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Abstract— A microwave Doppler sensor can monitor human
motion without contact. It can sense wide range of motion
from minute oscillation like respiration to large movement like
walking because it measures the distance change between the
target and the sensor as signal phase change. However, the
proper method for the signal phase estimation is different
between motion and respiration measurement. In this paper,
we compare three methods for signal phase estimation and
find the optimal method and parameters for each problem.
For switching to the proper phase estimation method or
monitoring human state, it is important to detect motion signal
and respiration signal from the raw signal of sensor output.
Three kinds of features, energy, frequency-domain entropy and
histogram are extracted and are input into binary classifiers.
We tested least squares, SVM and AdaBoost classifiers.

I. INTRODUCTION

As society is aging, expectation for the automated home
monitoring and health care system is growing. To respond
sudden diseases or accidents, system is required to observe
habitants constantly in their daily life. For daily use, it must
not hamper users’ activity. Therefore, the devices should
sense human unobtrusively.

A microwave Doppler sensor can sense movement without
contact, so it does not hamper daily chore. It transmits
microwave to the environment and receives the reflected
wave. By mixing transmitted signal and received signal,
Doppler shift of the microwave reflected from moving object
is measured. Then, the change of the range between the
sensor and the target is observed as phase change of the
output signal. Consequently, the sensor can measure wide
range of distance change, from minute oscillation in some
millimeters to large motion in meters. As an example of
measuring minute oscillation, it has been used for sensing
vital signs. Since microwave transmits through clothes and is
reflected by the surface of human body, it has been used for
contactless remote monitoring of respiration and heartbeat
[1], [2], [3]. Meanwhile, as an application of meters of
distance change measurement, the position of human target
can be estimated with more than three sensors [4], [5].

It can sense wide variety of range change but it can-
not measure both large and small distance change simul-
taneously. Since the output signal of the sensor is one-
dimensional time series, the weak signal of minute oscillation
is buried in large and high frequency signal of dynamic
motion. In fact, there is no way to measure the respiration
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of a walking target. Moreover, both tiny slow motion and
large fast motion can be measured by one sensor, but the
good algorithm and its parameters to estimate the velocity
of a target from the output signal vary according to the
property of the motion. The signal observed while the target
is traveling and that while he/she sits still and is breathing
are largely different in frequency and strength.

Considering these limitations, it is beneficial to differen-
tiate the observed signals into three categories, one caused
by respiration of the target who sits still, one attributed to
the target’s large movement such as walking or changing
posture and the other in which no motion is detected. If these
observation states are discerned without the signal phase
estimation, we can switch a phase estimating algorithm to
a more suitable one according to the situation. Furthermore,
this classification is useful for monitoring human state.
For example, if no signal state immediately follows the
respiration sensing state, it means the cessation of breathing
because one cannot go away from the respiration detecting
area without moving. There are several related works on
measuring both human walk and respiration by a single
microwave Doppler radar [6], [7]. They evaluated motion
measurement and respiration measurement separately. How-
ever, to apply the sensor to monitoring human in daily life, a
method to deal with signals in which motion and respiration
are mingled is necessary.

In this paper, we study the following two issues. First,
we introduce several method for estimating the signal phase
and survey which is more suitable for respiration sensing
and which is better for motion measurement by comparing
them in experiment. Second, we construct three detectors,
motion detector, respiration detector and no motion detector
for estimating the observation state. Spectral and histogram
features are extracted from the raw signal and are processed
by binary classifiers.

This paper is organized as follows. First, the output signal
and property of the microwave Doppler sensor are formulated
in mathematical expression in section II. In section III, three
methods for phase estimation are introduced. In section IV,
the feature extraction for signal classification is explained.
Section V presents the experimental setting and the results.
Finally, we conclude in section VI.

II. SIGNAL MODEL OF MICROWAVE DOPPLER SENSOR

Microwave Doppler sensors are classified into two types,
“dual type” and “single type”, according to their number of
outputs. We use dual type one in this research. It provides
two outputs, VIF1 and VIF2, which have a quadrature phase

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5416



Fig. 1. The signal output point moves on the dotted-line circle, clockwise
if the target is going away from the sensor, counterclockwise if the target
is coming close to the sensor.

relationship, that is to say their phases are 90 degrees
different from each other. The two outputs are expressed as,

VIF1 = AIF1 sin(
4πR

λ
+ φ0) + OIF1 + w1 (1)

VIF2 = AIF2 cos(
4πR

λ
+ φ0) + OIF2 + w2 (2)

where A is the amplitude of the signal, λ is the wave length,
R is the distance between the sensor and the target, φ0 is the
initial phase, O is the DC offset and w is the noise. From (1)
(2), it is derived that the phase change Δφ is proportional to
the range change between the target and the sensor ΔR:

Δφ =
4πΔR

λ
. (3)

Thus, signal frequency f is proportional to the velocity of
the target:

f =
2
λ

v (4)

The benefit of “dual type” is that the phase change of the
signal can be calculated from the two outputs as explained
in following section. This allows the detection of the target’s
moving direction, whether the target is coming close to
or going away from the sensor, while with “single type”,
one can only calculate the target’s unsigned velocity from
signal frequency f . As illustrated in Fig. 1, the point which
indicates the outputs moves around the DC offset point
in clockwise or counterclockwise according to the target’s
moving direction.

Signal amplitude A is monotonic function of received
signal power Pr,

A = CP γ
r , (5)

where C is a positive constant which depends on gain of
peripheral circuit and γ is also a positive constant whose
value is about 0.5. The received signal power Pr is expressed
by radar equation,

Pr =
PtG

2λ2σ

(4π)3R4
(6)

where Pt is the power of the transmitted signal, G is the
antenna gain, σ is the radar cross section of the target [8].
The antenna gain depends on the radiation pattern and the
direction in which the target exists as seen from the antenna.
The radar cross section is property of a scattering target. It
represents the magnitude of the echo signal which returned

Fig. 2. Vector representation of the signal and phase change. There are
two different ways to express signal phase change, Δφk and Δθk .

from the target to the radar. It depends on the target’s size,
material and incident angle of the microwave.

III. PHASE ESTIMATION

As expressed in (3), the output signal phase change of the
microwave Doppler sensor is proportional to the change of
the distance between the target and the sensor. When the two
output signals VIF1 and VIF2 are plotted in a plane as Fig. 1,
the signal phase change is expressed as the rotation angle of
the output points around the DC offset. A half wave length
of distance change corresponds to one revolution as derived
from (3).

We calculate the rotation angle of the output as follows.
To begin with, we introduce vector representation of the
output and the DC offset, V , (V ≡ [VIF1, VIF2]T ), O,
(O ≡ [OIF1, OIF2]T ). The phase change in a certain
period is obtained by accumulating the phase change between
samples. The methods to calculate the phase change between
samples are divided into two broad categories. The one
uses the angle between two consecutive difference vector
(Vk+1 −Vk) and (Vk −Vk−1), which is depicted as Δθk in
Fig. 2. The merit to use the difference vector is that there is
no need for estimating the DC offset. On the negative side,
it is vulnerable to noise. Thereafter, DIFF represents this
method. The other uses the rotation angle of E, a vector
from O to V . This angle is depicted as Δφk in Fig. 2. The
angle between two adjacent sample vectors is computed by

Δφk = arctan
(

Ek × Ek−1

Ek · Ek−1

)
. (7)

Then the angles are accumulated for the period as,

φ =
n∑

k=0

Δφk, (8)

where n is the number of samples contained within the
period. These calculations, (7) and (8), are same for the angle
between two difference vector in DIFF.

To calculate Δφk as above, we have to estimate the
DC offset O. Since the DC offset fluctuates with several
factors such as oscillator power and environmental reflecting
condition, the estimation needs to be updated occasionally.
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The average over a number of samples is a simple estimate
of DC offset in unknown signal. Here we represents this
method in capitals, MEAN. However the mean of the output
does not correspond to the DC offset when the distance
change between the target and the sensor is less than half
wave length and the output moves on only a part of the
circle. Moreover, if the target stops, samples which have
the value at the stop point are obtained more than other
points. Consequently, this point is weighted more. Thus, it is
considered that MEAN works when the target largely moves
but is not suited for slow and minute movement. One more
simple approach for estimation of DC offset is linear least
squares. This method is derived as follows. First, equalize
the amplitudes of the two outputs by multiplying VIF2 by
AIF1/AIF2. Since the ratio AIF1/AIF2 is constant, it can
be obtained in advance from calibration data which has a
good signal to noise ratio. We prepared the calibration data
by moving metallic reflection board in front of the sensor.
From now on, the output VIF2 is assumed to be after this
correction so both of the signal amplitudes are described by
one variance A, as AIF1 = AIF2 = A. Next, we estimate
the signal offset O on the following two assumption.

• The offset O is constant in a brief period.
• The distance between the offset O and the output V is

constant in this period.
The offset O is calculated from successive N samples. The
lengths between offset and all of N outputs are equal to
signal amplitude A,

‖Vi − O‖ = A, (9)

where i = 1, · · · , N . Then we obtain following by squaring
both sides of (9),

‖Vi‖2 − 2V T
i O + ‖O‖2 = A2. (10)

Subtract two different time samples of (10) and remove
quadratic unknown terms, A2 and ‖O‖2,

2 (Vi − Vj)
T

O = ‖Vi‖2 − ‖Vj‖2 (i �= j). (11)

The vector O contains two unknown variables. Thus, if we
obtain greater than or equal to two sets of linear equation (11)
with more than two samples, O can be estimated by least
squares. From here on, we use LS to refer this method. The
number of samples N is decided with consideration for the
following two conditions. The one is that it has to be small
enough to fulfill the assumption that the offset is constant.
The other is that the time in which the samples are collected
needs to be longer than one cycle of respiration, so that the
length of the arc which is formed by the samples is long
enough to estimate the center of the circle correctly. The
signal amplitude A depends on the relative position and pose
between the sensor and the target according to radar equation
(6). Therefore the assumption described by (9) is not true
when the target is moving around or changing his/her pose.
It is anticipated that LS does not work well when the target
dynamically moves.

IV. STATE DETECTION

The observed microwave Doppler sensor signal is classi-
fied into following three states.

move The target is changing his/her position or pose.
resp. The target sits still and is breathing.
hold The target sits still and holds his/her breath.

Three binary classifiers are prepared to detect these three
states. Some features are extracted from signal in a certain
span and then input to the classifiers.

A. Feature Extraction

The features are extracted from the samples in a window
whose size is Nw samples and which is slid in a step size
Nstep samples. Therefore the feature vector is generated
at Fs/NstepHz, where Fs is the sampling frequency of
the sensor signal. The samples in a window is processed
as follows. First subtract the mean of the samples in the
window. Then the Fast Fourier Transform (FFT) is performed
to obtain spectral features. The first feature signal energy e
is calculated as,

e =
Ns∑

n=2

pn, (12)

where pn is power spectral density (PSD), Ns is number of
FFT bins. Next feature, Frequency-domain entropy [9] H is
calculated as,

H = −
Ns∑
n=2

pn

e
log2

(pn

e

)
. (13)

A peak in spectrum results in low entropy, which means
samples contain large monotone signal. Finally, the feature of
wave shape is extracted by histogram. The interval between
the maximum and the minimum of the samples is divided
equally into Nb bins. Therefore the size and the position of
bins vary from a window to another window.

In Fig. 3 we give an example of raw signal which contains
all three states. The data are sampled at 1kHz. Then from
each three state, window size Nw (=4096) of samples are
clipped and processed as explained above. This is illustrated
in Fig. 4. The energy and entropy features of the samples in
Fig. 4 are also listed in table I. The spectrum of resp. has
a high peak in low frequency, so resp. has low frequency-
domain entropy. While in move, the spectrum peak is not
so sharp as in resp. because the velocity of the target’s
movement is not constant. The energy feature is expected to
be useful for discerning the nonexistence of motion signal.
In fact, the energy of hold is obviously smaller than the other
two. However, the energy of move is not always bigger than
that of resp. because signal strength largely depends on the
relative position and pose between the target and the sensor
as described in radar equation (6). The signal wave shape
is reflected in the histogram feature. The histogram feature
is prone to be monomodal when the signal contains high
frequency Doppler signal or has high noise ratio (low S/N).
Thus histogram of move and hold are monomodal in Fig. 4.
While low frequency signal has various shape of histogram
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Fig. 3. An example of raw signal which contains all three states, move, resp. and hold

Fig. 4. Clipped raw signals (DC component was removed) and PSDs and histograms in three windows. The target moves in the top row, sits still and
respires in the middle row and sits still and holds the breath in the bottom row. PSDs are marked with ’×’ to distinguish them from x-axis and y-axis.

TABLE I
SIGNAL ENERGY AND FREQUENCY-DOMAIN ENTROPY OF EACH STATE

IN FIG. 4

move resp. hold
energy 0.056 0.023 0.0015
entropy 7.0 2.5 5.0

according to initial phase difference or magnitude of distance
change. Especially, since the surface movement of the body
involved with respiration stops short between expiration
and inspiration and between inspiration and expiration, the
samples are accumulate at those two points. Therefore the
histogram is likely to be bimodal.

V. EXPERIMENT

A. Setup and protocol

1) hardware: The microwave Doppler sensor is
NJR4261JB0916 (24.11GHz) manufactured by New Japan
Radio Co., Ltd. As described in (1) and (2), the sensor

signal is summation of Doppler signal which is some tens
of millivolts and DC offset which is hundreds of millivolts.
Therefore, we need to cut the DC offset before amplifying
the Doppler signal. High pass filters do not work because
the respiration signal has very low frequency and, in
addition, it takes different constant values when the target
holds his/her breath after inhaling and after exhaling. Then,
we amplified the difference between the sensor output and
a constant signal which has roughly same voltage level
as the sensor output with an instrumentation amplifier.
The constant signal was produced by a voltage divider.
The amplified signal is converted into digital form with
sampling frequency of 1kHz with NI 6036E which has
16bit differential analog input. The sensor was placed at the
height of sitting human’s chest, 0.85 meter.

The reference motion and respiration signal was obtained
by optical motion capture system OptiTrack manufactured
by NaturalPoint. The markers were attached both at the
microwave Doppler sensor and at the chest of the subject as
depicted in Fig.5. The subjects wore an elastic band around
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Fig. 5. The sensor and the markers

Fig. 6. Left: the trajectory of the target in the motion measurement test.
Right: the range between the target and the sensor. Both are obtained by
the motion capture.

their chests and six markers were attached on the band. The
markers are plastic spheres 16mm in diameter. Their effect
on microwave Doppler sensor is negligible in comparison
with that of human body surface. Cameras of motion capture
were attached at the four corners of the ceiling and at four
middle points of each adjacent corners. The dimensions of
the room were 5.0 m × 5.0 m × 2.4 m (L × W × H). The
horizontal capture area was about a square 2.5 m on a side
at the height of the chest of the target sitting on a chair. The
positions of the markers are sampled at 10Hz.

2) phase estimation: The phase estimation methods and
their parameters were examined to study which is more
suited for motion measurement and which is fit for respi-
ration sensing.

First, motion measurement test was done by following
way. The subject walked back and forth in front of the
sensor in the distance from 0.5 meter to 2.0 meter for 7
rounds in various speed. The trajectory of the target and the
range between the target and the sensor in this experiment
are shown in Fig. 6. Then the phase was calculated by
three methods, MEAN, LS and DIFF. The phase data were
linearly interpolated at the sampling time of motion capture
data. Then the velocity of the target was calculated both by
phase data and motion capture data at the time of motion
capture sampling point. The error was calculated as the mean
of absolute difference between the velocity measured with
microwave Doppler sensor and that obtained from motion
capture data. Based on this error, the performance of the
phase estimation methods were compared.

Second, data for respiration measurement was obtained as
follows. The subject sat still in front of the sensor at the
1.0 to 1.2 meter distance. The subject changed his direction

Fig. 7. Respiration measurement was done in eight different directions.
The direction of the subject, α, was changed from -135 degree to 180 degree
in 45 degree step.

TABLE II
THE BODY HEIGHTS AND WEIGHTS OF THE SUBJECTS

subject1 subject2 subject3 subject4
height [m] 1.73 1.65 1.70 1.77
weight [kg] 62 51 57 65

from -135 degree to 180 degree in 45 degree step, where
facing to the sensor was 0 degree as shown in Fig. 7.
In each pose, subject breathed for about one minute. The
data of middle 40 seconds were used for the test. The
obtained microwave data were downsampled from 1kHz to
100Hz and low pass filtered with 20Hz cutoff frequency.
The reference data were the distance between the sensor and
the marker nearest to the sensor of the six markers attached
to the subject. The sample point of motion capture and
microwave was synchronized by interpolation in the same
manner as for the motion measurement test. Based on the
correlation coefficient between the reference range change
and the estimated phase change, the performance of the phase
estimation methods are compared.

3) state detection: In this experiment, four subjects vol-
unteered. All are males and range in age from 23 to 29. The
body heights and weights of the subjects are described in
Table II. Three chairs are arranged in front of the sensor as
illustrated in Fig.8. The subjects sat on the each three chairs
sequentially as following protocol.

i = j = 1;
WHILE j < 5
Sit still on the chair(i) facing direction(j).
Breathe about 8 to 10 cycle.
Hold breath for about 10 seconds.
Breathe about 8 to 10 cycle.
IF i == 3 THEN i = 1, j = j + 1
ELSE i = i + 1
ENDIF
Move to chair(i).
ENDWHILE

where direction(j) (j = 1, · · · , 4) are four directions
depicted by arrows in Fig. 8. The subjects moved between
three positions four rounds.

The obtained raw data were processed into dataset. First
the motion capture data were labeled as move, resp. and hold
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Fig. 8. The sensor and the target position of detection experiment.

by following way.
hold more than five seconds period in which the mag-

nitude of movement of the markers attached to the
subject is less than 0.003 meter

resp. more than ten seconds period other than hold in
which the magnitude of movement of the markers
attached to the subject is less than 0.025 meter

move other period
After this labeling, we modified obviously wrong labels by
hand, referring to the protocol. The parameters in feature
extraction were, window size: Nw = 4096, step size:
Nstep = 1000, number of bins: Nbin = 10. In total 3394
samples were prepared, 447 move, 2266 resp. and 681 hold.

Following three kinds of binary classifiers were tested.
• Simple linear least-squares classifier (LS).
• Support Vector Machine (SVM).
• AdaBoost classifier

We used libSVM by Chang et al. [10] for computation of
SVM and GML AdaBoost Toolbox by A. Vezhnevets[11]
for AdaBoost training. We chose decision stump for weak
learner of AdaBoost.

To evaluate the performance of each detector, four-fold
cross validation test was done. The data were divided into
four sets in two different ways. One is dividing data by
rounds, in which both training and test data contains data
of all the subjects. The other is dividing data by subjects.
Therefore training data do not contain the data which belong
to the subject of test data.

B. Result

1) phase estimation: As shown in table III, MEAN
showed the best performance of the three methods for motion
measurement. It is suited for the high frequency signal. In
using the method MEAN or LS, the window size need to
be decided properly. We searched the proper size by testing
window size from 10 to 1,000 samples with 10 samples
increments in between, as shown in Fig.9-C. Both MEAN
and LS showed best performance at window size of 30
samples.

In respiration measurement, we cannot see the respiration
wave by DIFF because error larger than respiration signal
is accumulated as shown in the top figure of Fig. 12. Thus
MEAN and LS are compared. Window size test was also

TABLE III
ERROR IN MOTION ESTIMATION

MEAN LS DIFF
error [m/s] 0.10 0.11 0.14

Fig. 9. Phase estimation result in move. A and D: raw signals and estimated
dc offset (MEAN Nw = 30). B: Estimated phase (MEAN, LS and DIFF.
Window sizes of MEAN and LS are both 30 samples.) and reference are
compared. C: Window size test

done in respiration monitoring. As seen from Fig. 10, four
seconds window size is suited for respiration sensing. This
length, four seconds, is close to the respiration period. LS
is little better than MEAN, especially in the case that there
is large angle between the sensor direction and the subject
direction.

As an example, the signals, the estimation and the evalu-
ation of the respiration measurement in which the direction
of the target was 45 degree are shown in Fig. 11 and Fig.
12. The raw signals and offset estimation are shown in Fig.
11. These indicate the necessity of occasional update for the
DC offset estimation. The range between the sensor and the
human chest surface and its derivative, that is to say velocity,
were calculated from the signals in Fig. 11. They are shown
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Fig. 10. The effect of the window size on respiration measurement. The
measurement performance was evaluated according to correlation coefficient
between the reference and the estimated phase change.

Fig. 11. An example of raw signals of the microwave Doppler sensor
and the estimation of their DC offsets in respiration measurement. The DC
offsets are estimated by LS whose window size is four second.

in Fig. 12. Since we cannot measure the absolute range with
a microwave Doppler sensor, the estimated ranges at 100
second are conformed to the reference for the facility of
comparing their wave shapes with that of the reference.

The results of these two experiments show that the appro-
priate sampling frequency, algorithm, and window size for
the measurement of the motion and the respiration are totally
different.

2) state detection: The receiver operating characteristic
(ROC) curves of each detector were obtained by testing
their performance with different thresholds. The results are
shown in Fig. 13, where PD is probability of detection
and PFA is probability of false alarm. The performance
difference between classification methods are little. Motion
detection was done well and detecting hold was poor in

Fig. 12. Top: respiration wave shape estimated from the signals in Fig.
11 compared with reference. Middle: estimated velocity compared with
reference velocity. Bottom: correlation between estimated velocity (LS) and
reference velocity.

all classifiers. The performance tested by cross validation
whose data division was done by subjects is not worse than
that tested by round based division. This means that the
state detection does not depend on the individual target. The
parameters can be configured at the factory.

The effects of each feature on detection were tested by
changing the features which were used for the detection. The
classifier was AdaBoost and the data were divided by round.
The results are shown in Fig. 14. The energy is important
for the detection of move while the entropy is useful for the
detection of resp. All detectors work best when all the three
kinds of features are used.

VI. CONCLUSION

We studied two topics in this paper, phase estimation and
state detection of the output signal of a microwave Doppler
sensor. To calculate the signal phase, DC offset of the signal
needs to be estimated in advance. The proper method for
offset and phase estimation is different for the velocity and
magnitude of the target motion. We proposed three methods,
DIFF, LS and MEAN. Result of our experiment showed that,
in the proposed three methods, the simple average of the
samples, MEAN, was the best of the three when the target
is walking. The linear least squares estimation, LS, was the
best in sensing the respiration of the target at rest. The proper
window size was 30 samples at 1kHz for movement measure-
ment and 400 samples at 100Hz for respiration measurement.
In the detection problem, three states move, resp. and hold
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Fig. 13. ROC curve of move, resp. and hold detector. Detection test was
done with four-fold cross validation. Data were divided by subjects (first
row) or by rounds (second row).

Fig. 14. The effects of each feature on detection. The characters in legends
denote the features which are used for the detection, where ’e’: energy, ’H’:
entropy, ’h’: histograms.

were detected by three binary classifiers prepared for each
state. For input of the classifiers, the energy, frequency-
domain entropy, and histogram features were extracted from
raw signal. We tested three methods, least squares, SVM
and AdaBoost for binary classification. The result of the
experiment showed that there is no significant difference
between the performance of classification methods. Cross
validation was done by two different ways of data division.
One is dividing the data by the rounds of data acquisition
protocol. The other is dividing the data by the subjects. As a
result, the classifiers trained by other person’s data was not
inferior to those trained by data which contain the target’s
own data.

There are some problems to be solved in the future work.
In this paper, all experiments and evaluation are done under
the assumption that the target exists in the detection and
measurement area of the sensor. However, it is important
to decide whether the target is in the area or not from

Fig. 15. An example of state detection. Signals of one subject are tested by
classifier trained by data of the other three subjects. The AdaBoost classifier
is used.

the observed signal and time series of the detection result.
The signal strength depends on the relative position and
pose between the target and the sensor. This dependency
of measurability on the position and pose has not yet been
defined.
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