right foot is fixed on the ground from the
generated motion. The computational results of Pz , Lx and
Ly at the time of impact are respectively 2.7 (Ns), 3.0 (Nms)
and 3.0 (Nms) as shown in Table I. In Fig. 7, the dotted lines
show that Pz , Lx and Ly are smoothly interpolated from zero
and to zero during the acceleration and slowdown phases.

Fig. 8 shows snapshots of the OpenHRP3 [15] simulation
result. The simulation condition, e.g. contact model between
the hand and the box, is the same with [6]. As shown int
these figures, the robot dexterously accelerates and slows
down the body by twisting its torso. Since the momentum in
Zb direction is positive at time of impact, the robot unbends
the body after the impact as shown in Fig. 8 . Fig. 9 shows
the estimated impulsive force in the optimizing process and
OpenHRP3 simulation result. The estimated and actual peak
force are 734.9 (N) and 722.0 (N) respectively and the error
is −1.8 (%). The estimated and actual impulses are 15.1 (Ns)
and 13.4 (Ns) respectively and the error is −12.6 (%).
Fig. 10 shows the ZMP trajectory during the three phases.
ZMP shifts backward during impact phase. Then, ZMP shifts
forward during slowdown phase. The distance from the edge
of the support polygon is minor during the both phase. This
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TABLE IV
CONSTRAINT CONDITIONS.

zta (m) zte(m) minRce
minRce

0.7 0.01 0.9962 1.0

vy,ce (m/s) vz,ce (m/s) ωx,ce (◦/s) ωy,ce (◦/s)
0.3 0.3 5.0 5.0

ωz,ce (◦/s) zfe
minRfe

maxRfe

5.0 0.003 0.9962 1.0

vfe (m/s) ωfe (◦/s) lZimpe (m) lZase (m)
0.01 0.01 0.05 0.05

Cφ (◦) Cv
minPx (Ns) maxPx (Nms)

5.0 0.8 −5.0 5.0
minPy (Ns) maxPz (Ns) minLz (Nms) maxLz (Nms)

−5.0 −5.0 5.0 5.0

Front view Right view

(a) Initial posture

(b) Optimal posture

Fig. 6. Comparison between the initial posture and optimal posture.

result indicate this motion uses the support polygon fully.
In order to see the trajectory in time domain, Fig. 11

shows the relationship between ZMP and time. In the figure,
the blue line and red line indicate the predicted ZMP
trajectory and OpenHRP3 result, respectively. The blue line
computed by inverse dynamics from the reference motion.
Therefore, the behavior of ZMP during the impact phase
does not consider. The dotted lines indicate the impact phase.
Except for the impact phase, the trend of the estimated
ZMP trajectories during the acceleration and slowdown phase
is similar to the OpenHRP3 simulation. The behavior of
ZMP during the impact phase is predicted by the proposed
SDC model. Fig. 11 shows the detail during the impact
phase. The blue line is computed by SDC. The dotted line
indicates the end of the impact phase. The trend of the
estimated ZMP trajectories during the impact phase is similar
to the OpenHRP3 simulation. Therefore, this scheme predicts
ZMP trajectories accurately for all phases and optimizes the
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Fig. 7. Reference and actual momentum and angular momentum in Σb.

Front view Right view

Target box

(a) −0.6 (s)

(b) 0.0 (s)

(b) 0.6 (s)

Fig. 8. Simulation of the optimized motion.

motion.
Fig. 7 shows the momentum and angular momentum in Σb

coordinate system. The solid lines indicate the momentums
and angular momentum simulated by OpenHRP3. The actual
momentum and angular momentum follow the reference
during the early acceleration phase. From −0.2 (s) to 0 (s),
Px, Py , Lx and Ly overshoot the reference. At 0 (s), the
drastic changes are occurred. Then, the servo controller tries
to follow the reference during the slowdown phase. The
behavior is similar to the assumption expressed in Fig. 3.

V. CONCLUSIONS
In order to maximize the impulsive force exerted on a

target, the impact motion is generated through optimization
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Fig. 10. ZMP trajectory measured by OpenHRP3.
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Fig. 11. Predicted ZMP trajectory and OpenHRP3 simulation result.

method considering postural stability during acceleration,
impact and slowdown phases. With this scheme, the stability
during the acceleration and slowdown phase can be eval-
uated in the optimizing process without computing inverse
dynamics. The impact motion generated by this scheme is
evaluated by performing simulationsk. The estimated force
and ZMP trajectories are similar to OpenHRP3 simulation
result. This scheme will be evaluated by a real humanoid
robot in a future study.
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