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Abstract— A robust 2-D vehicle-positioning system based
on constraint propagation on a data horizon is proposed.
Using asynchronous unreliable absolute positions and reliable
proprioceptive measurements, the proposed method outputs the
bounds of the pose at any desired rate. A bounded error
approach is used to propagate the imprecision of the input
data to the final pose estimation. Measurements are represented
by intervals taking errors into account. Integrity is assumed
on proprioceptive measurements error bounds. In opposition,
the bounds set on exteroceptive positions are not required to
be guaranteed. Indeed, a relaxed intersection of constraints
is applied to achieve robustness, given a maximum ratio of
erroneous positions. This approach is implemented for an
automotive vehicle equipped with a GPS receiver and a CAN
gateway. An real experimental validation is carried out with a
dataset including wrong GPS measurements and the crossing
of a tunnel.

Index Terms— localization, interval analysis, multi-sensor
fusion

I. INTRODUCTION

Robotic systems often use exteroceptive sensors to get
absolute position information. GPS or radio beacons [1] can
be used for this purpose. This absolute position information
is however not always available due to masking, and may
also suffer from aberrant measurements (multipath propaga-
tion, interferences, etc). Moreover, the sampling rate of those
absolute positioning sensors is often too slow for control
tasks, and attitude information is unavailable at slow speeds.
Proprioception is used to get relative motion information,
by the means of wheel speed encoders and inertial sensors
(gyrometers and accelerometers). Those sensors operate at a
high sampling rate, but an initial absolute pose is mandatory
to integrate the measurements in a dead-reckoning approach.
Furthermore, measurement errors accumulate at each inte-
gration step, which results in drift for long integration times.
Proper fusion between absolute and proprioceptive sensor
data enables to get high frequency absolute pose estimation,
by cancelling the integration drift of proprioceptive sensors.
Pose inaccuracy, which is a key information for a decision
task, also has to be estimated.

Recursive filtering has been the preferred solution for state
estimation for long time, mainly because of its very low
memory requirements: no need to keep track of previous
measurement or estimated states, only the current state is
stored since the state is an information vector which en-
ables one-step ahead prediction. This makes this estimation
scheme suitable for real-time implementation in low-memory
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embedded systems. Advances in technology have raised
the available memory and computing power of embedded
systems, enabling to keep more information in memory for
processing. This gives the means to buffer an history of past
measurements and inputs, and to handle trajectories.

Processing buffered inputs and measurements as several
advantages over the recursive filtering scheme:

• Out Of Sequence measurements (sensors latency and
asynchronous data) can be managed by adding data
at their acquisition date in the buffer, while it is very
cumbersome to add past information after an update of
a recursive filter.

• Multiple or persistent faults can be detected. Indeed,
while one-state memory can only predict the current
output, the buffered data can be exploited for several
epochs.

• Data association can be enhanced, like in the lazy
data association algorithm of [2] which allows revising
association in the past when a wrong association is
detected.

Several methods have been used to process buffered mea-
surements. A quadratic optimisation scheme can be used
to fit a trajectory to the data [3]. Multi-update filtering
[4] and fixed-lag filtering [5] allows taking into account
late measurements of high latency sensors even if other
measurements have been gathered in the meantime. Set-
inversion and constraint propagation methods on intervals
have also been used to provide guaranteed estimation using
bounded error state estimation [6], [7]. A guaranteed loosely-
coupled fusion over a data horizon method has been proposed
in [8], but it cannot handle the presence of outliers. In [9],
a robust set membership method is proposed to localize a
submarine with a buffer of unreliable sonar measurements.

Using a robust interval based solver, we compute the 2-D
pose of a vehicle given a finite history of absolute position
measurements and proprioceptive data. Our method handles
out-of-sequence measurements with a data horizon, and a q-
relaxed approach enables to deal with erroneous positions.
As long as the ratio of wrong position measurements in the
buffer is below a defined value, the computed poses can be
guaranteed.

The paper is organized as follows. After an overview
of the proposed pose estimation system and data horizon
management, interval analysis and robust set-inversion are
briefly introduced. Then, the system implementation is de-
scribed, with a simple vehicle model, a set-inversion method
to compute bounded-error GPS positions, and the robust
pose estimator based on a horizon of proprioceptive data
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and absolute positions. Finally, experimental results with real
GPS and odometry are presented.

II. PROBLEM STATEMENT

A. Pose estimation system overview

The proposed system computes the pose of a vehicle
equipped with an absolute position sensor and proprioceptive
sensors. It combines low sample rate position measurements
with high acquisition rate proprioceptive data, over a data
horizon (Fig. 1). Pose estimation has to be output at any de-
sired time. This problem is of general relevance in robotics:
the exteroceptive sensor can be any absolute system able to
compute a location (a GPS receiver, a camera, a radio system,
a lidar, etc.).

data horizon
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Fig. 1: Data horizon. Ticks on the trajectory represent pro-
prioceptive measurements, while circles represent position
measurements epochs. The boxes show the positions input to
the system. Notice an erroneous measurement at time tp3.

Fig. 2 shows an overview of the fusion system. A first
subsystem provides bounded-error absolute positions. It can
be the computation of a GPS position from raw pseudorange
measurements. Positions and proprioceptive data are then
merged using a robust algorithm based on interval analysis
and a buffer of past measurements and inputs. A data buffer
management algorithm supervises buffers filling, keeping
a reasonable buffer size and ensuring buffers hold enough
information to estimate the pose.

Data fusion

Buffer management

GPS positions 
buffer

Proprioceptive 
buffer

GPS receiver Proprioceptive 
sensors

GPS position 
computation

ρ

(x,y)

(v,ω)

pose (x,y,ψ)

Fig. 2: Data fusion system overview

Data is represented as intervals and boxes throughout the
system. This allows propagating errors in a guaranteed way,
from the measurements to the pose estimation. To model
inaccuracy, positions are represented as boxes which should
contain the true location with a given confidence level.

Measurements are represented by intervals to take noise into
account.

B. Data history buffers

To allow pose estimation based on a finite number of past
observations, two data history buffers are used:

• the list of absolute position observations boxes, contain-
ing o positions: Lp(t) = {p(tp1), . . . ,p(tpo)}

• the list of proprioceptive inputs boxes, contain-
ing n boxes: Lu(t) = {u(tu1 ), . . . ,u(tun)}, with
u(t) = (v(t),ω(t))T , v(t) and ω(t) denoting respec-
tively the linear speed and the angular speed of the
vehicle at the midpoint of the rear axle

Each record in the data history buffer is dated with its time
of acquisition, to allow variable acquisition rate processing.

Data history buffers are managed to keep a tractable size.
The growth of the list of position observations is limited.
When the size limit is reached, the oldest data is removed
to make room for incoming data. The list of proprioceptive
inputs is then cleaned from obsolete data related to the
position previously discarded.

Since the absolute positions buffer is of limited size,
adding new observation data implies forgetting older position
data. Adding every position to the observation buffer may
lead to heading estimation issues when the length of the
buffered trajectory is in the same order of magnitude as the
position boxes width. This problem arises when the vehicle
stops: the system starts to accumulate redundant position
observations, while discarding older parts of the trajectory
and thus loosing the constraint on heading.
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p(t)
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pm–1
p(t)
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add p(t) discard p(t) discard pm, add p(t)

Fig. 3: Data horizon management policy

To address this issue, observation buffer filling is based on
a spatial criterion (Fig. 3). If the new position box to be added
intersects the last position in the buffer, it is not added to the
buffer. This rule can however lead to the loss of informative
position information when the last position box is too large,
preventing any new smaller (thus more informative) box to be
added. To counteract this side-effect, the buffer filling policy
is complemented by a second rule: if the box to be added
is included in the last box of the buffer, and if it does not
intersect the penultimate box of the buffer, then the buffer’s
last box is replaced by the new box.
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III. INTERVAL ANALYSIS AND ROBUST SET INVERSION

A. Interval analysis

Interval analysis [10] involves intervals and their multidi-
mensional extension, interval vectors (or boxes). In opposi-
tion to an exact representation of sets, intervals and boxes
are easy to represent and manipulate. The set of real intervals
is denoted IR, and the set of n-dimensional boxes is IRn. In
this paper, an interval or a box x = [x,x] is written in bold;
x and x respectively denote the lower and upper bounds of
x.

Interval arithmetic allows performing computations on
intervals thanks to the interval extension of classical real
arithmetic operators +,−,× and ÷.

x+ y = [x+ y,x+ y], x− y = [x− y,x− y]

In the same way, elementary functions such as tan, sin and
exp can be extended to intervals. This is done by returning
the smallest interval covering the range of the input through
the function.

The image of a box by a function f : Rn → Rm is
generally not itself a box, but an arbitrary set. This problem
is solved using the so-called inclusion functions: The interval
function f from IRn to IRm is an inclusion function for f
if the image of x by f is included in the image of x by f,
i.e.

∀x ∈ IRn, f(x) ⊂ f(x).

The minimal inclusion function f∗ for a function f returns
the smallest box that contains f(x) — i.e. f∗(x) = �f(x),
the interval hull of f(x) [10].

To approximate compact sets in a guaranteed way, sub-
pavings can be used. A subpaving of a box x is the union of
non-empty and non-overlapping subboxes of x. A guaranteed
approximation of a compact set X can be made by bracketing
it between an inner subpaving Xin and an outer subpaving
Xout such as Xin ⊆ X ⊆ Xout.

B. Robust set inversion

The set inversion problem consists in determining the
set X such as f(X) = y, where y is a known interval
vector of m measurements. Using interval analysis, the
solution X = f−1(y) can be approximated between two
subpavings Xin and Xout such that Xin ⊆ X ⊆ Xout. The
SIVIA algorithm allows performing such a set inversion, by
recursively bisecting an initial box [10].

When the measurements interval vector y may contain
erroneous data, a robust set inversion can be performed. A
robust set inversion method is the q-relaxed set inversion.
To perform a q-relaxed set inversion with a m-dimensional
measurements vector y, a given number q of wrong mea-
surements is tolerated. The solution set is thus the set of
solutions at least compatible with m− q measurements.

Considering m sets X1, . . . , Xm of Rn, the q-relaxed

intersection
{q}⋂

Xi is the set of x ∈ Rn which belongs to
at least m− q of the Xi’s (Fig. 4).

X1

X2

X3 {1}

X i

{2}

X iX i

{0}

X i =

Fig. 4: q-relaxed intersection of three sets for q ∈ {0, 1, 2}

By considering Xi = f−1i (yi), the Robust Set Inverter
via Interval Analysis (RSIVIA) solver [10] guarantees the
computation of a q-relaxed solution set for X = f−1(y) (see
Algorithm 1). This algorithm returns an outer subpaving of
the q-relaxed solution.

Algorithm 1 RSIVIA(in: x0, f, y, q ; out: X)
Robust Set Inverter via Interval Analysis

1: push(x0,L)
2: while L 6= ∅ do
3: x = pull(L)
4: repeat
5: for i = 1 . . .m do
6: compute x(i) enclosing x ∩ f−1i (yi)
7: end for

8: x = �

 {q}⋂
i∈{1,. . . ,m}

x(i)

 hull of the q-relaxed
intersection of m boxes

9: until no more contraction can be done on x
10: if x 6= ∅ then
11: (x1,x2) = bisect(x)
12: push(x1,L); push(x2,L)
13: end if
14: end while
15: return L

In this solver, the computation of a bounding box of
x∩f−1i (yi) is generally performed using interval constraint
propagation methods, like the Fall-Climb algorithm [10].

If a measurement is wrong and inconsistent with the other
measurements, it is automatically excluded from the solution,
and it can be identified as an outlier.

IV. IMPLEMENTATION

A. Vehicle model

The vehicle is assumed to move without slipping in
an horizontal planar world. The continuous-time evolution
model of the vehicle is

ẋ(t) = v(t) · cosψ(t)
ẏ(t) = v(t) · sinψ(t)
ψ̇(t) = ω(t)

After discretization the model becomes (Ts being the
sampling period) xk+1 = xk + Ts · vk · cosψk

yk+1 = yk + Ts · vk · sinψk
ψk+1 = ψk + Ts · ωk
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The vehicle linear speed and angular speed are usually
measured using differential odometry. vR(t) and vL(t) are
respectively the right and left wheel speed. L is the distance
between the two wheels. These quantities are intervals,
whose bounds are set to represent the measurement error.{

v(t) = vR(t)+vL(t)
2

ω(t) = vR(t)−vL(t)
L

If the vehicle is equipped with a gyrometer, ω(t) can be
directly measured.

B. Bounded-error GPS position
To be used in the 2-D robust pose-estimation, absolute

position boxes have to be in local frame coordinates. Position
estimated by the GPS receiver could be transformed into
local frame coordinates, and a bounding box could be
computed using the position variance information computed
by the receiver. However, setting bounds in local frame on a
position computed in a global frame is not trivial.

We use an interval method to compute position boxes, by
setting bounded errors on GPS pseudo-range measurements
[11]. Computation is directly done in local frame coordinates,
so that solution boxes are already aligned with the evolution
plane of the vehicle. This way, error on measurements are
already propagated in the appropriate coordinates frame.

GPS positioning is a Time of Arrival method, which
involves pseudorange measurements to each of the visible
satellites [12]. Pseudoranges are offset by a unknown amount
due to the time base difference between the receiver and
the GPS system. GPS positioning using pseudoranges is
thus a four-dimensional problem: along with the Cartesian
coordinates (x, y, z) of the user, the user’s clock offset
dtu has to be estimated. Satellite positions (xsi , y

s
i , z

s
i ) are

computed with broadcast ephemeris data. They are repre-
sented as intervals (xs

i,y
s
i , z

s
i ) to take ephemeris inaccuracy

into account. The propagation delay corrections applied
to measured pseudoranges to get corrected pseudoranges
ρi are imprecise because of model and parameter errors.
Moreover, the receiver measurement errors should also be
taken into account. Corrected pseudorange measurements are
thus represented as intervals ρi whose bounds are determined
given an integrity risk [11].

The location zone computation consists in characterizing
the set X of all locations compatible with the measurements
and the satellite position intervals. Each pseudorange intro-
duces a constraint on the solution. The constraint induced by
the ith pseudorange measurement is represented by the nat-
ural inclusion function of the GPS pseudorange observation
function:

fi(x, y, z, dtu) =
√
(x− x

s
i)2 + (y − y

s
i)2 + (z − z

s
i)2+c·dtu

(1)
The Fall-Climb algorithm [13] allows constraints to be
propagated in an optimal order for each measurement, using
(1). Position computation is then performed using the RSIVIA
algorithm presented previously (Alg. 1). It allows computing
a position robust to a given number of erroneous pseudorange
measurements. For further details, please see [11].

C. Robust pose estimation using the buffers
Two dated data history buffers are used: the list of position

observations boxes Lp(t) = {p(tp1), . . . ,p(tpo)}, and the list
of proprioceptive inputs boxes Lu(t)={u(tu1 ),. . .,u(tun)}, with
u(t) = (v(t),ω(t))T .

p(t1)

p(t2)

x(t)|p(t1)

x(t)|p(t2)

x(t)|p(t1),p(t2)

Fig. 5: Estimation of current pose, given two absolute
positions

Fig. 5 shows the estimation of the current pose at time t,
given two positions at times t1 and t2, and proprioceptive
data history. Each position constrains current position and
attitude in a compact set of the pose space (projected as a
ring-like shape in 2-D view of Fig. 5). The current pose is
found at the intersection of the constraints imposed by each
position information (2).

x(t) =
⋂

k=1...o

x(t)|p(tpk),u(t
u
1 ), . . . ,u(t

u
n) (2)

To deal with erroneous positions in the data buffer, a
given number q of erroneous measurements in the buffer is
tolerated, using a q-relaxed intersection (3). The robust pose
estimation consists in computing the vehicle’s position and
heading at time t, given a finite number of prior position mea-
surements and the history of inputs (proprioceptive sensors),
under the hypothesis that at most q position measurements
are wrong.

x(t) =

{q}⋂
k=1...o

x(t)|p(tpk),u(t
u
1 ), . . . ,u(t

u
n) (3)

Computation of x(t)|p(tpk),u(tu1 ), . . . ,u(tun) is done using
a backward-forward constraint propagation [10] with the
evolution function and the proprioceptive inputs. Since each
p(tpk) only contains position information, ψ(t) cannot be
estimated directly by independent contraction with respect to
each p(tpk). To address this issue, the initial range of ψ(t) ⊆
[0, 2π] is partitioned in N intervals {ψ1, . . . ,ψN}, and
constraint propagation is performed for each ψk value (4),
see Fig. 6. Algorithm 2 summarizes the whole computation.

x(t) =

N⋃
k=1

x(t)|ψ(t) ∈ ψk, with
N⋃
k=1

ψk = [0, 2π] (4)

Algorithm 2 is a simplified RSIVIA algorithm. The main
difference is that it only performs a partitioning of the search
space among ψ(t), while RSIVIA would perform bisections
along all dimensions of the search space.
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ψ(t)

x(t)|p(t1)

p(t1)
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x(t)|p(t3)

(a) Prior ψ(t) interval is compatible with measurements
history

x(t)|p(t1)

p(t1)

p(t2)

p(t3)

x(t)|p(t2)

x(t)|p(t3)

ψ(t)

(b) Priorψ(t) interval is inconsistent with measurements
history, the intersection of estimated poses is empty

Fig. 6: Results of backward-forward constraint propagation
with three position measurements, for two different prior
values of ψ(t). Arrows represent the heading.

Algorithm 2 Compute current pose

1: x(t)← ∅
2: for k = 1 . . . N do
3: ψk = [ 2π(k−1)N , 2πkN ]
4: for i = 1 . . . o do
5: ψ(tpi ) = bwd_propag(ψk)

6: x(t)|p(tpi ), ψ(t) ∈ ψk = fwd_propag
(
p(tpi )
ψ(tpi )

)
7: end for

8: x(t)|ψ(t) ∈ ψk =

{q}⋂
i=1. . .o

x(t)|p(tpi ), ψ(t) ∈ ψk

9: x(t)← x(t) ∪x(t)|ψ(t) ∈ ψk

10: end for

D. Proprioceptive data integration

Proprioceptive data integration is required for constraint
propagation in Alg. 2. The bwd_propag step computes the
vehicle’s heading at a past epoch, given the current heading
and the history of measurements. The fwd_propag function
computes the current pose, given a pose in the past and the
proprioceptive measurements.

Integration of proprioceptive inputs using interval analysis
can be very conservative, since multiple occurrences of the
same variable are considered independently. To address this
issue, monotonicity can be exploited. If f is increasing in
xi, decreasing in xd, and non-monotonic on z, a better

evaluation of the the range of f over (xi,xd, z) than its
natural expression f is given by fm (5)

fm(xi,xd, z) = [f(xi,xd, z), f(xi,xd, z)] (5)

This property is used to perform integration of proprioceptive
data with less pessimism when monotonicity of the evolution
function can be proved over the range of the current state
and observations.

When the absolute positions list has not changed since
the last estimation x(tlast), and providing that x(tlast)
and the new x(t) to be estimated are posterior to the last
position observation p(tym), x(t) can be computed using
only proprioceptive input integration from x(tlast). This
allows speeding up the computation of the pose between two
position measurements.

V. RESULTS

Experimental validation has been performed with an in-
strumented vehicle in the western suburb of Paris. We
recorded GPS pseudorange measurements from a uBlox GPS
receiver at 1 Hz, and proprioceptive data from the speed
sensor and gyrometer of the vehicle at 10 Hz. A high-end
LandINS inertial navigation system coupled with a high-end
Novatel GPS receiver was used to provide ground truth.

Fig. 7: Vehicle entering and exiting the tunnel. On-board
camera view.

The vehicle was driven on a forest-bordered highway, then
passed through a 900-meter long tunnel (Fig. 7).

Recorded data is processed in real-time playback. GPS
position computation is performed using a non-robust inter-
val GPS solver, to emphasise the fusion process benefits.
Fig. 8 shows lots of positions inconsistent with ground truth
during the first 140 seconds of highway driving. During this
period, the GPS computation sometimes returns no solution
due to measurements inconsistency. When the vehicle enters
the tunnel from t = 155 s until 200 s, the GPS signal is
totally blocked, thus preventing position computation.

Output of the robust pose estimation method is shown in
Fig. 9. Algorithm is set to tolerate at least 20% of erroneous
measurement without loss of integrity. The length of the
position buffer is limited to 14 boxes. The system keeps
a pose consistent with ground truth during the whole 250
seconds of driving. Despite the misleading GPS positions
during the first 140 seconds of highway driving, position
bounds in the computed pose are still consistent with ground
truth. When no GPS position is available, the computed po-
sition box grows, but still remains centered on ground truth.
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Fig. 8: GPS position boxes input to the fusion system.
Ground truth is zero.

The increase of position uncertainty during dead-reckoning
is the consequence of propagating heading-estimation uncer-
tainty and linear and angular speed measurements uncertainty
through the evolution model. The tunnel mainly follows a
West-East axis, as a consequence, the increase of uncertainty
on the x (West-East) coordinates is mainly due to speed
measurements uncertainty. The y coordinates uncertainty
grows faster, because it is more dependant of the heading
estimation uncertainty.

VI. CONCLUSION

A method to estimate the 2-D pose of a vehicle using
proprioceptive sensors and unreliable absolute positions has
been presented in this paper. It uses bounded-error mea-
surements gathered in size-limited data history buffers. Pose
estimation is carried out using a robust relaxed constraint-
propagation scheme, assuming a defined maximum number
of erroneous position measurements in the buffer. Thanks to
a position data buffer management based on spatial criteria,
loss of information in the position buffer is prevented.

An experimental validation has been performed, using
a non-robust GPS solver and proprioceptive measurements
(speed and gyro). It showed that the system is able to
provide a pose estimation consistent with ground truth,
even when misleading position measurements are input. It
also demonstrated the system’s ability to output consistent
pose estimations during long absolute positions unavailability
periods.

Future work will be focused on using raw GPS mea-
surements in the data horizon, in a robust tightly-coupled
fusion approach. The use of a 3-D representation will also
be investigated to deal with positioning in hilly areas.
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