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Abstract— Language is among the most fascinating and
complex cognitive activities that develops rapidly since the early
months of infants’ life. The aim of the present work is to
provide a humanoid robot with cognitive, perceptual and motor
skills fundamental for the acquisition of a rudimentary form of
language. We present a novel probabilistic model, inspired by
the findings in cognitive sciences, able to associate spoken words
with their perceptually grounded meanings. The main focus is
set on acquiring the meaning of various perceptual categories
(e.g. red, blue, circle, above, etc.), rather than specific world
entities (e.g. an apple, a toy, etc.). Our probabilistic model is
based on a variant of multi-instance learning technique, and
it enables a robotic platform to learn grounded meanings of
adjective/noun terms. The systems could be used to understand
and generate appropriate natural language descriptions of real
objects in a scene, and it has been successfully tested on the
NAO humanoid robotic platform.

I. INTRODUCTION

We have investigated the lexical acquisition problem,
particularly how a robot can be bootstrapped into commu-
nication and what are the necessary prerequisites for robots
in order to learn a language. This work focuses on three
of the earliest problems that robots need to solve as they
acquire their native language: (a) identifying the meaning
of words grounded in perceptual data, (b) associating these
meanings with lexical units, and (c) inferring a rudimentary
grammar for further understanding and interaction. Lexical
acquisition seems to be innately driven by the principle of
reference: words refer to objects, actions, and attributes of the
environment. The robot must acquire the possible meanings
of words from their non-linguistic (perceptual) input, and de-
termine which co-occurrences are relevant from a multitude
of potential co-occurrences between words and entities in
the environment while acquiring syntactic rules that encodes
word order and phrase structure constraints. Observational
learning may be used to deduce word meanings from cross-
situational experiences. Joint attention plays an important
role in learning terms of reference. Infants are more likely
to connect words with their referents when engaged in joint
attention with their caregivers [3] and have certain biases
which constrain the set of possible meanings of words [6][1].
We have used these assumptions to bootstrap the lexical ac-
quisition process. Concepts acquired from lexical acquisition
can be used to initialize a logic representation of several
observable entity of world. Language acquisition therefore
proceed in parallel with concept acquisition. Concepts un-
derlying acquired language model can be considered as
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independent from language acquisition process and can be
reused for other cognitive tasks. The ultimate goal of the
proposed system is to take advantage of acquired concepts,
and language model to engage in simple dialogue with
a human partner. We have eliminated some simplifying
constraints present in many related works, and improved the
performance and robustness of the algorithm by using robust
probabilistic techniques.

The rest of this paper is organized as follows. The next
section briefly describes previous approaches to language
acquisition and symbol grounding problem. In section III we
describe our lexical acquisition algorithm. Finally, we present
experimental results of the model on a robotic platform, and
outline conclusions and future works.

II. RELATED WORKS

There has been a huge interest in grounded language
acquisition in the past years. In literature there are numerous
examples of language acquisition systems inspired by differ-
ent theories and implemented with different methodologies,
ranging from hard-coded systems to neural networks and
probabilistic learning systems. In this section we describe
some of the most interesting systems, which have in part
influenced our work.

Visual Translator system [9] (VITRA) is a natural lan-
guage generation system which is grounded directly in
perceptual input. From a sequence of digitized video frames
low-level sensory processes perform recognition and tracking
of visible objects. Detailed domain knowledge is used to
categorize spatial relations between objects, and dynamic
events. Higher level propositions are formed from these
representations which are mapped to natural language using
a rule-based text planner. In contrast to other works, VITRA
is not designed as a learning system.
[13] applied the principle of grounding words semantics in
sensory inputs of robots to acquisition and evolution of artifi-
cial language. These experiments are computational model of
language evolution, based on a naming name, and therefore
can not be used for interactions with human agents, but
only artificial agents. [4] applied neural networks to symbol
grounding problem by connecting sensorimotor inputs with
arbitrary symbolic representations via category-invariance
detectors. The system allow to learn single words phrase
referred to simple image. [12] approached the problem of
acquisition of natural categories and labels by robots from
the point of view of perceptual grounding. CELL (Cross-
channel Early Lexical Learning) [12] is a system able to
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learn object names from a corpus of spontaneous infant-
directed speech, and to process single and two-word phrases
which referred to the color and shape of objects. CELL
seems to be the first model of language acquisition which
learns words and their semantics from raw sensory input
without any human-assisted preparation of data. Associations
between linguistic and contextual channels are chosen on
the basis of maximum mutual information. Another system
which learns from raw sensory data was presented in [8]. The
authors focused on the challenges arising from the headset-
free learning of speech labels and natural interactive learning.
In particular they present a mechanism for auditory attention
integrating bottom-up and top-down information for the
segmentation of the acoustic stream. In DESCRIBER [11] is
addressed the problem syntactic structure acquisition within
a grounded learning framework. Learning algorithms acquire
probabilistic structures which encode the visual semantics of
phrase structure, word classes, and individual words. Using
these structures, a planning algorithm integrates syntactic,
semantic, and contextual constraints to generate natural and
unambiguous descriptions of objects in novel scenes.
Another related approach is TWIG [7], a word learning
system that allows a robot to learn compositional meanings
for new words that are grounded in its sensors. TWIG
allows a robot (1) to learn the meanings of deictic pronouns,
(2) to contrast new word definitions with existing ones,
thereby creating more complex definition, and (3) to use
words learned in an unsupervised manner for production,
comprehension, or referent inference. The techniques that
TWIG introduces are extension inference and word definition
tree. Its technique are more generally applicable to other
word categories, including verbs, prepositions and nouns.

Our work while not making significant advances compared
to the systems presented, puts more emphasis on one funda-
mental problem in language acquisition process: the search
for the referent. We endow the system with a real model of
attention and formalize a multi-instance learning algorithm
for the acquisition of semantic categories. Our goal is to
create robust learning algorithms, able to build knowledge
even in absence of important pragmatic information.

III. MODEL OVERVIEW

In our previous work we focused on the learning of
grounded language models from examples [5]. In the ex-
periment we proposed, the demonstrator could chose one
of the objects of the scene and provide its, more or less
detailed, description. In that case, the referent of a descriptive
phrase was directly given to the robot. This information,
while on one hand simplifies the learning process and allows
the robot to discard the majority of the incorrect associations,
on the other reduces the applicability of the technique to
more complex environments and does not allow any level of
interaction with the demonstrator. In this work, we wanted
to relax this constraint by making the interaction between
the demonstrator and a robot more natural in the teaching
phase.

Fig. 1. General model overview.

Without knowing the referent of the sentence (e.g. the
object being described by the demonstrator), the language
learning problem becomes more difficult. Indeed, the robot
should maintain a huge number of assumptions, many of
which are incorrect, that would make the association of
possible meanings to available words computationally im-
possible. In the new experimental setting, the teacher first
tries to capture the attention of the robot by fixing his gaze
on the object of interest or points it, and once obtained the
attention of the robot, she describes the object. The robot is
unable to determine with certainty the object of interest, but
she may exploit the direction of the gaze and the pointing
direction of the demonstrator to filter the possible referents,
without other a priori given knowledge.

We equipped the robot with some basic skills to simulate
the process of joint attention. The robot is able to recognize
the demonstrator (face, hand) and to detect any activity
(speech, hand movements, etc.). Moreover, it is able to
estimate the direction of the gaze and recognize the pointing
actions. These information is merged in order to determine
the salience of each object in the scene. The robot first tries
to determine the area to the maximum salience on the work
surface, by following gaze direction and hand gestures, then
observes and stores the objects that correspond to this area.
The robot can also indicate the area of interest for further
feedback from the demonstrator. When the demonstrator says
something (presumably the object description), the robot
stores the most salient objects and the transcript of the
statement that he heard, which will constitute the training set
for learning. The sample will be discarded when the degree
of salience is not high enough, and the robot was unable
to identify with certainty the most salient objects. Using a
humanoid robot platform, the demonstrator can guess the
state of the robot by using the same mechanism of joint
attention and correct it, if necessary, so to minimize the
ambiguity in the training set. Before describing the prob-
lems addressed in the present work we provide operational
definitions of several terms which are used throughout this
article. A semantic category (or semantic unit) specifies a
range of sensory inputs which can be grouped and associated
with a word/symbol. For example, a semantic category might
specify a portion of the color spectrum. Such a semantic
category could be used to ground the semantics for a color
term such as “red”. A semantic class specifies a set of
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semantic categories grounded in the same sensory channel.
For example, a semantic class could be used to associate
acquired color terms (color class). A lexical item encodes the
association between a word and its corresponding semantic
category.

All semantic categories are derived from visual sensory
signal. Feature extractors computes visual features from the
sensors (video). Each extracted feature encodes relevant,
non-redundant, information from the visual sensory stream
about observable proprieties of the world (semantic class).
Potential visual features include categories of shape, color,
size, and spatial relation (see Table I). Any word may
potentially be paired with any semantic category which is
derived from the same utterance-context pair. These pairs
are clustered to generate a set of lexical items.

Each sample collected composed of a bag of words
provided in the description, the sensory characteristics of
multiple objects and a level of salience associated with each
object. The salience can be regarded as an a priori estimate
of the possible referent of the statement. Imagine that the
robot should determine the degree of associability between
the word red and the color of the object. If the estimated
salience is correct in most cases, each example containing
the word red contain at least one instance of the color red
(RGB feature), but it will also contain instances of different
colors that are an additional source of ambiguity. In order to
correctly infer the meaning of the word red, the robot must
be able to isolate from each example the proper instance,
discarding all others. This problem in literature is known
as multi-instance learning. In multi-instances learning the
labels are only assigned to bags of instances (i.e. labels are
not assigned to individual instances). In the binary case, a
bag is labeled positive if at least one instance in that bag is
positive, and the bag is labeled negative if all the instances
in it are negative.

In our previous work [5], a semantic distortion metric was
used to select appropriate semantic category from several
hypothetical ones. The meaning of each word (i.e. it’s seman-
tic category) was treated as a random variable and modeled
with a multivariate Gaussian distributions. These distribu-
tions are estimated for each semantic class (shape, color,
size). Taking the example above, the algorithm estimates
a semantic category (Gaussian density) for each sensory
channel (shape, color, size) from the set of positive examples
associated with the word red. Each of these categories repre-
sents a hypothesis about the possible meaning of the word,
and a hypothetical association between the semantic class
and word. Similarly, the algorithm estimates a probabilistic
model from the negative examples associated with the word
red, i.e. those examples where the word is not present. The
semantic grounding is done with the semantic class (and the
associated semantic category) that maximizes the semantic
distortion measure between the two probabilistic models. The
previous algorithm then consists of two basic steps: (a) the
estimation of semantic categories and their negative models
(background probability) for each acquired word and (b)
the association of meaning-word obtained by probabilistic

measures on the estimated probabilities.
In this work, we have maintained the same structure as

the previous algorithm. Again, we first estimate the semantic
categories and negative models and then use probabilistic
methods to determine the correct association. The first diffi-
culty, as already mentioned, is precisely in the estimation of
densities: treating them with bags of instances and not with
individual instances complicates the learning problem, which
becomes multi-instance problem. The estimation process
must take into account a priori information obtained from
the attention system (salience), and at the same time find the
set of redundant instances for each class.

We present a new algorithm for learning semantic cate-
gories, inspired by some multi-instance learning techniques
[10]. In this work, we also present a new algorithm for se-
mantic association that, compared to the previous work, also
integrates information related to the learned syntax, as well
as those related to sensory observations alone (semantics).
Words that belong to the same semantic class, must follow
the same syntactic rules, and thus should belong to the same
syntactic class. The system is schematically outlined in Fig.
1.

A. Semantic clustering as multi instances learning

The first phase of the algorithm deals with the estimation
of semantic categories and negative models. For each word
w recognized by the system, there is a set of training data,
consisting of positive and negative examples, i.e. examples
where the word is used or not used. Each sample consists of
a number of instances and the degree of salience associated
with them. For example, the word red, assuming we have
three semantic classes, get three sets of positive examples,
and three sets of negative examples, one for each class. We
denote positive bags as xn, and the ith instance in that bag
as xni. Suppose each instance can be represented by a real-
valued feature vector. Likewise, x−n denotes a negative bag
and x−ni is the ith instance in that bag. For each semantic
class-word pair, we then estimate two probability density:
the distribution of feature values conditioned on the presence
of word p(x|c, w) (hypothetical semantic category) and the
distribution of feature values conditioned on the absence of
word p(x|c, w) (background distribution).

We want to estimate a parametric probability density
p(x|c, w,θ−) from all negative bags within each class.
Unlike the classical paradigm of multi-instance learning, we
can not be sure that the bag contain only negative instances of
the concept to be learned. For example, if we want estimate
the negative model of the word red, we can use examples
that describe green objects, but we can not be sure that the
bags do not also contain instances of red object (that is, the
process of attention may have estimated a high degree of
salience for one red object next to the object described). We
must carefully select the bags to be used for estimation of the
negative model. A simple procedure to minimize this type
of error is to select examples where the degree of salience is
concentrated on few objects only. We assume that the data
points x−ni are drawn independently from the distribution.
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TABLE I
FEATURES EXTRACTED FROM VISUAL SENSORY STREAM

Type Feature Description
Shape a, s, bx, by , t deformable superellipse
Color R, G, B RGB color space
Area A superellipse area %

Spatial Relation vx, vy relative orientation

The likelihood function is given by:

p(X−|θ−) =
∏
n

∏
i

p(x−ni|θ
−) (1)

If we assume a unique Gaussian density, the Maximum
Likelihood (ML) solution [2] is:

µ− =
1
N

∑
n

∑
i

(x−ni) (2)

Σ− =
1
N

∑
n

∑
i

(x−ni − µ−)(x−ni − µ−) (3)

A more difficult problem is to estimate a parametric model
p(x|c, w,θ+) from positive bags. As we know, a bag is
labeled positive if at least one instance in that bag is positive.
However, we do not know which instance is the positive one.
The knowledge of positive instance in each bag is modeled
by using a set of hidden variables, which are estimated using
the Expectation Maximization algorithm. We denote positive
bags simply as x, and the ith instance in that bag as xi.
We suppose that each bag have same number of instances,
I . We introduce a I-dimensional binary random variable z
having a 1-of-I representation. There are I possible states
for the vector z. The value of zi therefore satisfy

∑
i zi = 1.

The hidden variable z models the missing information: the
learning process so try to estimate the semantic category and
at the same time, approximately what is the proper instance
for each bag. We can thus define the likelihood function:

p(x|z) =
I∏

j=1

p(x|zj)zj =
I∏

j=1

p(x1, ...,xI |zj)zj (4)

The likelihood function depends only on one of the instances
in the bag. We can then rewrite the previous equation as
follows:

p(x1, ...,xI |zj) =
I∏

i=1

p(xi|zj) (5)

At this point, we must quantify the degree of “positivity” of
the instance, which depends on two main factors: the instance
should not belong to the negative model previously estimated
and at the same time it must be like to at least one instance
of any other positive example. We can rewrite the equation
5 as follows:

p(x|zj) = (1− ℵ(xj |θ−))
∏
i6=j

ℵ(xi|θ−) (6)

Like Maron’s Diverse Density, the equation 6 represents a
measure of the intersection of the positive bags minus the
union of the negative bags [10]. By maximizing that measure,

we can find the redundant points distribution (the desired
concept). The equation 6 quantifies the possibility that a
specific instance of the bag is positive and at the same time
depends on the degree of negativity of the other instances,
seeking instances farthest from the negative examples, but
closer to other positive instances.

p(z) = φ(z) =
∏
j

φ(zj)zj (7)

The φ function compute a prior estimate of “positivity” of
each instance of a bag. In this work, we do not model this
probability (attention). For each bag x of the training set,
we know a I-dimensional real-value vector, φ. The value
of φi satisfy

∑
i φi = 1. The posterior probability integrates

the salience of the individual instance, which depends on the
attention process, with its degree of positivity, which depends
on the entire training set and is therefore more generic. The
posterior probability is defined as follows:

p(zj |x) =
φjp(x|zj)∑I
i=1 φip(x|zi)

≈ φjp(x|zj) (8)

Now consider the problem of maximizing the likelihood for
the complete data set X,Z:

ln p(X,Z|θ+) =
∑

n

∑
i

zni lnℵ(xni|θ+) (9)

During expectation step, we estimate the expected value of
the variable zni.

p(Z|X,θ+) ≈
∏
n

∏
j

[φnjp(xn|znj)]znj (10)

E [zni] =
φnip(xn|zni)∑I
j=1 φjp(xn|znj)

= γ(zni) (11)

We can now proceed as follows.

µ+ =
1
N

∑
n

[
max

i
γ(zni)

]
xni (12)

Σ+ =
1
N

∑
n

[
max

i
γ(zni)

]
(xni − µ+)(xni − µ+) (13)

N =
∑

n

[
max

i
γ(zni)

]
(14)

Instead of using all the instances of each positive bag for
density estimation, we use only the instance that maximizes
the expected value on the hidden variable. In this way, we
consider the hypothesis made initially, namely that each
positive bag contains only one positive instance.

B. Word-to-meaning association

In the previous section we presented the algorithm used
for the estimation of parametric distributions that describe the
positive and negative instances for each semantic class. We
must now associate each word with an estimated semantic
category, and then force the system to make the more
correct association. We can apply our previous algorithm and
evaluate the degree of association between semantic class and
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Fig. 2. Word-to-meaning association: probabilistic model

word. We use a distortion measure (Bhattacharyya distance)
between the positive and negative distributions as a measure
of association between word and semantic categories. Once
we have determined the semantic category that maximizes
the probability measure for each word (treated as the more
correct association), we can estimate a pseudo syntax that
generalizes the results obtained. Exploiting only the sensory
information to determine the word-to-meaning association
still leads to partially correct results. Densities used are in
fact estimated from extremely noisy data, and the association
procedure will be successful only for those words whose
training set is less ambiguous. We must try to integrate into
the process other information that will enable us to correct
those ambiguous cases.
One possibility is to add more examples in those training
sets which are corrupted by more noise, and re-apply the
learning algorithm. Another option is to use the position of
words in the sentence along with the semantic information
to improve the associations: words associated with similar
perceptual categories will be included in same syntactic cat-
egory and will follow same syntactic rules. But we must first
solve the problem of the referent, which remains unknown.
Our previous learning algorithm allows us to approximate
partially correct language model that can be used together
with the salience to determine the object of interest in the
description. In some cases this process might fail by selecting
the wrong referent. We have defined a fitting function which
measures the similarity of an utterance to an object based
on Mahalanobis distance and saliency. The acquired lexical
items allow the parser to assign a semantic category (and
hence a Gaussian density) to each word of the sentence. The
fitting function is defined as:∑T

i=1

√
(f − µi)Σ−1

i (f − µi)

φ
(15)

The object of the scene that minimizes this measure is
selected as a possible referent of the sentence. This process
can be repeated each time the language model change. This
process is depicted in Fig. 2. Each example of the (positive)
training set then consists of a sequence of words w1:Tk

(utterance) and a set of features Fk = f1
k , . . . , f

M
k describing

the alleged target object (M feature type or semantic class).
C latent variable models the relationship between word w
and one of the feature classes fm, and is time-dependent.
We want to find the sequence of semantic classes (hidden
variable) that gave rise to a certain sequence of words and
a given set of features (observations). Figure 2 shows the

graphical model that summarizes the dependencies between
random variables used. The probability p(C1:Tk

|w1:Tk
, Fk)

can be decomposed in a manner similar to HMMs, as
follows:

p(C0)
Tk∏
t=1

p(Ct|Ct−1)p(wt|Ct)p(Fk|Ct, wt) (16)

As in Hidden Markov Models (HMM), we recognize
the transition probabilities of semantic categories A, the
emission probability of the word given a particular semantic
category B, and the probability of the features given the
semantic category and word. This last probability coincides
with the semantic category p(x|c, w,θ+) estimated at the
previous step for each class-word pair.

p(Fk|Ct = m,wt = i) = ℵ(fm
k |µ+

mi,Σ
+
mi) (17)

The discrete variable C can take M values, while w can
take W values. We want to estimate the parameter of the
model θ = {AM×M ,BM×W }. The transition probability
A encodes a pseudo-syntax that depends on the semantic
classes. The emission probability B measures the degree of
belonging of a word to a particular semantic class. We used
a modified version of Baum-Welch algorithm to learn the
parameters of the model. In the expectation step, we calculate
first the transition from class j to class i given a word s of the
sentence and the set of features describing the target object
Fk, as follows:

εt(i, j) = p(Ct = i, Ct+1 = j|wt = s, Fk) = (18)

=
αt(i)aijbjsℵ(f j

k |µ
+
js,Σ

+
js)βt(j)∑

i

∑
j αt(i)aijbjsℵ(f j

k |µ
+
js,Σ

+
js)βt(j)

(19)

then the probability of being in state i, given the observations
sequence and the model:

λt(i) = p(Ct = i|wt = s, Fk) =
∑

j

εt(i, j) (20)

Maximization with respect to A and B is easily achieved by
using appropriate Lagrange multipliers with the following
result:

aij =
∑

t εt(i, j)∑
t λt(i)

(21)

bjs =

∑
t,wt=s λt(j)∑

t λt(j)
(22)

The EM algorithm requires initial values for the parameters
of the emission distribution. We can initialize these proba-
bility as follows:

a0
ij =

1
M

(23)

b0js =
bhatt(µ+

js,Σ
+
js,µ

−
js,Σ

−
js)∑

s bhatt(µ
+
js,Σ

+
js,µ

−
js,Σ

−
js)

(24)

Note that the algorithm is not guaranteed to converge at the
global maximum.
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(a) Semantic association measured from Gaussian density estimated
with multi-instance algorithm

(b) Semantic association obtained after having integrated the syntactic
information.

Fig. 3. Results of the word-to-meaning association algorithm. Words associated with similar perceptual categories will be included in same syntactic
category and will follow same syntactic rules.

IV. EXPERIMENTAL RESULTS

As previously mentioned, the system has been tested
on the NAO robotic platform. NAO is a humanoid robot
equipped with Force Sensitive Resistors (FSR) located on the
feet, sonars, bumpers, tactile sensors, an IR emitter/receiver,
a stereo camera and a pair of microphones. The robot has
a number of built-in machine vision modules used in the
experimental setup. In addition, we have implemented a set
of perceptual and motor schema for basic behaviors such as
pointing and grasping. A typical scene is provided in the
Fig. 4.

The experimental setting consists of a set of objects of
different shape and color placed on a table. A camera is
placed above the table and it ensures a comprehensive view
of the scene. Another camera is fixed on the face of the
demonstrator and is used for monitoring the gaze direction.
The variation of objects is limited to shape, color, size and
position. A training corpus from two participants unfamiliar
with the project has been collected. The acquisition pro-
cess is, as already mentioned, interactive: the demonstrator
stimulates the attention of the robot on one or more objects
of the scene and verbally describes them. Participant were
asked to generate simple utterances related to the observed
scene such that a listener could later select the same target
from the identical scene. Simple utterances contain reference
to exactly one object (target object). The training corpus
was composed of 266 utterances of which 236 are simple
and 30 complex. Only simple utterance are used in learning
process. The results of the algorithm are promising. Semantic
clustering algorithm is able to isolate more than 80% of
positive instances and then to estimate correctly the semantic
category associated with the word. Figure 3(left) shows the
degree of associability the word calculated in the first phase
of the algorithm with respect to semantic classes. In most
cases we can still get partially corrected results with our
previous algorithm. However there are ambiguities, as in
the case of the word ”circle”, which can be minimized by
considering syntactic information. Figure 3(right) shows the
final results obtained in the second phase of the algorithm.

All concepts underlying acquired language model are
used to initialize dynamic fluents as predicate calculus terms
and update robot’s knowledge base representing the state of
the world from sensor data. Only the actions of the robot can
modify the values of the fluent associated with the objects.
The demostrator can’t modify the scene. For this reason, the
knowledge base is updated after every action of the robot.
The only fluent to be updated are those associated with
spatial relationships between objects that change with every
action. Every time the robot completes the move or grasp
actions, updates the database with new spatial relationships.
Obviously there will be some of the logic terms that will
not vary at all (eg, color). We have tested the capabilities
of the robot to understand the descriptions provided by
the users and to conduct a dialog in case of ambiguities.
The robot was given concrete instructions, such as “Point
the green object!”, or “Grasp the object to the left of the
yellow circle!”1. The whole human-robot interaction is
driven by gestures and language. An example of dialogue is
shown below, while the robots actions are depicted in Fig. 4:

Robot: looks at the object 1.
Human: ”NAO, grasp the object to the left of the blue one!”
Human: points the object 1 (50%), 2 (20%), 3 (50%).
Robot: looks at the object 3.
Robot: ”Is it the yellow rectangle?”
Robot: points the object 3 (Fig. 4 left).
Human: ”No!”
Robot: ”Is it the blue circle?”
Robot: points the object 2 (Fig. 4 center).
Human: ”Yes! That’s right!”
Robot: Grasps the blue circle (Fig. 4 right).

We used the disambiguation trees presented in our
previous work, to solve some perceptual ambiguities present

1In the present model, the meaning of verbs “to point” and “to grasp” is
hand-coded, and it is not learned by the system. Future releases will address
the problem of grounding dynamic terms through the same computational
framework.
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(a) (b) (c)

Fig. 4. An example of human-robot interaction via learned language model. The demonstrator asked the NAO to take the object to the left of a blue
object. (a) NAO points the first object and says ”Is the yellow rectangle?”; (b) NAO points the second object and says ”Is the blue circle”; (c)NAO grasps
the correct object.

in the scene [5]. In this experiment have been learned only
the terms that refer to colors and shapes of objects in the
scene. For the spatial relationships were used categories
learned in our previous work [5]. A set of external observers
were judging the goodness of the system with respect to the
following factors:
• Naturalness of the robot’s linguistic and motor behavior;
• Differences between the expected behavior and that

observed.
About ten people were involved in a full-day evaluation
session. The overall score was positive in about 80% of
collected forms. While these results have no scientific foun-
dation, they however show a positive impact of our compu-
tational model in a human-robot interaction system.

V. CONCLUSION
The algorithms presented in this article extends our pre-

vious work on the grounded language model learning. We
focused on some limitations of the previous technique while
maintaining the same algorithmic structure. In particular:
(a) we endowed the system with a real model of attention
and formalized a multi-instance learning algorithm for the
acquisition of semantic categories, (b) we have improved
the word-to-meaning association algorithm, by linking the
choice not only to semantic information but also to syntactic
constraints encountered, and (c) we have made demonstrator-
robot interaction more natural.

However, a set of important questions still remain to be
solved. As presented, the system learns “simple” concepts
involving a single perceptual channel. Ongoing work is
focused on learning complex concepts from the interaction
data. The same computational framework will be employed
recursively in order to assign meanings to words by hierarchi-
cally describing complex concepts as composed of simpler
ones in a Bayesian network. Another issue is related to the
process of learning and understanding verbs as words that
usually involve an observable action. The work presented
here represents the first steps in this direction.
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