
Motion Planning for Cooperative
Manipulators Folding Flexible Planar Objects

Benjamin Balaguer and Stefano Carpin

Abstract— In this paper we consider the problem of folding
deformable objects like cloth or towels. Embracing a simple
object model, we present a new algorithm capable of generating
collision-free folding motions for two cooperating manipu-
lators. The algorithm encompasses the essential properties
of manipulator-independence, parameterized fold quality, and
speed. Numerous experiments executed on a real and simulated
dual-manipulator robotic torso demonstrate the effectiveness of
the presented method.

I. INTRODUCTION AND PROBLEM DEFINITION

The ability to manipulate flexible objects like cloth, paper
and the like is a much needed addition in order to produce
really reliable robotic assistants for a variety of tasks, either
in domestic or industrial applications. Notwithstanding, most
research in robotic manipulation assumes to deal with rigid
bodies. In this paper, we take the first steps in overcoming
what we believe to be some of the most limiting issues
towards the development of cooperative manipulators jointly
handling highly deformable objects. Opening letters, bags,
boxes, or wrapping paper, playing cards, sorting papers,
journals, magazines, or books, arranging clothes, bedding, or
linens - all are examples of everyday-tasks involving highly
deformable objects that a service robot might be expected
to perform. The method we propose is based on the explicit
solution of inverse kinematics (IK) to produce coordinated
smooth trajectories that comply with manipulator constraints
and also do not impose excessive stress on the object being
manipulated. Because of these reasons, we formulated the IK
based approach instead of relying on popular randomized
techniques that tend to produce zigzagged paths that may
damage the flexible objects being manipulated.

The paper is organized as follows. We start by reviewing
our problem definition in section I-A, highlighting any as-
sumptions made. In section II, we describe previous work
associated with the modeling of deformable objects, the ap-
plication of folding in robotics, and motion planning for dual
manipulators. Section III covers the details of our motion
planning algorithm, followed, in section IV, by experiments
performed both in simulation and on a real robot. Concluding
remarks, extensions, and future work are found in section V.

A. Problem Definition

We solve the motion planning problem for folding tasks
of planar deformable objects (e.g. napkin, towels). Since
there are many different ways cloth can be folded and scarce
former research, we impose specific constraints and use this

School of Engineering, University of California, Merced, CA, USA,
{bbalaguer,scarpin}@ucmerced.edu

section to highlight our choices. Service robotics requires a
single platform capable of completing many different tasks.
As such, highly specialized robots built for a specific task
should be replaced by a single, more general, counterpart.
Consequently, our algorithm generalizes to any manipulator
of 6 or more degrees-of-freedom (DOF) capable of perform-
ing pinch grasps. We work with rectangular planar objects
and assume that we know their lengths, widths, rotation, and
one corner point. Both assumptions are valid since most, if
not all, towels and napkins are rectangular and capturing
their lengths, widths, and corner points using vision is a
straightforward process. Our algorithm specifically solves the
problem of a symmetric fold, where half of the object is
repeatedly folded on top of the other. Finally, since we could
not find previous work on deformable object grasp planers
and are focusing on motion planning, we do not attempt to
physically grasp the object and assume it is possible with a
pinch grasp, in a similar fashion to human grasping [6]. The
actual pinching strategy is the subject of future research.

II. RELATED WORK

A detailed review of deformable object models is beyond
the scope of this paper and we briefly mention the most pop-
ular models. Interested readers are pointed to the survey in
[9] for additional information. Free Form Deformations [13]
can be powerful for 3D objects, but are not suitable for cloth
since they do not take into account the structural properties of
the object. Mass-spring systems [12] suffer from the stiffness
problem [3], which occurs when integration time steps are
too big and results in poor fidelity. Finite Element Methods
[17] are computationally expensive and work best with small
deformations. In robotics, representations of deformable ob-
jects have taken a different direction. The most popular one,
only utilized for folds, decomposes a deformable object into
a set of kinematic links composed of a face and a foldable
edge. This representation has successfully been exploited to
fold paper [14] and carton [11]. The faces are assumed to
be rigid and the foldable edges are known a priori. Being
simple, fast, and proven for folding in robotics, we use a
variant of this geometrical model.

Song et al. look at the problem of folding paper craft
in [14]. The authors formulate their work as a motion
planning problem whith the object being decomposed into
links and foldable edges. The formulation allows the usage of
a PRM to solve the folding problem, where the Configuration
space (C-space) encompasses each edge. Unfortunately the
folding process does not take into account an actuating
robot. A similar paper, using the same kinematic description,

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3842

is presented in [11] for carton folding. The work differs,
however, in that the authors use a tree instead of a PRM, are
looking to find all foldable solutions, and implement their
method on a real robot. At run time, however, an operator
chooses the best fold sequence for the robot. Better robot
frameworks exist for origami [2] and T-Shirt [4] folding.
Both papers offer robot-dependent solutions, rendering the
work useful in specialized environments but unsuitable for
service robotics.

Research on dual manipulator motion planning is more
readily available. In [16], Vahrenkamp et al. use two ma-
nipulators in re-grasping tasks. Their solution is RRT-based
and the authors address the high DOFs of a dual-arm robot
by using a randomized IK solver to analytically solve 6
DOF of the arms given randomly sampled values for the
remaining joints. They show the IK solver performs better
than a Jacobian-based solver. In a similar work [15], Tsai et
al. look at dual-arm manipulation using RRTs to plan paths in
dynamic environments comprised of moving objects. A RRT-
variant is formed, adding time and cost information to dictate
where the tree should grow and reduce redundant twists and
turns. Gharbi et al. also look at the planning problem for
dual-manipulators using a PRM-inspired technique [8]. More
specifically, they consider multi-manipulators for which a
PRM that takes into account the entire system will result
in slow performance due to the high number of DOFs.
Consequently, the authors decompose a multi-arm system
into sub-components that are exploited to increase the speed
of path planning.

III. MOTION PLANNING

A. Trajectory Generation in Configuration-Space

Generating a trajectory for each manipulator is intimately
tied to the model used for the deformable objects. As men-
tioned in the previous section, we choose a simple geomet-
rical approach specifically invented for folding applications
where a fold is represented as a kinematic chain comprised of
a joint (i.e. the folding crease) connected to two rigid links
(i.e. the folding faces). As opposed to the previous works
[14], [11], [10], we do not assume we know the configuration
apriori, allowing our algorithm to fold on top of a previous
fold (a limitation of the aforementioned works). Given the
knowledge of the length S, width W , object angle A, and
right-most corner point R = Rx,Ry,Rz in global Cartesian
coordinates, we can produce mathematical equations for
the two trajectories in global Cartesian coordinates. We
uniformly sample data points from the trajectory by using
a variable V , which ranges from 180 to 0 degrees with a
defined step size. We have chosen 5 degrees as our step
size and have found it to be a good tradeoff between speed
and the density of data points. The geometrical process,
highlighted in Figure 1, is governed by the equations below
for the right trajectory. The equations can be used for the
left trajectory, by generating a new point P = Px, Py, Pz
and substituting it for R. The new point P is computed
with Px = −W sin(A) + Rx, Py = W cos(A) + Ry, and
Pz = Rz.

X =
S

2
cos(V) cos(A) +

S

2
cos(A) +Rx

Y =
S

2
cos(V) sin(A) +

S

2
sin(A) +Ry

Z =
S

2
sin(V) +Rz

Fig. 1. Geometrical diagram used to derive the trajectories in Cartesian
space, showing each mathematical variable.

The data points generated in Cartesian coordinates need to
be converted to the robot’s C-space. Let L =

[
L1L2 · · ·LN

]
be the set of data points for one trajectory, with Li ∈ R3. The
conversion from Cartesian to C-space is achieved by using an
IK solver. Even though any manipulator IK solver will work,
we briefly describe the one we use with our platform, i.e. two
Barrett Arms and Hands (see Figure 3). More specifically,
each arm is anthropomorphic with a redundant DOF and
a spherical wrist. Given a wrist orientation, we solve for
IK analytically by treating the redundant joint as a free
parameter. Changing the free parameter effectively allows the
sampling of configurations for a given data point in Cartesian
space (i.e. a given Li). Rather than randomly sampling [16],
we sample uniformly from the redundant joint’s limits with
a step size of 4 degrees. Evidently, the step size involves a
tradeoff between speed and the density of solutions. The hand
is composed of three fingers, two of which are used for the
pinch grasp. The wrist orientation is constant, constrained to
be parallel to the table with the unused finger pointing away
from the other robotic arm. Finally, the IK solutions in C-
space are pruned by removing any configurations outside the
manipulator’s joint limits. Put differently, each data point in
L is replaced by a set of manipulator configurations C.

C =

C1,1 C2,1 · · · CN,1

C1,2 C2,2 · · · CN,2

...
...

. . .
...

C1,A C2,B · · · CN,C

Note that Ci,j ∈ RDOF , where DOF is the manipulator’s
DOF, and that the notation Ci,j(k) refers to the k-th joint
value of configuration Ci,j . With our deformable object
model, we implicitly impose two constraints on the arms’
trajectories. First, the distance between the two grasping
points will remain the same throughout the motion. Second,
at any point on the trajectory, the relative height between the
two contact points will equal zero.

3843

B. Graph/Roadmap Creation

Having generated a set of robot configurations for each
data point in the trajectory, we now focus on building a
graph to be used for motion planning. We take a similar
approach to [8] by generating two separate graphs, one for
each manipulator, as opposed to generating a single graph
representing both manipulators. Each vertex of the graph
represents a robot configuration and each edge represents
a connection (e.g. path) from one configuration to another.
We introduce the notion of levels, where each level of the
graph corresponds to a distinct global Cartesian coordinate,
Li. In other words, each level is comprised of numerous
vertices, all representing the same Cartesian coordinate.
Vertices are connected such that each vertex at any given
level is connected to all the vertices of the next level. A path
that follows the trajectory can then be generated by moving
from one level to the next (i.e. moving from one trajectory
data point to the next). In an attempt to make path selection
easier, an initial vertex, CI , is added as the first level of the
graph and a final vertex, CF , is added as the last level of the
graph. A graphical representation of one roadmap is shown
in Figure 2.

Fig. 2. Graphical representation of a roadmap.

Since we want to find the best path within this highly
interconnected graph, we associate weight functions to edges.
More specifically, we have defined time, boundary singular-
ity, and collision weights as possible representations for what
would describe a desirable path. The collision weight, which
requires calls to a collision detector, is implemented as part of
the path selection process (next section) in order to minimize
the number of calls to the collision detector. Consequently,
the edge cost is represented as Ec = α×Wt +β×Wb, with
α + β = 1 and where Wt and Wb represent the time and
boundary singularity weights, respectively. The idea behind
this cost calculation is that users can scale the weights based
on what their definition of what a best path is. For example,
for a fast execution time α would be increased, whereas
for a safe execution, β would be increased. To compute the
time weight, we assume that the joints rotate at a constant
velocity. This reduces the problem to minimizing the amount
of rotations exerted on the joints. More specifically, given an
edge between two configurations, Cx,y and Cx+1,z , we are

interested in finding the joint with the maximum amount of
rotational change, which will take the longest to rotate into
position. The maximum difference between the positive and
negative joint limits, labeled pL and nL respectively, is used
to scale the weight between 0 and 1.

Wt =
maxi[Cx,y(i)− Cx+1,z(i)]

maxi[pL(i)− nL(i)]

When α is set relatively high, the time weight induces
an interesting behavior. Since the best paths will have the
minimum rotation amount, they will stay very close to
the starting configuration, CI . As such, our choice for CI

will dictate the type of motion executed. In addition to
reducing execution time, the time weight now becomes a
powerful tool. For the boundary singularity weight, we want
to severely penalize rotations that are close to the joint
limits for each joint. Consequently, we use an exponential
function, which we scale to be between 0 and 1, where
M = pL(i)− pL(i)−nL(i)

2 .

Wb =
DOF∑
i=1

e|Cx+1,z(i)−M | − 1
DOF × (e(pL(i)−M) − 1)

The boundary singularity weight is used for safe execution
and to steer the manipulator away from boundary singulari-
ties. Moreover, and similarly to the time weight, an implicit
characteristic of the weight can be deduced. Joints with
limits ranging from -180 to 180 degrees can generate invalid
paths as they approach one of the limits. Indeed, and as an
example, as the joint approaches -180 it will, at some point,
switch over to 180, resulting in a 360 degree rotation of
the joint. This phenomenon is undesirable, especially if the
manipulator is holding the deformable object. This weight
helps the manipulators stay away from these configurations.

C. Path Selection

Conversely to [8], we find the best paths in each roadmap
and merge the paths rather than merging the two roadmaps.
This procedure limits the number of calls to a collision
detector, an important feature of our algorithm, especially
considering the high connectivity between the vertices. More
specifically, we have two weighted graphs and wish to find
the best combination of collision-free paths. To that effect,
we start by finding the best t paths of the first graph and the
best u paths of the second graph. The paths are found by run-
ning Dijkstra’s shortest path algorithm on the graph starting
with the initial configuration CI and goal configuration CF .
Every time a path is found, we remove all the path’s edges
from the graph and repeat the process until no more paths are
found (i.e. until two levels are completely disconnected from
each other). While we acknowledge that there are different
ways of pruning the graph to generate the paths, we have
found this technique to be quite successful in finding paths
that are different from each other. Simply removing one, or
a few, edges would produce paths that are too similar to
each other. Once again, we have a tradeoff between speed
and solution density but we have found that our pruning
method provides a good balance between the two, generating

3844

anywhere between 20 and 50 paths per graph, depending on
the object’s parameters. Running the search on each graph
results in two sets of paths, the permutation of which gives
the total number of best solutions. We then propose two
methods to choose a path from this set. In the first, the
set of solutions is ranked by ascending costs and calls to
a collision detector determines the first collision-free path,
which is, evidently, the best one. In the second method, we
include a new weight, Wc, which takes into account the
distance between the two manipulators. Calls to the collision
detector are made, returning the minimum distance, d, be-
tween the two manipulators. Since we want to penalize close
manipulators more heavily, we use an exponential function.
We introduce two new variables, dRate and Margin, that
dictate the rate of descent of the exponential function and
the safety margin, respectively. As a reference, we used 0.8
as the rate of descent and 0.1 (i.e. 10 centimeters) as the
safety margin.

Wc = exp

(
−d

dRate×Margin

)
The weight, Wc, is calculated for each pair of configurations
in the path and can be incorporated into the cost function by
multiplying by a factor γ and adding it to the total path cost.
Effectively, this means that our new cost function becomes
Ec = α ×Wt + β ×Wb + γ ×Wc, with α + β + γ = 1.
Once the costs have been updated, the paths can be sorted
in ascending order and the best one is selected. As will be
shown in the experiments, the collision weight provides little
improvement and suffers from a huge performance hit due to
distance calculations by the collision detector. Consequently,
we recommend using the first method described.

IV. EXPERIMENTAL RESULTS

We performed a series of experiments on our robotic
platform, a static torso composed of two Barrett Arms and
Hands, both in simulation and on the real system (see Figure
3). For the experiments that we present in this section, we run
our algorithm with a set of two different deformable objects,
a napkin and a small towel. The napkin is 30cm (length) by
30cm (width) and the small towel is 48cm (length) by 28cm
(width). While we have performed additional experiments
with differently sized planar deformable objects, we omit
them in this section due to a limitation of our system. Since
the robotic arms are statically mounted and are fairly high
from the table, they have a limited workspace. Larger de-
formable objects would quickly extend past the reachability
subspace of our robot and, consequently and legitimately, our
algorithm would not find any paths to execute the motion.
This drawback is strictly due to our manipulator configura-
tion and could be avoided by a better manipulator placement
that would maximize the reachability workspace. The objects
are manually placed in front of a robot in such a way that
they are within the robot’s workspace and are rotated, around
their center point, by different angles (from -90 degrees
to 90 degrees) to come up with numerous different test
cases, resulting in many diverse motions. We choose to run

an extensive amount of tests on a virtual representation of
our system, simulated in USARSim [5], since it allows to
continuously apply the different motions without having a
human-in-the-loop, thus greatly facilitating the amount of
motion-dependent data that can be acquired. The simulated
model faithfully mirrors the real robot. There are only two,
negligible, differences between the simulated and real robots.
First, the simulated robot is not mounted exactly the same
way. More specifically, it is 10 centimeters closer to the
table thus giving a larger reachable space. Second, and less
importantly, the rotational speed of the joints do not match
those of the real robot. It is worthwhile to note that the code
implementing the aforementioned algorithm is impervious to
the type of robot used (i.e. simulated or real) and that the
only difference is the slightly modified robot configuration
file. This is consistent with our parallel ongoing research
about robot simulators [1]. We invite readers to watch our
accompanying video, which shows the same motion plan
being executed by the simulated and real robots.

Fig. 3. Juxtaposition of the simulated (left) and real (right) robots at the
beginning of the same folding motion. The object is the small towel and is
not rotated.

A. Path Generation

In this experiment, we look at the number of collision-
free paths that our algorithm is capable of generating. Since
the number of paths is highly dependent on the object’s
configuration and placement relative to the robot, we run
experiments using the two objects, the small towel and the
napkin, rotating each from -90 degrees to 90 degrees with
5 degrees increments. Consequently, we have two sets of
37 experiments. We use 0.5, 0.5, and 0 for α, β, and γ,
respectively. While we have run the experiment for both the
simulated and real platform, we only show the results of
the simulated data in Figure 4. The real platform’s result
followed the same shape but yielded, in general, a lower
number of collision-free paths, a fact that can be attributed
to the manipulators’ higher mounting point, reducing their
workspaces. The figure shows an almost symmetric pattern
between the positive and negative rotations. Even though one
might expect the graph to be perfectly symmetric around
the 0 degree rotation (e.g. the same series of configurations
should be used by the left arm at 10 degrees than the ones
used by the right arm at -10 degrees), the arms are not
mounted symmetrically from each other (one is rotated by 90

3845

degrees while the other by -90 degrees) and their joint limits
are not necessarily symmetric (e.g. joint 4 goes from 180 to -
50 degrees). The figure also shows, as expected, a significant
difference between the two objects. Generally speaking, the
small towel has a greater number of collision-free paths than
the napkin, an outcome explicitly explained by their sizes.
The napkin being smaller than the small towel forces the
manipulators to be positioned closer together when executing
the trajectory, resulting in a lot more collisions. Last but not
least, the algorithm generates a huge amount of collision-free
paths (between 100 and 1000), which allows for either a fine
grain selection of the best one or opens a door to make the
algorithm faster by reducing the number of chosen paths.

Fig. 4. Number of collision-free paths generated by the algorithm as a
function of object rotation angle for the napkin and the small towel.

B. Effect of Time Weight on Motion Execution Time

The proposed algorithm uses weights to dictate how the
fold will be executed. In this experiment, we evaluate the
effect that the time weight factor, α, has on the overall
execution time of the motion plan. Data presented in this
section refers to the simulation. We did run, however, similar
motions on the real robot (although, a lot less) and have
noticed similar patterns to those presented. This should come
to no surprise since the time weight is based on the amount
of joint rotation. For a given object and rotation, the time
weight factor, α, is changed from 0 to 1 with increments
of 0.05, each time running the best motion in simulation
and recording the total execution time. The collision weight
factor, γ, is set to 0 and the boundary singularity weight
factor, β is set to 1−α. Figure 5 shows a few representative
examples of the results gathered from this experiment. The
graph shows that increasing the time weight factor reduces
the overall execution time of the motion by a factor of 18 to
22 percent for the napkin and 30 to 38 percent for the small
towel. Folding the napkin takes less time than folding the
small towel, a logic observation since the napkin is smaller
than the small towel. As a result, the execution times of the
small towel can be improved more significantly than those
of the napkin.

C. Effect of Collision Weight on Manipulator Distance

In this experiment, we focus our attention on the collision
weight factor, γ, to see if it helps force the manipulators keep

Fig. 5. Motion execution time as a function of the time weight factor, α.
Data is shown for the small towel rotated by 15 and -90 degrees and the
napkin rotated by 60 degrees.

a safe distance from each other. Similarly to the previous
experiment, for a given object and rotation, the collision
weight factor, γ, is changed from 0 to 0.95 with increments
of 0.5, each time recording the minimum distance between
the two manipulators, as given by the collision detector.
The time weight factor, α, and the collision weight factor,
γ, are both set to (1 − γ)/2. We note that we cannot
increase the collision weight factor all the way to 1 since
the other two weight factors will be 0, resulting in a cost
of 0 for every edge of the graph. Figure 6 shows a few
representative examples of the results gathered from this
experiment. Counter-intuitively to what one might expect,
the minimum distance between the two manipulators does
not change significantly. This otherwise peculiar observation
can be explained by our starting position that, as noticed
earlier, affects the rest of our motion when using the time
weight (i.e. rewarding minimum rotations). In other words,
our starting position happens to be set in such a way that the
time weight produces motions that, indirectly, maximize the
arms’ distances from each other (e.g. the elbows are forced
to face away from each other).

Fig. 6. Minimum distance between the two manipulators as a function of
the collision weight factor, γ. Data is shown for the napkin rotated by -55,
60, and -80 degrees and the small towel rotated by -90 degrees.

Readers might wonder why, irrespectively of the object,
the motions perpendicular to the robot (e.g. 80 and -90
degrees in Figure 6) result in closer manipulators than for

3846

motions more parallel to the robot (e.g. -55 and 60 degrees in
the Figure 6). This difference is explained by the fact that, for
perpendicular motions, the elbow of the manipulator closest
to the robot has to point away from itself, in the direction of
the other manipulator and, as a result, are very close together
(see Figure 7). Conversely, more parallel motions allow the
manipulator’s elbow to stay away from the other manipulator.

Fig. 7. Pictures showing the difference between perpendicular motions
(right) and more parallel motions (left). The perpendicular motion forces
the manipulators to be closer to each other.

D. Algorithm Time

We conclude our experimental section with information
about our algorithm’s running time under two different
conditions, the result of which can be found in Table I.
The algorithm times were recorded on an Intel Quad Core
2.8GHz desktop computer and include the time spent on
allocating space for all the data structures. When γ 6= 0,
the algorithm is much slower since a lot more calls to the
collision detector are required in order to find the minimum
distance between the two manipulators. However, we have
shown in the previous experiment that using the collision
weight did not provide any significant improvements. Con-
sequently, we recommend setting γ to 0, unless safety is of
outmost importance for the task at hand, to produce a much
faster algorithm. The other parts of the algorithm are constant
with respect to γ and relatively fast.

Algorithmic Part γ = 0 γ 6= 0
Trajectory Generation < 1ms < 1ms
IK Calls 74 74
IK Time 190ms 191ms
Graph Creation 588ms 587ms
Dijkstra Calls 79 79
Dijkstra Time 274ms 275ms
Collision Calls 165 815
Path Selection 42ms 4000ms
Total Time 1.09s 5.05s

TABLE I
TIMING INFORMATION FOR EACH PART OF THE ALGORITHM.

V. CONCLUSIONS AND FUTURE WORK

We have presented a motion planning algorithm capable of
generating folding motions for rectangular planar deformable
objects. The algorithm’s strengths come from its speed, the

notion of parameterized fold quality, and the extendibility to
different manipulators provided they have at least 6 DOF and
perform pinch grasps. We have executed many experiments
both in simulation and on the real robotic platform, a
subset of which are presented in this paper, corroborating
some assumptions while elucidating others. A few different
directions can be taken for future work in this area. First, a
grasp planner for cloth-like objects needs to be incorporated
in order to be able to physically grasp the objects. Second,
it would be beneficial to calculate the position of the object
that would give the robot the highest chance of generating a
motion plan for it. Similarly, and for static robots, we could
calculate the position that they should be placed at such that
their folding (or other task) capabilities are maximized. We
see this paper as the first step towards a fully functional cloth
folding robot.

ACKNOWLEDGMENTS

We thank Roger Sloan for his help with the collision
detector implementation. This work is partially supported by
the National Science Foundation under grant BCS-0821766.

REFERENCES

[1] B. Balaguer, S. Balakirsky, S. Carpin, and A. Visser. Evaluating maps
produced by urban search and rescue robots: Lessons learned from
robocup. Autonomous Robots, 27(4):449–464, 2009.

[2] D. Balkcon. Robotic Origami Folding. PhD thesis, Carnegie Mellon
University, 2004.

[3] D. Baraff and A. Witkin. Large steps in cloth simulation. In
SIGGRAPH, pages 43–54, 1998.

[4] M. Bell and D. Balkcom. Grasping non-stretchable cloth polygons.
International Journal of Robotics Research, 2009.

[5] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. US-
ARSim: a robot simulator for research and education. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 1400–1405, 2007.

[6] L. Chang and N. Pollard. Video survey of pre-grasp interactions in
natural hand activities. In Workshop on Understanding the Human
Hand for Advancing Robotic Manipulation at RSS, 2009.

[7] M. Desbrun, P. Schroder, and A. Barr. Interactive animation of
structured deformable objects. In Graphics Interface, 1999.

[8] M. Gharbi, J. Cortes, and T. Siméon. Roadmap composition for multi-
arm systems path planning. In International Conference on Intelligent
Robots and Systems, pages 2471–2476, 2009.

[9] S. Gibson and B. Mirtich. A survey of deformable modeling in
computer graphics. Technical report, Mitsubishi Electric Research
Laboratories, 1997.

[10] S. Gupta, D. Bourne, K. Kim, and S. Krishnan. Automated process
planning for robotic sheet metal bending operations. Journal of
Manufacturing Systems, 17(5):338–360, 1998.

[11] L. Lu and S. Akella. Folding cartons with fixtures: A motion planning
approach. IEEE Transactions on Robotics and Automation, 16(4):346–
356, 2000.

[12] S. Platt and N. Badler. Animating facial expressions. Computer
Graphics, 15(3):245–252, 1981.

[13] T. Sederberg and S. Parry. Free-form deformation of solid geometric
models. In SIGGRAPH, pages 151–160, 1986.

[14] G. Song and N. Amato. A motion planning approach to folding:
From paper craft to protein folding. IEEE Transactions on Robotics
and Automation, 20(1):60–71, 2004.

[15] Y. Tsai and H. Huang. Motion planning of a dual-arm mobile
robot in the configuration-time space. In International Conference
on Intelligent Robots and Systems, pages 2458–2463, 2009.

[16] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R Dillmann.
Humanoid motion planning for dual-arm manipulation and re-grasping
tasks. In International Conference on Intelligent Robots and Systems,
pages 2464–2470, 2009.

[17] O. Zienkiewicz. The Finite Element Method Set. Butterworth-
Heinemann, 2005.

3847

