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Abstract— The ability to recognize objects and to localize
them precisely is essential in all service robotic applications.
One of the main challenges for service robots during operation
lies in the handling of unavoidable uncertainties which originate
from model and sensor inaccuracies and are characteristic for
realistic application scenarios. Robustness under real world con-
ditions can only be achieved when the dominant uncertainties
are explicitly represented and purposefully managed by the
robot’s control system. We therefore adopt a probabilistic ap-
proach in which environment perception over time is regarded
as a sequential estimation process and follow a Bayesian filtering

methodology. Under these assumptions probabilistic models of
the robot’s perception systems play a decisive role.

In this paper we describe our object localization system
which is based on local features and uses 3D models that are
created in an off-line modeling process. A probabilistic model
of the errors, which occur in the 6D localization based on
local features, is directly derived from the pose reconstruction
procedure. Experimental results from an household scenario
illustrate the effectiveness of our approach.

I. INTRODUCTION

Precise object localization in all six cartesian dimensions

is essential to all service robotic scenarios in which the robot

interacts with and purposefully manipulates the environment.

Because of the significant uncertainties, which cannot be

avoided in realistic application scenarios, we expect that

isolated sensor measurements rarely provide information pre-

cise enough for e.g. grasping an object in a cluttered scene.

We therefore regard perception as a sequential estimation

process and follow a Bayesian filtering methodology to fuse

multiple sensor readings over time. Equation (1) describes

the recursive estimation of the belief Bel(xt) at time t
over the world state xt, zt denotes the system’s sensor

measurements and ut represents the system’s actions that

modify the overall world state xt (here η is a normalization

constant to be chosen so, that the resulting belief distribution

integrates to 1).

Bel(xt) = η p(zt|xt)

∫

p(xt|ut, xt−1)Bel(xt−1)dxt−1

(1)

In this paper we present the details of the sensor model

p(zt|xt) used in this filtering process along with the detection

methodology which allows for accurate 6D object pose esti-

mation. We use Lowe’s SIFT algorithm [1] for determining

local, scale-invariant features in images. The application of

the SIFT algorithm on both left and right images from a

calibrated stereo camera with consecutive matching of the
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Fig. 1. A precise model of the errors that occur during 6D object
localization is essential for many robotic tasks.

detected feature points from both images allows for the

reconstruction of 6D object poses. Our appearance- and

model-based approach consists of two separate stages: Model

generation and Object recognition and pose estimation.

Model generation is an off-line process, where the object

database is generated by extracting the essential information

from training data. Object pose estimation at run-time is

based on matching local features extracted from the current

camera images with features from the object database. Based

on the statistics of the matched features our system computes

probability densities over object poses. The 6D pose is

described by 3 translational and 3 rotational components and

is formulated in the continuous domain.

The robust and accurate object recognition system pre-

sented here has been developed for the anthropomorphic

service robot shown in figure 1. It is the basis for various

other research in the area of object manipulation [2][3],

perception planning [4] and physical object dependency

analysis [5].

The remainder of the paper is organized as follows: Sec-

tion II outlines current state of the art approaches to model-

based object recognition, model generation and probabilistic

models for stereo vision. In Section III our model generation

procedure and the method for object 6D pose estimation will

be described. Section IV explains the probabilistic sensor
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model which is required for multi view fusion. Finally, in

Section V, we report on experiments which demonstrate the

proposed theoretical concepts on real data.

II. RELATED WORK

Object recognition and localization has attracted interest

of the scientific community for a long time. Early attempts

restricted the pose dimension to one [6] or three [7][8].

Point correspondence from wire-frame model corners were

used by Kragic [9] to find full 6D poses using a mono

camera and POSIT [10]. This particular approach is restricted

to objects that can be modeled by wire frames, but the

underlying concept could be generalized by using interest

points like SIFT [11] or SURF [12] that can be found

numerously on textured objects.

All approaches to 6D pose estimation that use interest

points belong to the class of model based recognition meth-

ods and therefore need a method to create the required

models.

Gordan and Lowe [13] proposed a system that constructs

3D model of sift features from arbitrary object images

using bundle adjustment off-line and determines the 6D

pose through the use of RANSAC [14] and the Levenberg-

Marquardt algorithm.

Azad et. al. presented a method stereo vision based [15] for

full 6D pose retrieval of textured objects using classic SIFT

interest points. The method requires the objects to possess

flat surfaces for the stereo recognition and no empirical

evaluation of the accuracy of the pose is given.

Recently Collet et al. presented an object localization sys-

tem [16] using a monocular camera, based on SIFT features,

which uses RANSAC and mean shift clustering to generate

object pose hypotheses. They also describe an almost fully

automatic process for the model generation and give some

experiments with four objects where measured poses are

evaluated against ground truth. The error is described by two

histograms over the translational and rotational error.

Our localization approach is mostly comparable to the

method of [16], using a comparable 3D model which is

not restricted in the shape and is also based on SIFT

features. Through the use of stereo image pairs and thus

conceptually different methods for the pose determination a

higher accuracy in pose measurement is achieved.

None of these localization methods have proposed a model

to describe the pose errors that occur.

Cordes et. al. [17] have proposed a probabilistic model

for 3D points which are constructed using a calibrated

stereo triangulation set-up and use an improved Canny edge

detector to find correspondences. In their approach, a model

of the interest points is not available and therefore model

uncertainties are not taken into account.

III. STEREO SIFT 6D POSE DETERMINATION

Robotic manipulation in realistic scenes imposes high

demands on the precision of 6D object localization, since

objects will in general be close to each other, without large

clearance between them.

For this reason we chose to use a stereo-based approach,

which for obvious geometric reasons can be expected to

deliver superior pose accuracy compared to monocular ap-

proaches [18].

In this section we first describe the model generation

process and the measurement of the 6D pose using local

features.

A. Model Generation

Model generation aims at the acquisition of training data

and its processing to generate object class models. It is

essential to filter significant data and efficiently store it to

enable reasonable processing times. The KIT object model-

ing center IOMOS [19] is used to acquire stereo images and

corresponding camera poses.

The build process starts with computing the sift interest

points (IPs) for each image and calculates 3D points by

triangulation of IPs in each stereo image. Then matches

over all images are determined and equivalence classes from

these matching IPs found. At last each equivalence class is

represented by one descriptor and one 3D location. All these

equivalence class representatives together build up the model.

In detail the process comprises the following steps:

1) SIFT interest points calculation

The SIFT interest points of each image form the

base for the process. Each SIFT interest point si =
(u, v, s, o, d) consists of the 2D location (u, v) in the

image, its scale s and its orientation o. The 128 di-

mensional descriptor is denoted by d. For each training

image the set of interest points in the left camera image

Sl with Sl = {s1
l , ...s

n
l } is determined. The interest

point set Sr for the right camera image is acquired

respectively.

2) Triangulation

3D points are computed for corresponding IP’s in the

left and right images. For every IP in a left image Vl we

compute the epipolar line Le in the right image Vr and

determine the subset Se
r ⊂ {si ∈ Sr|dist(si, Le) <

εE} with εE as the maximum epipolar distance. Then,

sift descriptor matching is performed. It is important

to do the epipolar examination before the sift matching

step. This way the set of possible matches is con-

strained to a region in the image. IPs with similar

descriptors from other parts are not considered and

cannot distort the result. For each matched IP pair

(si
l , s

j
r) the corresponding 3D location and orientation

are computed using triangulation [20] and transformed

into the objects coordinate system to get the spatial

feature representation:

s# = (x, y, z, x′, y′, z′, s, o, d). (2)

The first three elements x,y and z denote the transla-

tional coordinates, x′,y′ and z′ represent the direction

from where the interest point is visible. Scale s, ori-

entation o and descriptor d are equal to the parameters

of the 2D interest point.

3) Equivalence Relation
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The next step aims at partitioning this set of 3D points

into subsets originating from the same physical point.

This equivalence relation is seeded from IPs with

fitting appearance and location and is completed by

the transitive closure.

First candidates are found by appearance. The enor-

mous amount of data with on average 850 3D locations

for each training view, 280000 for each object, can

be handled efficiently by means of a kd-tree. Using

Euclidean distance in the sift descriptor space the

nearest nN - neighbors in the kd-tree are searched

for each si
#. nN depends on the sampling rate of

the training data as sift descriptors are only invariant

within a limited angular range and each face of the

object is only seen from a certain range of camera

positions. It was set to 150 in our case.

Then the candidates are checked for their spacial fit by

calculating the Euclidean distance in the image. If this

distance, which resembles the expected reprojection

error, exceeds a threshold the candidate is rejected. In

rare cases it happens that two IP’s from the same view

are in one equivalence class. These IP’s are removed.

A standard connected component algorithm is used to

compute the transitive closure.

4) Subdivision and Representatives

We then seek a simple representation for each equiv-

alence class above a minimal size vmin. Very small

classes (eg. vmin=4) are discarded to suppress IPs of

low value for the recognition process and noise.

When evaluating classes one finds the locations clus-

tering well, but descriptors to spread considerably.

This is not surprising since we do see most points

from a wide angle range were the sift descriptor

cannot be assumed to be invariant. Instead of more

complex density models we favor a very simple rep-

resentative, which is a simple mean for location and

normalized mean for descriptor. To make this simple

model suitable we sacrifice the simple relation, where

one class corresponds to one physical point, and split

classes with k-means until they can be represented as

spheres. This considerably simplifies and speeds up the

recognition process.

The full model for one object needs about 5% of storage

of the initial sift features. This enables fast recognition since

big databases can be held in RAM completely.

B. 6D Object Localization

The 6D localization process consists of the following

steps:

1) Extract IPs and compute SIFT feature vectors.

For each of the stereo images Vl and Vr a correspond-

ing set of interest points is calculated Sl = {s1
l , ..., s

n
l }

and Sr = {s1
r, ..., s

m
r }.

2) Find correspondence to object models (Fig. 2).

For all elements si
l ∈ Sl we search up to pmm multiple

matches ck = {i, j} with a 3D feature from the model

database sj
# ∈ M . The criterion for a match is that

the Euclidean distance in descriptor space is below an

absolute threshold ptm = 0.3.

To speed up the search for matches, the descriptors

from the database M are structured in a kd-tree using

the ANN library. To increase the performance, the

nearest neighbor search is approximated.

Fig. 2. Recognition principle: finding matches between interest points
s# ∈ M from given models and interest points detected in one image
s ∈ Sl (step 2) .

3) Stereo reconstruction of 3D interest point locations

For all matchings ck = {i, j}, we try to find multiple

corresponding interest points sh
r ∈ Sr on the right

interest point set Sr. The epipolar constraint is used

in the same manner as described in Section III-A, but

after the epipolar spatial restriction, a relative multi

match is used. This has to be done to account for the

classic situation where multiple instances of the same

object class are placed side by side on a board, leading

to multiple similar features on the epipolar line Le.

After this procedure we obtain a set of l 3D sift points

S# =
{

s1
#, ..., sl

#

}

by triangulation.

4) Clustering

To account for scenes with large numbers of identical

objects and to deal with the high number of erroneous

3D sift features, we construct initial pose estimates

P =
{

p1, ..., pn
}

from St
#. This is done by randomly

choosing non collinear triplets of 3D interest points

from S# and check whether their mutual Euclidean

distances match those in the model database.

Within the 6D space of the initial pose estimates P ,

qt-clustering [21] is performed to find consistent 6D

pose estimates. The clusters c consist of 6D poses pi

each of which corresponds to a triplet of 3D interest

points. That way each cluster describes a set of 3D

interest points Sc
# ⊂ S#.
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Fig. 3. Contour plot (bird’s eye view) of the sensor model p(z|x) as a
function of x (2D state without rotation) for a single feature point detected
in both images. L and R are the two camera coordinate systems.

The resulting 3D interest points from each cluster c form

a specific, spatially consistent object pose hypotheses. A 6D

pose estimate could be computed by e.g. a least squares fit of

the cluster point cloud Sc
# to the corresponding 3D database

sifts M c ∈ M (Fig. 2). The 2D interest points that were

used to generate the matched 3D interest points Sc
# and the

database points M c form the input data for the probabilistic

sensor model described in Section IV.

IV. PROBABILISTIC SENSOR MODEL

As already pointed out in Section I, the sensor model

p(zt|xt) plays an important role in the sequential estimation

process that models our system’s perceptual activity1. It is

the basis for the fusion of sensor readings over time into a

consistent model of the robot’s environment.

Assuming correct correspondences between image and

model interest points, as provided by the method described in

section III-B, the dominant sources of pose estimation errors

are the localization of the interest points in both images

and the uncertainty of the 3D interest points in the model

database.

For an arbitrary object pose hypothesis x in 6D camera

coordinates CV the projected image coordinates sVn
in the

image V ∈ Vl ∪ Vr can be computed assuming a standard

pin hole camera model hp(f, TCV
(x), M c

n) as

s′Vn
=





s′Vx

s′Vy

s′Vz



 =





f 0 0 0
0 f 0 0
0 0 1 0



TCV
(x)M c

n (3)

sVn
=

[

un

vn

]

=





s′

Vx

s′

Vz

s′

Vy

s′

Vz



 = hp(f, TCV
(x), M c

n)(4)

Here f is the focal length of the camera and TCV
is the ho-

mogeneous transformation from object to camera coordinates

of the left and right images. For the set of N interest point

correspondences {Sc
#n, M c

n}, n ∈ [1, N ] and an arbitrary

1While in general the world state comprises the poses of several objects,
we consider only a single object in this section, and use x to refer to its 6D
pose vector, also leaving out the temporal index t for notational simplicity.

Fig. 4. Comparison of synthetic sensor model results for two objects of
different width, represented each by two 3D feature points. Both objects
are at the same distance from the stereo camera system. The upper plots
show simulated camera images, the lower plots show the measurement
uncertainties for both situations. Here we plot p(z|x) as a function of
x in the distance vs. vertical rotation space. As expected, the rotational
component of the smaller object’s pose-estimate has a significantly higher
uncertainty.

object pose hypothesis x in 6D camera coordinates we

compute the observation density p(z|x) assuming a mutually

uncorrelated detection of the interest points sln and srn
.

p(z|x) =

N
∏

1

p(sln |x)p(srn
|x) (5)

We assume the location uncertainty of the 3D model

database points M c
n to be Gaussian with a covariance Σn

M

and the detection of the interest point locations sVn
also to

be affected by Gaussian error with a covariance Σn
s . Σn

M is

determined during step 4 of the model generation process,

see Section III-A. Σn
s has been empirically determined. We

linearize the camera model to project the Gaussian model

error Σn
M at the interest point location M c

n into the image

planes of the two cameras. Under these assumptions sVn
is

approximately normally distributed according to

p(sVn
|x) = N (hp(f, TCV

(x), M c
n), Σn

s + Jhp
Σn

MJT
hp

)(6)

Jhp
= ∂hp(x)/∂M c

n (7)

where Jhp
is the Jacobian of the perspective projection (4)

with respect to the 3D interest point locations M c
n. This

is used in (5). Figure 3 illustrates the result for a simple

synthetic example.

The sensor model captures the dominant uncertainties

of the pose reconstruction process based on local point

features. Especially the effect of the geometric configuration

of the detected 3D feature points on the estimated object

orientation is correctly covered as shown in Fig. 4 using

a synthetic example. Narrowly spaced feature points lead

to significantly increased angular uncertainty in the pose

estimate, compared to spatially wider distributed feature

points. Narrow or partially occluded objects frequently cause

such problems in our household scenarios (see Fig. 1) leading

to significant pose-estimation errors in reality. If such uncer-

tainties are correctly represented, they can be compensated

by performing additional sensor measurements [4] in order

to reach the precision required e.g. for grasping objects in

cluttered scenes.
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(a)

(b)

(c)

Fig. 5. Stereo images of one scene with different sets of sift points (red
crosses) plotted in. (a): 3 stereo interest points are used. (b): 18 stereo
interest points are used. (c): 90 stereo interest points.

V. EXPERIMENTAL RESULTS

The vision system on our experimental robot (Fig.1)

consists of two AVT Pike F-145C cameras with a resolution

of 1388 × 1038 pixels each, equipped with 8.5mm lenses

and mounted with a disparity of roughly 0.12m. Precise

intrinsic and stereo calibration of the cameras is essential for

our algorithms, so they were carried out with the Camera

Calibration Toolbox for MATLAB, using about 60 stereo

image pairs of a custom made highly planar checker board

calibration pattern.

To use the probabilistic model within this stereo appli-

cation we determine the two covariances Σn
M and Σn

s that

parameterize our measurement model p(z|x): We assume

that the probability distribution is the same for all 3D interest

points in the model, and we compute ΣM from 18743 interest

points clusters that form the complete model of one of our

test objects. The Gaussian error in the SIFT feature point

localization Σs is set to have a standard deviation of 0.25
pixel in both directions and was empirically determined.

To show the influence of different numbers and spatial

constellations of interest points on the estimated pose distri-

bution we chose to use the same scene three times (Fig. 5)

and artificially varied the number of interest points used for

estimating the object pose. Since only the number and spatial

distribution of the selected features was varied, whereas the

images were identical, this allows for a direct comparison of

the results.

Fig. 6. Samples, drawn from p(z|x) for all three sets of interest points. It
is clearly visible, that the pose estimation accuracy increases with a growing
number of interest points used and their wider spatial distribution.

We chose three different sets of interest points: the first

consisting of only 3 stereo points that lie in a very small

area (Fig. 5a), the second consists of 18 stereo points still

covering a limited spatial region of the object (Fig. 5b). The

third set consists of 90 interest points that are spread over

the whole surface of the object (Fig. 5c).

In Fig. 6 the resulting measurement model p(z|x) for all

three situations is visualized by drawing samples from the

model and plotting the corresponding bounding box of the

object for each of the samples into the image.

The results show object pose distributions as expected,

the more restricted the number and the area of the interest

points is, the higher is the pose uncertainty. The second

example shows, as a consequence of the uncertainty which

is caused by the locality of the interest points in the lower

area of the object, that the estimated orientation error in this

situation is still significant, which is clearly visible in Fig. 6

(center). In contrast, the rather wide spread of the feature

points across all of the object in the third example leads to

a very precise localization of the object as indicated by the

peaked distribution of the object pose estimate.

Figure 6 displays, how the sensor model captures the ac-

tual pose measurement uncertainty when artificially varying

the number and spatial distribution of the interest points

available for pose estimation. In contrast, Fig. 7 shows a

realistic result for a complex scene with several, partially

occluded objects.

The measurement uncertainty visualized by the overlaid

object bounding boxes – each of which corresponds to a

single sample drawn from the measurement model – varies

across object instances as a consequence of the number of

detected interest points available for matching. For some

objects, overexposure prohibits the detection of most interest

points and therefore greatly increases the pose estimation

uncertainty, which is correctly captured by the measurement

model presented in this paper. On the contrary, those objects

with proper exposure like the salt box in the image center,

where many interest points were detected and successfully

matched to the object model, allow for rather precise pose

estimates. While in in case of the scene in Fig. 7 the limited

image quality resulted in higher uncertainty, similar effects

will be caused by occlusions as well as larger object-camera

distances both confining the detection of the feature points

needed for pose estimation.
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Fig. 7. A complex scene composed of several household objects in various configurations. In the left image samples drawn from the observation model
p(z|x) were overlaid onto the source image (colors indicate object class IDs; not relevant here).

VI. SUMMARY

Interest point based methods have become widely used in

the field of 6D object localization. In general, their accuracy

is high, however it varies strongly with the number and

spatial distribution of the interest points used for pose recon-

struction. Under realistic assumptions for actual applications

this can and will be an issue for real systems, due to varying

environmental conditions influencing sensor measurements

and other real-world effects, like e.g. occlusions in cluttered

scenes.

Our work aims at an overall perception architecture ex-

plicitly representing the actual uncertainties in a probabilis-

tic framework. This enables a task-oriented assessment of

the quality of the available knowledge and allows for the

active refinement of the system’s belief state over time [4].

Sensor models accurately modeling the actual measurement

uncertainty are key in this context.

We presented such a measurement model for interest

point based pose estimation, that explicitly models the actual

sources of error. We used Gaussian models for the error in

the 2D interest point localization as well as in the 3D models

of the objects which are known to the system.
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