
Proactive Avoidance of Moving Obstacles for a Service Robot utilizing a
Behavior-Based Control
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Abstract— A main challenge in the application of service
robotics is safe and reliable navigation of robots in human
everyday environments. Supermarkets, which are chosen here
as an example, pose a challenging scenario because they usually
have a cluttered and nested character. The robot has to
avoid collisions with static and even with moving obstacles
while interacting with nearby humans or a dedicated user
respectively. This paper presents a hierarchical approach for
the proactive avoidance of moving objects as it is used on the
robot shopping trolley InBOT. The behavior-based control (bbc)
of InBOT is extended by a reflex and a reactive behavior to
ensure adequate reaction times when confronted with a possible
collision. On top of the bbc a spatio-temporal planner is situated
which is able to predict environmental changes and therefore
can generate a safe movement sequence accordingly.

I. INTRODUCTION
Our goal is to enable robots to operate in highly frequented

human environments. Exemplarily we have chosen a su-
permarket scenario. Here the Interactive Behavior Operated
Trolley InBOT (Fig. 1) addresses several everyday problems
such as helping the customer to find desired products without
extensive search, or relieving customers from the burden of
pushing the shopping cart using his own force all the time,
especially if the cart is heavily loaded or the customer is
elderly or handicapped. Here we are involved in ongoing
HRI research (e.g. [10], [2]). The chosen environment poses

Fig. 1. The Interactive Behavior Operated shopping Trolley (InBOT). It
is equipped with a mecanum drive for full holonomic movements and the
environment is observed by two laser range finders. Additionally the user
can find a wide range of equipment for interaction with the robot. The setup
is described in [6]. The left hand side shows a scene from an user study.

several challenges: supermarkets are often cluttered and
contain several dynamic objects or persons which makes
safety highest priority. A behavior-based control is available
on InBOT that copes with task planning, navigation and
avoidance of static obstacles.

This paper focuses on the avoidance of accidental colli-
sions with moving obstacles such as customers with shopping

carts who are hurrying down a corridor being distracted by
the products in the shelves or talking with each other. The
identification and tracking of the moving obstacles is not part
of this paper. The corresponding movement model (direction,
velocity, variances) is provided by an external component.
This task is performed in a three-level approach: first a reflex
moves the robot directly away from dynamic obstacles which
came too close or started moving, enabling InBOT to regain a
safety distance. Second a reactive behavior lets the robot free
the predicted path of an approaching object, guaranteeing a
suitable reaction time. To solve complex trapping situations
these components are topped by a spatio-temporal planner
which generates a safe and efficient long-term path.

The remaining paper is organized as follows: Following
the introduction the paper continues with a brief analysis of
related work and the description of the present control of the
robot InBOT (section III). After this section IV deals with the
reactive avoidance of the objects while section V presents the
spatio-temporal planner. In the final sections the experimental
evaluation is described and the results are discussed.

II. RELATED WORK

There are several different popular methods to avoid
dynamic objects so far. They can be grouped in two main
classes: The plan based approaches: Hu et al. first plans a
path around the static obstacles, the dynamic obstacles are
considered in an extra step that controls the robot-velocity
on the path around the static obstacles [9]. Another very
popular approach are Elastic Bands. First a path around
the static obstacles is planned and later deformed with the
elastic-bands-method to direct the robot around the moving
obstacles [12]. Hoeller et al. use a modified probabilistic
path planner to avoid predicted trajectories of a human.
These predicted positions block the probabilistic planner
from adding a new waypoint near this position [8]. Large et
al. describe a realtime dynamic obstacle avoidance system
learning typical trajectories of moving obstacles and feeding
them into an iterative motion planner based on Velocity
Obstacles [11]. Bennewitz et al. use learned motion patterns
of persons. Hidden Markov Models are derived to estimate
future movements. The probabilistic belief is incorporated
into the path planning process [1].

And the reactive approaches: An approach using a mul-
tisensor based environment prediction is described by Song

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5984



and Chang [13] where the predicted obstacle positions are
used to calculate virtual forces to decelerate the robot. Castro
et al. present a system which uses a laser range finder based
obstacle detection and tracking and feeds this information in
an extended dynamic window system [3].

The advantage of the deliberativity of the planners is
obvious but we lack too many information (limited field
of view, no exact and reliable map, sometimes no target
of robot is available e.g. in visual servoing mode or using
the power assisted control mode) to be able to rely always
on a planner-based approach only. Therefore we combine a
planner with reactive approaches which are developed to fit
into our already present behavior network.

III. THE HIERARCHICAL CONTROL
ARCHITECTURE

A three-layered navigation concept was developed to cover
the three main fields of duty, see [7] and [6] for details.
The Strategic Layer is responsible for the deliberative long-
term planning (task-planner and topological navigation). The
Tactical Layer deals with the prediction and deliberative
avoidance of dynamic objects as well as with the interaction
with nearby humans. And finally at the bottom of the hier-
archy the Reactive Layer’s goal is to fulfill actual movement
tasks implementing a behavior network as control. It will
be described in the following how the reactive components
for the avoidance of dynamic obstacles are woven into the
remaining navigation system.

A. The Behavior Network implementing the Reactive Layer

The main task of the Reactive Layer is to provide the
repertoire of basic behaviors, which offer the basic skills of
the robot. To fulfill the required fast response to environmen-
tal changes a very tight coupling of sensors and controllers
is needed. To raise robustness all activated behaviors work
completely independent from each other.

In the Object-Oriented Level of the network (Fig. 2,
see [5]) a task/goal-oriented attracting vector is merged
with attracting and repelling vectors added by the various
behaviors. Due to the dynamic environment no path planning
is performed - the robot calculates the most beneficial move-
ment live instead. The behaviors on this level are grouped in
two sub-networks: one each for the avoidance of static and
of dynamic obstacles.

IV. REACTIVE AVOIDANCE OF DYNAMIC
OBSTACLES

This behavior group is located in the Object-Oriented
Level of the Reactive Layer (Sec. III). It consists of two
modules that both generate a repelling vector to be added to
the vectors of the Object-Oriented Level which finally add
up to the resulting velocity set-point vector. The first one is a
safety reflex that generates a vector that points directly away
from a nearby dynamic object to keep or regain a safety
distance. The second behavior needs a movement model
acquired in the Tactical Layer by mid-term observations of
the object. Based on the movement model a probabilistic

Fig. 2. The four levels of the behavior network which implements the
Reactive Layer. Behavior groups, or subnetworks, are indicated with (G).

temporal repelling field is calculated. This field is then
merged to a resulting repelling vector. Both behaviors are
based on a database of detected dynamic obstacles in robot’s
close vicinity and their characteristics such as position and
movement model.

A. The Escape Reflex

This reflex lets the robot retreat directly away when in
the range of a moving object. To calculate the repelling
velocity vector (~uEscape) for the behavior a repelling vector
(~RO) for each visible dynamic object (O) is calculated. The
direction of the repelling vector is directly away from the
dynamic object (ÔR) and its length depends on the distance
between object and robot (| ~dOR|) as well as on the velocity
of the object (| ~vO|). The area of influence is restricted by the
maximum radius (rmax) of the repelling field.

~uEscape =
O∑

(~RO) (1)

~RO = ÔR · max(rmax − | ~dOR|; 0)
rmax

· | ~vO| (2)

B. The Evade Behavior

This behavior clears the way for nearby moving objects.
Therefore a probabilistic estimation of the object’s path is
calculated based on the estimated movement model of the
object. Based on the resulting probability field, the repelling
movement vector is calculated, which lets the robot move
away from the potentially occupied space and therefore
makes a collision improbable.

To calculate the repelling velocity vector (~uEvade) for the
behavior a repelling vector (~RO) for each visible dynamic
object is calculated. The direction (~̂vO⊥) of this object-
dependent repelling vector is orthogonal to the movement
direction of the object (~̂vO). The length of the vector depends
on the actual velocity of the object (| ~vO|) and a force factor
(f( ~dM

O , ~VO)). The force factor is a function of the distance
vector between robot and the model-based movement esti-
mation of the object ( ~dM

O , see Fig. 3) as well as the variance
(~VO) of the movement model. It consists of two components,
one based on the distance along the path of the object (the
x-component) the other one based on the distance between
the robot and the path of the object (the y-component). Both
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components are restricted by corresponding distance restric-
tion functions (Dmax

X (), Dmax
Y (VY , dX)). These mainly de-

pend on the parameter for the maximum distance of influence
(dmax

X , dmax
Y ). Dmax

Y (VY , dX) also takes the variance and the
distance along the path (dX ) into account. Therefore the area
of effect enlarges with the distance to the object and with
the variance (Fig.4).

~uEvade =
O∑

(~RO) (3)

~RO = ~̂vO⊥ · f( ~dM
O , ~VO) · | ~vO| (4)

f( ~dM
O , ~VO) =

(
1− min(dX ; Dmax

X ())
Dmax

X ()

)
(5)

·
(

1− min(dY ; Dmax
Y (VY , dX))

Dmax
Y (VY , dX)

)
~dM
O =

(
dX

dY

)
, ~VO =

(
VX

VY

)
, Dmax

X () = dmax
X (6)

Dmax
Y (VY , dX) = dmax

Y · (VY + 1) · ((VY · dX) + 1) (7)

Fig. 3. A dynamic object (red circle) approaches InBOT (red rectangle).
Two examples for the movement model dependent distance vector ( ~dM

O =
(dX , dY )) are illustrated. Left: the estimated movement is linear. Right: the
estimated movement of the object is a curve. In both cases two components
are calculated: the first one along the movement direction, the second one
orthogonal.

C. Experimental Results

Fig. 5 shows the repelling vector field generated by the two
behaviors Escape Dynamic Objects (circular part) and Evade
Dynamic Objects (oval part). Here one object does not move
straight ahead but in a curve. Additionally the prediction of
one object is bad, so the variance of the movement model
rises. Fig. 6 shows a scene with an shopping cart approaching
from the front while Fig. 7 presents the resulting movement
of the robot. It is repelled from the predicted path of the
objects and moves around the critical zones smoothly. This
concept works well as long as only few dynamic objects
are in the close vicinity of the robot and the robot has
sufficient space to avoid them. But scenes can occur where
the robot cannot escape the objects. For example if two
objects move in parallel and trap the robot between them
or too many objects are heading for the robot from different
sides. To avoid these situations the predictive handler for
dynamic obstacles will be introduced in the next section. The
combined concept is based on the division of duty between a
predictive part for the long- and midterm control and a part
for the reactive micro-management.

V. PREDICTIVE PLANNER FOR PROACTIVE
AVOIDANCE OF DYNAMIC OBSTACLES

The two presented reactive behaviors manage the short
term collision avoidance of dynamic objects. But they do

Fig. 4. The complete repelling force field
of one dynamic object for three differ-
ent y-variances of the movement model.
The width of the area of influence in y-
direction depends on the y-variance (VY )
of the movement model. The length de-
pends on the velocity of the object (the
object moves along the X-axis).

Fig. 5. Two dynamic objects
(circle) approach the robot
(box). The various red lines
represent the repelling vector
fields. The object moving in
a curve is harder to predict
resulting in a raised variance
and following up in a grown
vector field.

Fig. 6. In a corridor InBOT is confronted with a shopping cart approaching
from the front. On the right hand side the corresponding occupancy map
with the velocity set point vectors from the individual behaviors is sketched.
Fig. 7 shows InBOT’s reaction.

not perform a deliberative analysis of the scene. The planner
to be introduced here generates a spatio-temporal sub-plan
in the local environment to reach a given target while taking
the predicted movements of all visible dynamic objects into
account. The goal is to basically avoid critical situations
which could not be solved by reactive behaviors only (e.g.
trapping situations between objects). The plan consists of
sub-targets with time constrains, it is not a trajectory for the
robot. The execution of the plan is performed by the basic
behaviors (StraightToTraget, AvoidObstacles, EvadeDynam-
icObject, EscapeFromDynamicObject and the Safety Reflex

Fig. 7. Resulting movements: Left: The standing robot frees the path of an
approaching object. In the bottom scene the object was very hard to track
resulting in a jittery tracking line and a not optimal movement of the robot.
Right: here the robot is moving itself while confronted with an approaching
object (top: head to head, bottom: object is overtaking the robot).
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- see [7], [5]) which guarantee safety even if the planning
process should fail or the objects suddenly change direction
or velocity drastically.

A. Baseline: Data and Preprocessing
The environmental robot-centered occupancy map

(10x10m) is extended with a time-dimension generating
a 3D occupancy map (Z-axis for time). Static objects are
assumed as time invariant and therefore span the complete
Z-axis. The position of dynamic objects is altered according
to the movement estimation of the object (see Fig. 8). A
new grid has to be built for each plan: The time-distance t
between two X-Y layers is set so that it matches the time
interval needed by the robot to move one cell along the x
axis at default speed (t = cellsize

vdef
- with vdef usually 0.5 to

1 m/s). The height (time) of the 3D occupancy grid limits
the length of the path that can be found. The resolution of
the basic occupancy grid is reduced and moving obstacles
as well as special objects (the user, other robots) are deleted
from this occupancy grid. The static obstacles are enlarged
(the size of the robot can now be assumed as point like) and
added to the 3D grid. Additionally for each time-step an
enlarged obstacle is entered at the predicted positions of the
moving obstacles. The resulting predictive 3D obstacle grid
is shown on the right side of Fig. 8. We decided to generate
a new plan each time instead of altering the old one because
we observe drastic changes in the environmental grid due
to the robot-centered grid, the limited and changing field
of view, the dependency of the robot’s actual velocity and
finally the fuzzy prediction of the moving objects’ behavior
which suddenly can be subject to major changes.

Fig. 8. Left: The scene: a dynamic object (red circle with arrow) moves
in the close vicinity of the robot. Below the corresponding occupancy grid
is shown. Right: predictive 3D occupancy grid with mobile obstacle in the
front (50× 50× 50 cells, cellsize: 20cm× 20cm× 0.4sec).

B. Spatio-Temporal Calculation of Safe Path using an A*
Algorithm

A starting cell and the goal coordinates have to be set to
calculate a path around the obstacles in the predictive 3D
occupancy grid. The robot is positioned at the middle of
the lowest time-layer of the grid - the start cell. All cells
that share the X-Y-coordinates of the goalpoint are possible
goalcells for the A* search. If the goalpoint is outside of the

Fig. 9. The robot’s target is the green ’X’ at the right side of the scene.
But a dynamic object approaches from this direction (red circle with arrow).
Therefore a plan of sub-targets is generated that leads the robot around it.

Fig. 10. The robot’s target is at the left end of the corridor. But a dynamic
object approaches from this direction (red circle with arrow). Therefore
a plan of sub-targets is generated that leads the robot back around the
corner, lets it wait there until the object passed and finally leads to the
target again. Bottom/right: plan in 2D view, Middle: plan in a cut open 3D
view, Bottom/left: actual path taken by the robot)

occupancy grid a substitute goalpoint on the grid’s border is
choosen.

The A* algorithm is forced to take a time step for each
X/Y movement, therefore a cell has 9 neighbors which are
located in the succeeding time layer t′ = t + 1. Occupied
cells in the 3D obstacle grid are obviously off-limits.

The heuristic funtion used for the A* search is the straight-
line distance to the goal in an X-Y layer (

√
∆x2 + ∆y2)

multiplied with the factor
√

2 to estimate the needed time to
get to the goal (this is equivalent to the straight-line distance
in the 3D occupancy grid). This factor is a correct estimation
if the A*-search can find a free way to the goal without
having to wait or having to take a detour around an obstacle.

The search will be aborted if the current cell in the A*
search is located in the top X-Y layer t = tmax.

If the A* search does not find a path to the goal there
is no free path to the goal in the given time constraint and
the search has to be restarted on the next new occupancy
grid data. In the meantime the robot relies on the reactive
behaviors to avoid collisions.

C. Optimization of Path

The found path consists of a list of sub-goal points. If the
subgoals are too close together the flexibility of the behavior-
based control is hindered. If there are no obstacles the path
still consists of many subgoals in a straight line even if only
the goalpoint itself would be sufficient to provide a collision-
free path.
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Hence the path is simplified to contain only the needed
points to drive around the obstacles by repeatedly removing
sub-goals and then testing for collisions with occupied cells.
If the resulting path is collision-free the removed subgoals
are removed permanently.

D. Activation of Behavior-Based Control
Once a path is found and simplified its subgoals are

supplied to the behavior-based control as goalpoints. The
behavior-based control moves the robot to these points
successively.

E. Experimental Results
The described algorithm was tested thoroughly. An easy

example is displayed in Fig.9. A dynamic object approaches
from the direction the robot intends to move in. After
detecting the object a plan is generated to move around the
object. A more challenging scene is depicted in Fig. 10. This
time there is not sufficient space to move around the object.
Therefore the plan leads the robot back around a corner to
let the object pass before continuing with moving towards
the target.

VI. EXPERIMENTAL EVALUATION
Here we will presents some of the experiments performed

to evaluate the concept. When not stated otherwise all
experiments where performed with the real robot in the real
environment.

A. Comparison of components
Fig.11 shows the effect of the different levels for obstacle

avoidance. Using only the behaviors for the avoidance of
static obstacles a collision occurred if the robot was not
significantly faster than the object. The more methods were
activated the earlier the robot started the dodging movement
and the more efficient and safe became the path.

Fig. 11. The individual obstacle avoidance levels in comparison (higher lev-
els always include all lower levels): a:AvoidStaticObstacles, b:EscapeReflex,
c:EvadeBehavior, d:ProactivePlanner. On path (a) most of the time a colli-
sion occurs (depending on the proportion of the robot’s velocity compared
to the object’s velocity).

B. Stress test
A stress test was performed in a partially simulated setup:

Three objects are moving back and forth on straight paths
always crossing the robot’s target point. The robot’s tracker
for dynamic objects was manipulated to simulate the objects
to be able to test the avoidance system independently from
the quality of the tracker. The (real) robot has to continuously
dodge the objects. Fig. 12 illustrates the setup and the path
the robot has actually taken during a two-minute test run.

Table I shows the results. Using only the behaviors for
the avoidance of static obstacles 34 collisions occurred.
Using the reactive methods the number shrank to one. When

Fig. 12. Stress test: The robot is ordered to move to the X in the middle
while three objects move back and forth on paths crossing just this point.
In a two-minute test run there were 50 possible collisions. In the bottom
right corner is an exemplary extract from the planner with the calculated
and optimized path.

TABLE I
RESULTS OF STRESS TEST: 50 PASSES DURING TWO MINUTES

Method used Collisions Average distance to closest object
Static avoidance 34 146 mm
Escape and Evade 1 665 mm
Above + Planner 1 1041 mm

additionally using the planner the distance to the closest
object is significantly higher resulting in higher safety. The
single collision in both cases was unavoidable because the
(simulated) objects turn around without warning - beyond
the laws of inertia - without having to (de-) accelerate.

TABLE II
OVERALL SUCCESS RATE: 100 TRIAL RUNS

Tracking information Collisions Risky Safe
Using tracker 13 26 61
Using exact position and velocity 3 10 87

C. Overall success rate

Table II shows the overall success rate over various experi-
ments. InBOT (the real robot) was approached 100 times by
(real) shopping carts while performing various tasks. The
ordinary shopping carts were steered by people who moved
to a given goal chosen to provoke a collision while ignoring
the robot, but some even rushed directly onto the robot.
First our object tracker was used, then the exact positions
were provided. The amount of safe runs shows that the
avoidance concept performs well but tracker has to be further
improved. The majority of collisions and risky runs (slight
touching not hard enough to activate the robot’s bumper) was
caused when the cart was identified too late and the robot
did not have sufficient time to accelerate away. There were
3 collisions and 10 risky situations in the run with the exact
cart positions in which the drivers of the cart did not let
InBOT a chance to avoid them properly. The reason is the
acceleration and velocity limitation (1m/s) set for the robot
which was significantly lower than the speed of some of the
cart drivers. Additionally some forced the robot against a
wall were InBOT fell to a dead stop shortly before hitting
it and then was hit by the cart. Keeping in mind that the
intention is to avoid accidental collisions the robot fulfilled
our expectations. Finally we want to note here that in all
cases of collisions InBOT was hit by the approaching object
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due to insufficient dodging - InBOT itself did not run into any
objects or into the path of an approaching object. Therefore
safety from the robot’s point of view was always granted.

D. System in application
The last test we want to present includes some scenes from

a shopping experiment where the robot is hindered in exe-
cuting given tasks by dynamic obstacles (e.g. other shoppers
with shopping carts). Fig. 13 shows a single shopping run in
a small laboratory supermarket setting. The user is asked to
pick up 4 products while other shoppers are moving around
him with their carts. First the robot guides the user to the first
product and simultaneously avoids the moving obstacle A,
later in the Following Mode the robot keeps a safe distance
from obstacles B and C. The encounter with cart C is shown
in Fig. 14 as well. In all cases the robot did not move into
other objects and did not collide with it’s user (as described
in section III and Fig. 2 the presented behaviors are merged
with the behaviors for handling static obstacles and the safety
module counterchecks all movement commands in the end).

Fig. 13. Shopping run: the user starts the robot in the lower right (grey
rectangle) and is guided to the first product (1) while avoiding the moving
shopping cart A: strong bend to the left at the yellow flash symbol. After
driving to the next product (3) the robot continues to product (4) and avoids
the crossing cart B by slowing down and letting it pass. The robot continues
by aligning itself behind the cart (orange flashes). While following to the
checkout counter (5) the robot is cut by C. Again the robot lets the cart
pass (red flash). (Robot path red, critical areas: flash symbols, the user -
who is continuously impairing the robot being another close-by obstacle -
is omitted for better perceptibility).

Fig. 14. Control Sharing: while in Following Mode the user exercises full
control of the robot (control share of user: red), but when approached by the
cart C the robot takes over a share of control to avoid the collision (control
share of robot: green) resulting in a direction change and stopping of the
robot (velocity of robot: blue).

VII. CONCLUSIONS
Finally the system for avoidance of dynamic obstacles is

ready and operational. In several tests it has proven a suitable

performance. First it consists of two reactive components
to guarantee suitable reaction times: in a suddenly apparent
pre-collision situation the robot can react with its maximum
possible acceleration within 20ms (fastest cycle time in the
control architecture). And second of a spatio-temporal planer
to provide proactive and deliberative commands in complex
situations. When the planning should fail or take too long as
well as in situations when no planning is possible (such as
in the Power Assisted Control Mode or the Visual Servoing
Mode - here no target location is available) the gap is
filled by the reactive behaviors. The system was designed
to avoid accidental collisions and performs well under this
assumption. If someone should really try to hit the robot he
will succeed due to the velocity and acceleration limitations
applied on the robot.
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