
Homeokinetic Proportional Control of Myoelectric Prostheses

Frank Hesse and J. Michael Herrmann

Abstract— Self-organized control of myoelectric prostheses
aims at an automatic selection of communication channels
between a prosthetic device and its user. During training, the
patient is instructed to generate control signals that follow the
observed autonomous movements of the prosthesis. At the same
time, the prosthetic controller maximizes both the diversity of
movements and the coincidences of prosthetic movements and
human control signals by varying the sensory features and
control actions. This dual control algorithm is derived from
the homeokinetic principle for robot control and is tested in a
proportional control task for a hand prostheses.

I. INTRODUCTION

Myoelectric prostheses have proved useful since several
decades. However, the increased capabilities of prosthetic
devices, especially for the upper limb, are not fully accessible
due to limitations of their controllability.

Commercially available prostheses with more than one
degree of freedom are often realized as state machines. This
means that in dependence on the state the same muscle con-
traction leads to different movements. State transitions are
realized by a co-contraction of flexor and extensor muscle.
So complex movements of different degrees of freedom can
only be executed in a serial order and the patient always has
to keep in mind the actual state of the device.

The ability to control more than one degree of freedom
without using state machines becomes more and more im-
portant as prosthetic devices with many degrees of freedom
are becoming available. The control of the device should be
realized in a proportional manner, where the velocity and
grip force of the prosthesis are controlled proportional to
the strength of the muscle activation, which is preferred by
patients [1].

In order to fit a prosthesis usually a set of movement
commands are generated by the patient while the produced
myoelectric potentials [2] are recorded, see [3], [4], [5],
[6], [7]. Based on the recorded patterns of myoelectric
activity, characteristic features are calculated that enable the
classification of the movement intentions of the user. The
obtained class labels serve as the basis for prosthetic control.
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When using the prosthetic device the patient must generate
similar movement commands as in the initial recording in
order to support the classification.

Here we propose an algorithm that allows the patient
to learn intuitive motion commands which are determined
by a dynamical interaction of human and prosthetic con-
trol rather than by the unidirectional pattern-recognition
approach mentioned above. Our approach takes into account
the abilities of the patient, the reliability of the myosignals
and the mechanical properties of the prosthesis. It is based
on a closed-loop system that comprises both prosthesis
and patient. The underlying principle is adapted from the
homeokinetic approach to self-organizing control [8], [9]. In
the following section the main ides of this principle will
be shortly discussed (for details cf. [10], [11]). In Sect. III
the idea of self-organization in prosthetic control will be
described, followed by the technical details (Sect. IV). An
illustrative example as a proof of principle (Sect. V) and an
example for proportional control (Sect. VI) are presented.
An application to a prosthesis with two degrees of freedom
is given in (Sect. VII). The last two section discuss and
summarize our results.

II. HOMEOKINETIC CONTROL

Homeokinesis follows the dynamical systems approach to
robot control [12], [13], [14]. We will outline the main idea
for a simple robot with one degree of freedom. At each time
step the robot receives a vector xt ∈ Rn×1 of sensor values.
The sensor values are predicted based on the earlier motor
actions yt ∈ Rm×1 by a linear internal model

F (xt, yt) = ayt (1)

with a parameter matrix a ∈ Rn×m, where we assume
m = 1. The robot acts in a sensorimotor loop which means
that new sensor values are considered as being influenced by
earlier motor outputs. In this way we can assume a functional
dependence xt+1 = ψ(xt) + ξt, where ξt contains all effects
that are not under control by the robot. The function ψ is
called the loop function and will be used here in the form
ψ(xt) = ag (cxt), where c ∈ Rn×1 contains the controller
parameters and the function g accounts for the hardware
limits of the actions and is usually chosen as a tanh.

Dynamically relevant properties of the robot can be de-
scribed by a linearization that is given by the Jacobian
L of the system Lij = ∂

∂xj
ψi (xt) = aicjg

′ (zt) . The
homeokinetic principle aims at modifying the eigenvalues
of L by adapting the controller parameters c such that a
marginally stable behavior is achieved. For this purpose the
modeling error ξt = xt+1 − F (xt, yt) is backpropagated
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through the internal model such that the previous sensor
value is re-estimated. The re-estimated and the actual previ-
ous sensor value give rise to an error function which affects
the stability properties of the system differently than for a
direct minimization of the magnitude of ξ. This can be seen
by considering the relation of the back-propagated error v
and the forward error ξ via the the Jacobian: Lv = ξ.
Because the inverse of L does not exist for n > m = 1,
we can express the pseudo-inverse of L by the inverse in
the direction of the vector a (1). Thus, the inputs x are
considered as the deterministic part of the sensorimotor
dynamics which can be captured by the model and, apart
from the noise, a is proportional to x.

These consideration lead to the objective function

E = ‖ut‖2, (2)

where ut =
(
tanh′ (cxt)R

)−1
ξt ξt

Ta. The variable R = ca
denotes the linearized feedback strength of the sensorimotor
loop. The minimization of Eq. 2 provides us with a rule for
the dynamics of the parameters

∆ci = µai − 2µcTxxi,t − γµci. (3)

An additional term µ = 2εu2/R and a small constant γ
was introduced to produce a weak decay of the weights. In
this way, the components of the initial conditions decay if
they are orthogonal to a such that the assumption about the
inversion of L is self-consistent.

In order to analyze the parameter dynamics we start
with an initialization of the synaptic strength c such that
the feedback strength is 0 < R � 1. Then the motor
command y is fluctuating around zero and the damping term
−2µ cTxxi is small since the controller input cx is small.
Hence the driving term in the learning dynamics dominates
and produces ∆ci = µai, i.e. ∆ (ciai) = µa2

i and hence
∆R = µa2. Obviously, the overall feedback strength R
increases with channels of higher response strength |ai| being
favored. Once R exceeds the critical value Rc = 1, activity
in the system will be generated by amplification of sensory
noise. If the system is active the sensor values xi and the
controller input cTx increase such that the anti-Hebbian
term in Eq. 3 becomes effective. The parameter dynamics
is stationary for γci =

(
1− 2Ry2

t

)
ai or R = 1

γ/a2+2y2
t

=
a2

γ+2x2
t+1

, so that ci = αai, where α can be considered as
a constant here. Obviously the ci reach values so that all
sensors are integrated into the sensorimotor loop according
to their response strength ai as obtained from the internal
model (1). Thus sensors showing a response to the motor
commands are integrated in the sensorimotor loop with a
synaptic strength |ci| > 0. Non-responding sensors are barely
integrated with ci ≈ 0.

These two properties of the homeokinetic control are not
only interesting for autonomous robots but also for prosthesis
control. On the one hand the generation of activity enables
control the prosthetic device even with weak signals. On the
other hand well responding sensors are selected in order to
allow the patient to control the prosthesis.

III. HOMEOKINESIS IN PROSTHETIC CONTROL

The control loop proposed here will include two learning
systems, namely the controller and the participant (or pa-
tient), compare Fig. 1. Motor commands of the controller
are passed to the prosthesis. The movements of the latter
can be visually observed by the participant. The reactions of
the participant, measured via the surface electromyographic
(sEMG) signal, are used as input to the self-organizing
controller and build the basis for the generation of the next
motor command.

Fig. 1. Scheme of the control loop for a hand prosthesis with self-or-
ganizing controller. Motor commands from the controller cause movements
of the prosthesis. The participant receives visual feedback and generates
muscle activity the features of which are used as input to the controller and
are used to calculate new motor commands.

In the beginning of the training period the prosthesis
will start movements even if only noise is applied to the
sensors, based on the driving term in the update rule in
(3). In this way, patients who may initially produce rather
weak signals get the impression to be able to cause the
motion of the device and are thus encouraged to work
with the system for longer periods. Thereby the involved
muscle signals will be strengthened and the controllability
is expected to improve. During the interaction the patient
tries to support the movements shown by the prosthesis with
motions he prefers and is able to generate. If after some
minutes the prosthesis does not react to this movements,
other movements have to be tried. The controller on the
other hand will detect motion signals which are useful to
control the prosthetic device. These control commands are
not prespecified and therefore allow an adaptation to the
individual patient. The learning algorithm is meant to be
applied under supervision prior to the use in everyday life.

IV. METHODS

Data were recorded by two purpose-built electrodes with
four contact surfaces each. The electrodes were placed at
the superficial digital flexor and at the digital extensor of the
forearm. Ground connection was established with an addi-
tional electrode. Per electrode three voltage signals Ui were
obtained by calculating the differences between the measured
potentials of neighboring contacts. The data were high-pass
filtered with a 10 Hz cut-off frequency. A band-stop filter
was applied to remove 50 Hz power-line artifacts. These
preprocessing steps were performed using the LabVIEW
software (National Instruments). For the data reported here
the motor commands were realized by a three-dimensional
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realistic physical simulation of a sixteen degrees of freedom
hand prosthesis (Fig. 2) which was created using the Open
Dynamics Engine (www.ode.org). To match the properties

Fig. 2. Screen shot of a three-dimensional simulation of a human hand with
16 degrees of freedom which is used for visual feedback to the participant.
In the experiments only wrist rotation and the hand aperture are actuated.

of an existing hand prosthesis (SensorHand, Otto Bock
HealthCare) the degrees of freedom of the simulated hand
were coupled, so that two independent and simultaneously
controllable degrees of freedom remained (open/close hand
and rotation of the wrist).

V. A 1DOF EXPERIMENT

The first experiment is intended to give a proof of principle
of the homeokinetic approach to prosthetic control. Vari-
ous features of the six-dimensional sEMG signal from the
forearm of the participants were used as input to the home-
okinetic controller. The goal of the experiment was to find
out what feature would be chosen by the algorithm in order
to enable control of the prosthesis by the participant. The
selection process is performed in interaction of participant
and prosthesis during a training period, prior to the practical
use of the device.

The first input to the controller was the difference between
the root-mean-square (RMS) values of two voltage signals
obtained with different electrodes, i.e. above antagonistic
muscles. The RMS values were averaged over 512 time steps
corresponding to one sixth of a second at a sampling rate of
the analog-to-digital converter of 3000 samples per second.
The second, third and forth input were obtained analogously
as differences between RMS values of two voltage signals
within the same electrode. In order to simulate unusable
channels the two remaining controller inputs received merely
white-noise signals.

The first channel turns out to be best suited for control. We
should expect the weights of the input lines to the controller
to increase for the first channel and to decrease more or less
quickly, resp., for the fifth and sixth and second to fourth
channel.

The adaptation of the controller parameters was stopped
when the patient reported the feeling of being able to control
the prosthetic device which for the used averaging times and
learning rates occurred typically after five minutes. After
this time the weight of the channels had developed into

a configuration that allowed the participant to control the
prosthesis. Then a test was conducted and the participant
was asked to operate the prosthesis according to a presented
reference signal. The experiment was conducted with a
healthy participant.

Fig. 3 shows the six input signals x1 to x6 and the
controller-generated motor command y. Obviously, x1 re-
flects the strongest response to the movement commands
initiated by the participant. While the motor command is
very noisy initially, it becomes more and more similar to
x1 subsequently due to the adaptation of the controller
parameters.

Fig. 3. Time course of the sEMG input features x1 . . . x6 and the motor
command y during the experiment. The motor commands are very noisy
initially since the inputs x5 and x6 have relatively strong weights c5 and
c6 (compare Fig. 4(b)). Later the weights of the inputs (x1 . . . x4) increase
resulting in a motor command that follows the shape of input x1. After
around 360 seconds the participant reported confidence in the ability to
control the prosthesis and learning was disabled for a test (see Fig. 5).

The development of the parameters of the controller and
the model is shown in Fig. 4. The model parameter ai serves
to predict the myosignal feature xi by linearly weighting
the current output value of the controller. Clearly the weight
corresponding to the sensory feature x1 is quickly assuming
the largest value while the other sensor values depend on the
motor command to a lesser extent such that the correspond-
ing weights remain smaller.

At the same time the controller parameters undergo fluc-
tuation that test different constellations of the input weights
to the controller. At some point the weight c4 belonging to
a suboptimal input channel reaches a certain strengths, but
is soon replaced by c1 as expected. The contribution of the
other sensor values to the generation of the motor command
are negligible. With this parameter setting the participant
reported to be able to control the prosthetic device. Hence
the adaptation of the controller parameters was stopped for
the test of controller and selected features.

During the test a combined visual and acoustic stimulus r
was used to indicate the required test movements. The motor
command y depicted in Fig. 5 shows that the patient was able
to generate the desired sequence of input signals and hence
the desired motor commands.

1788



(a)

(b)

Fig. 4. (a) The model parameter a1 quickly develops to assume the largest
absolute value. This implies that the motor command y contains predictive
information mainly about the input x1, see Fig. 3. (b) Initially, the controller
parameters ci change continuously and probe many different configurations.
From about 300 seconds the weight c1 is dominating in correspondence to
the values of the model parameters. At about 360 seconds the adaptation
of the parameters of model and controller was disabled for the test.

This result is not surprising. The input signal s1 was the
most promising signal provided and is also used in nowadays
prosthetic devices. The interesting point, however, is that
this solution was found. The self-organizing controller, in
interaction with the participant, was able to select this signal
for the control of the prosthetic device from a set of given
signals, without further information provided.

VI. PROPORTIONAL CONTROL

This experiment is intended to investigate the possibility
of proportional control using the proposed paradigm and the
features introduced in the previous experiment.

The first input to the controller was the difference between
the (RMS) values of two voltage signals obtained above
antagonistic muscles. The second and third input were again
obtained as differences between RMS values of two voltage
signals within the same electrode. In order to simulate an
unusable channel the input x4 received merely a white-noise
signal. The input signals were averaged over five time step.

The first channel is best suited for control and was also
selected for control in the previous experiment. We should

Fig. 5. The time course of the reference signal r and controller output
y during test after successful training. The reference signal r represents
the task to be performed by the participant, i.e. a required movement
of the prosthetic device. The motor command is the signal generated by
the controller based on input from the muscle activity of the participant.
The traces indicate that the participant succeeded quickly in generating the
desired sequence of motions of the prosthetic device.

expect that with a RMS signal selected as contributing input
a proportional control of the motor command is possible. In
order to check this, we modified the test after the adaptation
of the control parameters. The participant was asked to
generate motor commands with different amplitudes.

The adaptation of the controller parameters was stopped
when the (healthy) participant reported to be able to con-
trol the prosthetic device (after circa five minutes). In this
experiment not only the RMS signal of the antagonistic
muscles (x1) but also the other RMS signals (x2, x3) had a
noticeable contribution to the controller input, as determined
by the vector of synaptic strength c. The noise input x4 was
barely integrated. During the test the participant was asked
to operate the prosthesis according to a presented reference
signal.

The test lasted circa 15 min with several minutes break.
The participant was able to generate motor signals with
discriminable amplitudes, see the exemplary time course in
Fig. 6. Counting generated discriminable motor commands
versus all desired motor commands (as indicated by the refer-
ence signal) a ratio of 77% was achieved. Uncertainty about
the correct hand gesture for the desired motor command
is the main reason for not discriminable motor commands.
Hence a longer training/testing period is expected to increase
performance in the test considerable. However, the results
show a first proof of principle that, depending on the fea-
tures used as input to the self-organizing controller, motor
commands can be generated in a proportional way.

VII. CONTROL OF A 2DOF PROSTHESIS

As above we assumed that appropriate data features of the
sEMG signal are provided and ask whether it is possible to
equip a myoelectric prosthesis with a self-organizing con-
troller, in order to select those features of the sEMG signal
which allow the participant to control a two-dimensional
prosthetic device. The adaptation of the controller is done in

1789



Fig. 6. Time course of the reference signal r and controller output y
during test after successful training. The reference signal r represents the
task to be performed by the participant, i.e. a required movement direction
and amplitude. The motor command is the signal generated by the controller
based on input from the muscle activity of the participant. The traces indicate
that the participant succeeded in generating the desired sequence of motion
commands with corresponding amplitudes.

interaction of participant and prosthesis in a training period,
prior to the use of the prosthetic device.

A superposition scheme [5] was used for the feature
extraction in this setup. It requires little computational ef-
fort and provides information about the motor unit action
potential propagation that varies with different motions.
Before running the reported experiments we tested the earlier
observation [5] that this superposition scheme performs
usually better than other time-domain and frequency-domain
features. The superposition feature is calculated as

fi =
RMS(Ui + Uj)− RMS(Ui − Uj)
RMS(Ui + Uj) + RMS(Ui − Uj)

,

where j refers to the right neighbor of site i except for the
last difference potentials of each electrode where it refers to
the first site.

The first two inputs to the controller are determined
according to the formula above, x1 = f5 and x2 = f1. The
input lines three and four contain differences of the signals
of this type, i.e. x3 = f2 − f5 and x4 = f3 − f6. The last
input is similar to the one used in the previous section i.e. a
difference of two RMS values of antagonistic muscles. The
homeokinetic controller generates a two-dimensional output
using two five-dimensional weight vectors. These outputs are
used directly for the control of the two degrees of freedom
prosthetic device.

The experiment was conducted with a healthy participant
and lasted about one hour. Seven trials of about the same
duration were performed. During the first trials the two
degrees of freedom could not be independently controlled.
Hence, several hours of interaction are required in the current
setup to eventually be able to control the prosthesis. Unlike
in the first experiment, no preferred feature can be identified
in the input signals.

The adaptation of controller and model parameters during
the experiment is more complex than in the first experiment.

Converging to the map of motor commands to the features,
the internal model does not end up with a single dominating
channel. Instead all model parameters show considerable
values, i.e. all sensors develop some dependency on the mo-
tor command. According to the model structure, all sensors
become included in the generation of the motor command
(compare Sect. II). The parameter adaptation was disabled,
when the participant reported the feeling of being able to
control the prosthetic device, which happened after about
half an hour.

During the following test the participant was instructed to
generate movements of the prosthetic device as indicated by
visual and acoustic stimuli (reference signal r). The motor
commands generated by the homeokinetic controller and the
reference signal r are depicted in Fig. 7.

Fig. 7. During the test the participant was able to control two degrees
of freedom independently. In the first part of the diagram y1 oscillates
between positive and negative values while y2 remained at positive values,
as indicated by the reference signals r1 and r2. In the second part both
motor commands change sign but keep opposite sign. The third part shows
an oscillation of y2 while y1 stays at positive values.

Three different combinations of the two motor commands
y1 and y2 were generated by the participant, plotted as
three distinct parts in the diagram. The first part shows
movements where the motor command y1 oscillates between
positive and negative values while the motor command
y2 stays at positive values. This means the wrist rotates
inwards (pronation) and outwards (supination) while the
prosthesis is open. The second part shows an oscillation of
both motor commands, with opposing sign. This corresponds
to a supination with simultaneously opening of the hand
alternating with a pronation with simultaneously closing of
the hand. The third part shows motor command y2 oscillating
between positive and negative values while y1 stays positive.
In this case the hand opens and closes while the wrist rotates
inwards. This experiment shows that during an interaction
period of a participant and a prosthesis equipped with a self-
organizing controller input signals are automatically selected,
which allow the participant to control the two degrees of
freedom of the prosthetic device.
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VIII. DISCUSSION

By the results reported here we could show that the
selection of appropriate input channels by interaction of a
self-organizing controller and a human is a feasible approach
which allows also for proportional control is possible. It is
interesting to note that the selection of input features from
the myoelectric signals adapts, too, together with the increase
in signal quality when the participants improve. Hence,
patient-specific adaptation remains possible even when the
performance changes during training.

In some cases the superposition features were observed
to be sensitive to small changes of the finger positions
which made it problematic for participants to remember the
allocation of motor commands by hand positions. This aspect
is a side effect of the flexibility of the controller during
training and requires further habituation by the patient. For
the self-organizing controller the sensitive patterns seemed
to indicate the possibility of controlling more degrees of
freedom. For future work the use of larger electrode arrays
or ring electrodes, perhaps incorporating different features,
is expected to ease and improve the possibilities of the
feature selection, since more input channels and hence more
information about the muscle activity can be exploited.

In general, if several degrees of freedom are available
it is possible, that some actuators start to connect to the
same input provided to the controller, since there is no
direct (physical) feedback from actuators to sensors such that
coupled degrees of freedom result. Due to the properties of
the homeokinetic approach these modes, as all others, will be
left after some time [15]. Nevertheless it would be preferable
to avoid these modes completely. Hence for future work,
especially for more than two degrees of freedom, competitive
learning, cf. e.g. [16], can be used for the adaptation of the
internal model to reduce the appearance of these modes and
so shorten the required training time.

The approach is clearly not restricted to prosthesis control.
Control problems where the selection of input features has to
be negotiated with the controllability of a device represent a
possible field of application. This could include the control of
a vehicle by body movements or of an avatar in a computer
game by means of EEG signals.

IX. SUMMARY

For prostheses with one or two degrees of freedom control
could be achieved easily based on the features selected by
the self-organizing controller. In the one-dimensional case
the RMS feature was selected by means of which the test
participant was able to control the prosthesis following a
given reference signal with different amplitudes. In the two-
dimensional case a combination of the provided features was
selected which allowed the participant to control wrist rota-
tion and hand aperture as advised through the reference sig-
nal. The system remained sensitive with respect to changes
of finger positions which resulted in different inputs to the
controller and, hence, a variability of the motor commands.
This made it sometimes difficult for participants to reproduce

the correct hand positions for the motor commands required
during the test.
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