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Abstract— Robotic agents that can explore and sample in
a completely unsupervised fashion could greatly increase the
amount of scientific data gathered in dangerous and inaccessible
environments. Our application is imaging the benthos using an
autonomous underwater vehicle with limited communication
to surface craft. Robotic exploration of this nature demands in
situ data analysis. To this end, this paper presents results of
using a Gaussian Mixture Model (GMM), a Hidden Markov
Model (HMM) filter, an Infinite Gaussian Mixture Model
(IGMM) and a Variation Dirichlet Process model (VDP) for
the classification of benthic habitats. All of the models are
trained using unsupervised methods. Furthermore, the IGMM
and VDP are trained without knowing the the number of classes
in the dataset. It was found that the sequential information
the HMM filter provides to the classification process adds lag
to the habitat boundary estimates, reducing the classification
accuracy. The VDP proved to be the most accurate classifier of
the four tested, and also one of the fastest to train. We conclude
that the VDP is a powerful model for entirely autonomous
labelling of benthic datasets.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are often lim-
ited to performing fixed, pre-planned surveys [1], [2]. When
used in this manner, the AUV may not completely capture
processes of interest. This is exacerbated if there is little a
priori information on the areas to be surveyed during the
mission planning phase. To overcome this limitation, AUVs,
and other autonomous agents, should be able to adapt their
mission plans to suit scientific goals.

Adaptive sampling requires real-time processing and in-
terpretation of data that is being gathered; so subsequent
actions can be taken that are likely to increase the value
of the resulting data products. One way of interpreting data
is to aggregate, or cluster, it into classes that have a semantic
categorical meaning, such as different habitats.

Often prior knowledge of the process of interest is required
before the start of an adaptive mission in order to train the
probabilistic models used for inference [3], [4]. We aim to
have the AUV enter an environment with little or no prior
training, and in a completely unsupervised manner, form its
own representation of the environment. This requires the
AUV to autonomously identify how many habitats are in the
data it has gathered, and then classify the data accordingly.

Rather than using discriminative regression models for
classification, such as logistic or probit regression, multino-
mial logit models, Support Vector Machines and Gaussian
Process Classifiers, we have chosen to use generative Gaus-

sian Mixture Model (GMM) based density estimators. This
class of probabilistic model allows us to exploit aspects of the
structure of the data that may not be possible with regression
based methods. For instance, the Hidden Markov Model
(HMM) allows us to exploit sequential correlations in the
data, and the Infinite Gaussian Mixture Model (IGMM) and
Variational Dirichlet Process model (VDP) can automatically
infer the number of classes present.

The sequential nature of data captured by an AUV suggests
that correlations will exist between the benthic habitats
in subsequent images. We wish to determine whether ac-
counting for these correlations improves the performance
of habitat classification. HMMs have been used to provide
contextual prior information for visually-based place and
object recognition algorithms, with significant improvements
in classification error rates [5]. HMMs have also previously
been used to estimate the state of the environment surround-
ing an AUV in order to trigger some adaptive behaviour.
Applications include the monitoring of various chemical
features in a volume of water. The HMM infers whether
the AUV is ‘in’ or ‘out’ of the feature. This can then trigger
a sample of the chemical feature to be taken [6], or for the
AUV to track the boundary of a feature such as a chemical
spill [7].

This paper presents an investigation into the GMM and
three variants – the HMM, the IGMM and the VDP –
for the classification of benthic habitats. Data gathered by
a stereo camera on the Seabed class AUV, Sirius [8], at
a recent deployment in Scott Reef in Western Australia
is used to illustrate the performance of these models. We
have used unsupervised methods to train these models to
demonstrate learning with minimal interaction from a human
user. Furthermore we show that the IGMM and VDP can be
learned entirely autonomously – without knowledge of the
number of habitats in an environment.

The remainder of this paper is organised as follows.
Sections II – V introduce the GMM, HMM, IGMM and
VDP and their training and classification algorithms. Section
VI discusses the visual rugosity habitat descriptor used and
the Scott Reef dataset. Results are presented comparing the
GMM, HMM, IGMM and VDP in Section VII. Finally,
Sections VIII and IX present a discussion, the conclusion
of this study, and outline our on-going work in this area.
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II. GAUSSIAN MIXTURE MODEL

An important assumption made in this paper is that the
observable data is distinctly multimodal, and can be repre-
sented as a Gaussian Mixture Model – which are simply a
linear sum of Gaussian distributions [9]. GMMs represent a
continuous distribution of an observation yi that is dependent
on a discrete, unobservable (or latent), variable zi. The
observations are assumed to be independently and identically
distributed (i.i.d.). In this case the latent variable, zi, is the
type of habitat in the image (also referred to as the label).
The observation, yi, is a descriptor, or a vector of descriptors,
extracted from the image such as the rugosity descriptor
presented in Section VI.

The latent can be represented by a 1-of-K vector, where K
is the number of possible habitats that can be observed. For
example, if K = 4, and zi,3 = 1 then zi = {0, 0, 1, 0}.
Generally each habitat type, k, will correspond to one
Gaussian in the mixture. The latent variable has the following
marginal distribution:

p(zi) = p({zi,1 . . . zi,K}) = {π1, . . . , πK}, (1)

where πk are the mixing coefficients, or weights given to a
Gaussian in the mixture. πk must be in the range [0, 1] and∑

K πk = 1. The marginal distribution of the observation,
p(yi), is a linear sum of Gaussians,

p(yi) =

K∑
k=1

πkN (yi|µk,Σk) . (2)

Here the parameter µk is the mean vector and Σk is the
covariance matrix, of the kth multivariate Gaussian. From
(1) and (2) we can see the conditional distribution of the
mixture is,

p(yi|zi,k = 1) = N (yi|µk,Σk) . (3)

This is the likelihood of observing yi, given each Gaussian
distribution corresponds to a class. Using this fact it is
possible to find the probability of a mixture component
generating an observation, or the probability of a habitat
generating a type of image. The graphical model of the
interaction between the observed and latent variables is
shown in Figure 1.

A. Training

Classifying habitats using a mixture of Gaussians requires
that the parameters of the distributions are learned. Specif-
ically the means and covariances of the Gaussians (µk

and Σk), as well as the Gaussian mixture weights (πk).
This is achieved using the Expectation-Maximisation (EM)
algorithm, which learns the expectations of these parameters
with respect to the data. Naturally the training set used has
to be representative of the environment to be classified.
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Fig. 1: GMM graphical model. zi is the latent variable or
class, and yi is the observation. The filled points refer to
point estimates (Dirac delta functions) of the parameters,
rather than distributions with associated uncertainty.

B. Classification Algorithm

Given an observation yi, the probability of an image being
of a specific habitat, p(zi,k = 1|yi), can be calculated using
Bayes’ rule and (1) – (3),

p(zi,k = 1|yi) =
p(zi,k = 1) p(yi|zi,k = 1)

p(yi)

=
πkN (yi|µk,Σk)∑K
j=1 πjN

(
yi|µj ,Σj

) . (4)

This is also known as the responsibility of zi,k for explaining
yi [9].

III. HIDDEN MARKOV MODEL

The scale of a single image acquired by the AUV is
generally far less than the scale at which habitats change.
Coupled with the fact that an AUV follows a trajectory while
acquiring images of the benthos suggests that there will be a
sequential correlation between habitats in the images. The
i.i.d. assumption made for the Gaussians Mixture Model
does not allow this sequential information to be exploited
for classification purposes.

A Hidden Markov Model (HMM) may be viewed as a
generalisation of the GMM that relaxes this i.i.d. assumption.
That is, subsequent samples are no longer assumed indepen-
dent [9], [10]. Now the latent variables are correlated with
each other as shown in Figure 2. Because of d-separation in
this first-order model, the posterior estimate of habitat label
zn is only dependent on zn−1 (also zn+1 if we wish to use
a smoother).
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Fig. 2: Graphical representation of a Hidden Markov Model

The dependence of habitat label zn on label zn−1 is
represented by a transition matrix, T, which is a table

4425



of conditional probabilities [11]. For instance, the proba-
bility of transition from label k to label k∗ is Tkk∗ =
p(zn = k|zn−1 = k∗), or generally

T = p(zn|zn−1) . (5)

In this instance observations are mixtures of Gaussians,
so the observation matrix, On = p(yn|zn), is the likelihood
distribution given by (3). The observations in a HMM do
not always need to be Gaussian mixtures – other common
distributions are binomial and multinomial.

A. Training

As with the GMM classifier, the HMM parameters, µk,
Σk, πk and T, can be learned by using the EM algorithm.

Unlike GMM training, the HMM EM algorithm relies
upon having a sequence to learn valid transition probabilities.
Because of this, it was found that the HMM variant of the
EM algorithm needed substantially more training data than
the GMM variant.

B. Filtering (forward) Algorithm

To classify each image, a discrete filtering or forward
recursive algorithm was used. The forward/filter algorithm
is a recursive Bayes’ filter with predict and observe/update
stages. The posterior estimate of the habitat is then

p(zn|yn) ∝ p(yn|zn)
∑
zn−1

p(zn|zn−1) p(zn−1|yn−1) . (6)

Equation (6) can be represented in matrix form [11],

fn ∝ On ∗T>fn−1, (7)

where f is a forward message (or posterior distribution), and
‘∗’ is an element-wise multiplication1.

Two other major algorithms exist for HMMs; the forward-
backward algorithm which is a smoothing algorithm, and the
Viterbi algorithm which is a maximum likelihood algorithm.
These algorithms may yield better classification results,
however they are not realtime algorithms, and would be of
most use in a post-processing scenario. As such, we have
focused on the forward/filter algorithm.

IV. INFINITE GAUSSIAN MIXTURE MODEL

The GMM and HMM are examples of parametric models
that require the number of habitats to be specified prior to
training. For autonomous exploration this may be unknown.
Conversely, non-parametric models are largely inferred from
structures that are present in the data itself. The general
form of the non-parametric model used in this work is
the Dirichlet Process Mixture Model (DPMM) [12], [13].
It has the appealing property that the number of mixtures,
or clusters that are present in a dataset does not need to be
known a priori. DPMMs assume there are an infinite number
of clusters, but only a few are actually present in a given
dataset, the number of which is dependant on an aggregation
parameter, α. This parameter is inferred from the data, and

1This element-wise multiplication can be avoided by making the obser-
vation a matrix specified by diag(On).

generally only allows the number of mixtures to increase as
more data is observed.

The form of DPMM presented in this section the uni-
variate2 Infinite Gaussian Mixture Model (IGMM) [14].
This model uses the Polya urn scheme for representing the
DPMM [15]. It is simply a Bayesian formulation of a finite
Gaussian mixture model that has been generalised to have
an infinite number of mixture components,

p(yi) =

∞∑
k

πkN
(
yi|µk, s

−1
k

)
. (8)

where sk is the precision, or inverse variance. These are
sampled from a conditionally conjugate Normal-Gamma
prior distribution with hyperparameters Θ = {β,w, λ, r},

µk ∼ N
(
λ, r−1

)
and sk ∼ G

(
β,w−1

)
.

These hyperparameters also have distributions from which
they are drawn. Most are conjugate except for β, which
requires Adaptive Rejection Sampling [16]. We can also
sample the mixture weights according to a Dirichlet distribu-
tion [17] once we know the number of mixture components,
K, with one or more observations assigned to them (nk > 0),

π ∼ Dir (n1 + α/K, . . . , nK + α/K) . (9)

It is important to note that the weights are integrated out in
the IGMM, so (9) is not explicitly in the formulation [14].
The hierarchy of this model is illustrated in Figure 3.
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Fig. 3: Graphical model of the IGMM (adapted from [14],
[17]). The hyperparameters are α and Θ = {β,w, λ, r}.
Each mixture component has its own parameters, {µk, s

−1
k },

drawn from the hyperparameter space.

A. Training
Training an IGMM is done by Gibbs sampling [14] the

class or mixture labels, zi, in the following manner,

p(zi = k|z−i, α, µk, sk) ∝ n−i,k
n− 1− α

N
(
yi|µk, s

−1
k

)
,

(10)

p(zi 6= k ∀k|z−i, α,Θ) ∝ α

n− 1− α

×
∫
N
(
yi|µk, s

−1
k

)
p
(
µk, s

−1
k |Θ

)
dµk ds−1k . (11)

2A multivariate formulation of the IGMM also exists [14].
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Here zi indicates the assignments3 of observations, yi
to an existing mixture component k. The subscript −i
means all observations except i, so n−i,k means the number
of observations, not including i, that belong to mixture
component k. The probability of an observation belonging
to an existing Gaussian mixture component is given by
(10). The probability of the observation belonging to a new
component is given by (11). Unfortunately the integral in
(11) is intractable because the prior, p

(
µk, s

−1
k |Θ

)
, is only

conditionally conjugate (see [14], [18] for a discussion). To
overcome this, the prior is sampled to generate an estimate
of the probability of generating a new class. Once a new
observation is classified, the model hyperparameters and
parameters are updated. Specifically, Algorithm 8 from [19]
is used – for more detail see [14] and for sampling α see [20].

The Gibbs sampler is run until apparent convergence, and
since we are using the IGMM for classification, only one
sample of the IGMM is used as the classification model.
A few low weight mixtures may still remain in the chosen
sample, so one hard-assignment EM iteration is run over the
observation labels. This makes the resulting density more
reasonable for classification [21].

B. Classification Algorithm

For this paper, the IGMM uses the same classification
algorithm as the GMM, given in (4). However we may also
use (10) and (11) to classify incoming observations during
a mission, while also updating the hierarchy in Figure 3.
This assigns a probability to an observation belonging to a
previously unseen habitat classes, and continues the learning
process through the entire mission [21].

V. VARIATIONAL DIRICHLET PROCESS MIXTURE MODEL

A second non-parametric model is used in this paper,
and is a mean-field variational approximation to the ‘stick
breaking’ representation of a DPMM [22]. It is called a
Variational Dirichlet Process (VDP) and can be used for all
exponential family mixture distributions [23]. The Gaussian
mixture formulation of the model is similar to that of the
IGMM,

p(yi) =

∞∑
k

πkN
(
yi|µk,Λ

−1
k

)
. (12)

For this model we again use precision rather than variance
(Λ = Σ−1), and the latent class label, zi, is once again a 1-
of-K vector. The mean and precision have a fully conjugate
Gaussian-Wishart prior distribution with hyperparameters
{m0, β0,W0, ν0},

p(µk,Λk) = p(µk|Λk) p(Λk) (13)

= N
(
µk|m0, (β0Λk)−1

)
W(Λk|W0, ν0) .

3This does not necessarily need to be a 1-of-K representation. In this
case zi takes on an integer value.

The mixture weights, p(zi) = {πk . . . π∞}, have a ‘stick
breaking’ prior with an infinite collection of ‘stick lengths’,
V = {vk . . . v∞},

πk(V ) = vk

k−1∏
j=1

(1− vj), (14)

where vk ∼ β(1, α).
The variational model makes the approximation that (13)

and (14) can be represented by factored distributions, q(·).
There is a factor distribution for each mixture component
with parameters {mk, βk,Wk, νk}Tk=1,

p(µk,Λk) ≈ q(µk|Λk) q(Λk) (15)

= N
(
µk|mk, (βkΛk)−1

)
W(Λk|Wk, νk) ,

and also one for each mixture weight stick length with
parameters {φk,1, φk,2}Tk=1,

p(vk|α) ≈ q(vk|φk) = β(φk,1, φk,2) , (16)

up to some mixture truncation level k = {1 . . . T}. Typically
T > K – the extraneous mixtures have negligible weights
and naturally revert to their prior values. The graphical model
of (12), (13) and (14) is shown in Figure 4.
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Fig. 4: VDP graphical model (not showing the approxi-
mation). Point estimates are made of the hyperparameters,
unlike the IGMM, which specfies two hierarchical levels of
priors.

Point estimates (or Dirac delta functions) of the hyperpa-
rameters are made in this model, rather than specifying a
distribution over the hyperparmeters. The hierarchy can be
extended to account for a distribution over α [24], however
it has been shown that the aggregation parameter only has a
weak influence on the learned mixture density for mean-field
variational approximations [25].

A. Training

The VDP is trained by a variational Bayes Expectation-
Maximisation (VBEM) algorithm, detailed in [23]. An ac-
celerated VBEM algorithm that compresses the training data
using kd-trees was also presented by the authors, however
we have not yet implemented the accelerated version.
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Unlike other variational Bayesian methods for mixture
models ([9], [24], [26]), the VDP is nested with respect to
the truncation level, T , [23]. This means that the optimal
number of mixtures found is not a function of the chosen
starting truncation level. This allows the truncation level to
be increased during learning and still have VBEM converge
to an optimal number of mixture components. If the model
was not nested, it would be necessary to restart the learning
process for each truncation level to make sure that the
optimum number of components is found.

Training of the nested VDP is performed by firstly starting
with a specified truncation level (we start with T = 1).
VBEM is then run until it converges, after which the mixture
components are split in a direction perpendicular to their
principal components. The split that leads to the maximal
reduction of free energy (analogous to log-likelihood) is
chosen and also tested for convergence; i.e. if it improves
the free energy by more than a convergence threshold it is
accepted, and VBEM is resumed. If the split is not accepted
the algorithm has converged to a learned distribution. We
then also remove mixture components that have negligible
weights (and consequently are indistinguishable from their
prior values).

B. Classification Algorithm

The VDP approximation uses a very similar classification
algorithm as the GMM –

q(zi,k = 1|yi) =
exp(Si,k)∑K
j=1 exp(Si,j)

. (17)

Again q(·) is an approximating distribution (factored over i),
and

Si,k = EV [log p(πk|V )] + Eµk,Λk
[logN (yi|µk,Λk)] .

(18)
However these expectations are actually functions of the
hyperparameters, {φk,1, φk,2,mk, βk,Wk, νk}, rather than
the parameters themselves, {µk,Λk}, as is the case with
EM.

VI. VISUAL HABITAT DESCRIPTORS AND DATASET

Stereo camera data gathered during a recent AUV deploy-
ment at Scott Reef in Western Australia is used to illustrate
the performance of the models. The dive chosen was used
to create a full-coverage 50 m by 75 m photomosaic of
the benthos. It features clear transitions between dense coral
cover, barren sand and an intermediate, partially populated
substrate class, shown in Figure 5a. All of the data is geo-
referenced by a visually based extended information-form
SLAM filter [27].

Although there are many choices of visual features [28],
the focus of the paper is on the machinery capable of classi-
fying observations into habitats without human intervention.

The habitat descriptor tested is a bathymetric rugosity
index derived from the 3D stereo imagery [29]. The geo-
referenced stereo imagery provided by the AUV can be
used to generate fine-scale bathymetric reconstructions in the

(a)
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(b)

Fig. 5: The Scott Reef Dataset. (a) Image reconstruction of
the dense survey, consisting of 50 parallel tracklines, each
75 m long and spaced one meter apart. (b) Histograms of
the rugosity feature for the training and test data.

form of 3D triangular meshes [30]. From these meshes, it is
possible to derive multi-scale terrain complexity measures of
rugosity. These measures proved to be very effective at dis-
criminating between habitats. Rugosity, yrug , is essentially
the ratio between the surface (draped) area, and a plane that
fits the surface. A flat surface has a rugosity of 1, while more
complex structures have higher values.

Terrain complexity measures, such as rugosity, are com-
monly used to describe habitats by marine ecologists since
they captures habitat complexity, which is known to correlate
with biodiversity [31].

Histograms of rugosity for a single habitat tend to be
distributed in a log-normal fashion in the range [1,∞), so
we apply the transformation:

y = C · log(yrug − 1), (19)

which makes the habitat data have a Gaussian shape in the
range of (−∞,∞). C is an arbitrary scaling factor applied
to increase the over-all variance of the resulting density. This
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descriptor picks out the transition between the reef and sand
habitats distinctly, which results in good separation between
the modes that describe these habitats, Figure 5b.

We used the first 1000 stereo pairs as training data (the
first few transects), and then the rest of the dataset serves as
the test data (approx. 8000 stereo pairs), the histograms of
this data is shown in Figure 5b.

The reason for using the first few transects as training data
is we envisage a possible situation where an AUV will in fact
complete a preliminary, pre-planned survey. The data from
this will be used to autonomously train classifiers. Then the
AUV will enter an adaptive phase while still deployed, where
it will visit and classify areas which are deemed to increase
the scientific value of the mission.

VII. RESULTS

The class labels appear as coloured markers in Figure 6,
each marker corresponding to a stereo image pair. If there is
a high probability associated with an observation belonging
to a particular class, its marker will be coloured accordingly.
We have also plotted the posterior entropy of an observation
belonging to a class,

H(zi|yi) = −
∑
K

p(zi|yi) log p(zi|yi) . (20)

This is represented as the size of a marker in our plots, a
higher entropy (or less-certain classification) being signified
by a larger marker. Naturally there is no entropy associated
with our hand-labelled ground truth (Figure 6e), so all of its
markers are a uniform size.

In Figure 6, K was set to three for the GMM and
HMM EM algorithms. The VDP also could distinguish three
distinct habitat classes, and for this run the IGMM returned
three classes. Blue corresponds to the barren sand habitat,
green to the intermediate/mixture habitat, and red to the reef
habitat. It is somewhat hard to gauge which classifier is most
representative of the hand-labelled ground truth from these
plots, but it is clear that the HMM filter has the lowest
entropies associated with its classifications. This is to be
expected since additional state transition information is being
incorporated into the model which is not present in the
other mixture models. However, there is some lag associated
with the boundary estimate between each transect, especially
between the barren sand and mixture classes, where the
transition boundary is less clearly defined.

TABLE I: Model classification performance.

Models Correctly Classified (%) Relative to GMM (%)
GMM 87.88 0
HMM 86.47 −1.41
IGMM 89.04 +1.16
VDP 90.17 +2.29

Quantitative results are presented in Table I and II. The
VDP and IGMM have higher classification accuracy than
the GMM and HMM when compared to the ground truth.
The VDP yielding the most precise result, and the HMM
the worst. This dataset is quite separable, so generally

classification performance is high, and it is arguable that the
HMM filtering algorithm is unnecessary. In fact the HMM
also seems to have re-enforced the GMM classification errors
in the reef habitat (lower left corner in Figure 6b).

TABLE II: Confusion Matrices – each column is normalised
by the population of each class in the ground truth dataset.

Truth
Classes Barren Mix Reef
Barren 0.9977 0.4957 0

GMM Mix 0.0023 0.3894 0.0912
Reef 0 0.1150 0.9088

Barren 0.9977 0.4089 0
HMM Mix 0.0023 0.4946 0.1373

Reef 0 0.0965 0.8627
Barren 0.9966 0.4957 0

IGMM Mix 0.0034 0.3807 0.0685
Reef 0 0.1236 0.9315

Barren 0.9962 0.4772 0
VDP Mix 0.0038 0.3861 0.0493

Reef 0 0.1367 0.9507

The normalised confusion matrices presented in Table II
show that the most confusion is in the classification of the
mixture class. The HMM performs the best at classifying
this class, but at the cost of inconsistent habitat boundary
estimates, and reinforcing the mis-classification of the large
reef class. The VDP outperforms the others in classifying the
reef habitat, which contributes greatly to its overall accuracy
for this dataset.

TABLE III: Example Gibbs Sampling runs of the IGMM.

Run No. Classes Classes (π ≥ 2%) Log-Likelihood Iter.
1 4 4 -2055 8
2 7 5 -2037 26
3 3 3 -2059 34
4 4 3 -2057 27
5 4 4 -2059 13
6 9 6 -2049 41

Unfortunately, the IGMM result presented here is not nec-
essarily representative of the IGMM’s general performance.
This is because Gibbs sampling is a stochastic process, so
it leads to different learned density parameters every run.
Table III presents six training runs of the IGMM over the
same training data. The number of mixtures, likelihoods, and
iterations until convergence vary significantly. This makes it
hard to compare Gibbs sampling to deterministic learning
methods such as EM and Variational Bayes, which will con-
verge to the same results given the same starting conditions
and training data.

VIII. DISCUSSION

The structure, and the performance, of each model pre-
sented in this paper is tightly coupled to its training algo-
rithm. Training the GMM and HMM using EM is fast and
only requires a few iterations before converging. Training
the IGMM using Gibbs sampling requires considerably more
time. Each sweep is slower than a corresponding EM it-
eration, and convergence is fairly arbitrary. VBEM is fast
since it is similar to EM, and also has the flexibility of
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(a) GMM (b) HMM (c) IGMM

(d) VDP (e) Hand-labelled ground truth (f) Sample images from the ground truth

Fig. 6: Classification results for the test data in the Scott Reef dataset. The colour of the markers represents the classified
habitat type of an image. The size of the markers represents the classification entropy (larger is more entropy).

Gibbs sampling in that the number of classes does not need
to be known a priori. Furthermore, VBEM is a Bayesian
probabilistic method, so it is not susceptible to over-fitting
like EM.

Typically training the IGMM using Gibbs sampling is
for probability density estimation and not classification [14].
This is because multiple samples of the IGMM’s parameters
are combined linearly to then form the predictive distribution.
There is no clear way to do this for classification, since we
need to have only one mixture component correspond to each
habitat class. We are then limited to only using one sample
of the IGMM for classification, with no guarantees that this
sample will be appropriate for classification. Removing low
weight mixtures by performing a hard EM assignment step
somewhat improves the IGMM for classification, but the
mean-field variational approach seems more appropriate for
classification using DPMMs. A non-linear, generative, classi-
fication model based upon DPMMs exists [32] which is also
more appropriate for classification tasks, however it requires
at least partially labelled data which is not appropriate for
our application. See [21] for a more thorough discussion on
the shortcomings of the IGMM for classification.

The results raise the question of whether a temporal
filtering algorithm is appropriate for adaptive behaviour. Lag
is introduced into the estimates of habitat boundaries that
could be good triggers for adaptive behaviours. Furthermore,
classification errors may be reinforced, as in the case of the

reef habitat. This lag issue may be partially resolved by
running a smoothing algorithm, e.g. the forward-backward
algorithm, over a finite window as opposed to the filter
algorithm used in this paper. Running the forward-backward
algorithm over all of the data is not suited to online tasks,
but is appropriate for post-processing tasks.

The need for smoothing can be mostly mitigated by using
descriptors that effectively discriminate various habitats, such
as the rugosity descriptor. Using a higher dimensional vector
of good descriptors as the observation data would improve
these results again. For a good discussion on smoothing,
see [33].

A limiting factor with training the GMM and HMM using
EM is that it assumes the number of habitats, K, is known
prior to training. The IGMM (Gibbs sampling) and VDP
(VBEM) do not require this information, and what is more
they can be modified to recognise new, unseen habitats on-
line as more information is gathered in the environment [21],
[34].

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that relatively simple clas-
sification models can be applied successfully to benthic
classification if the habitat descriptor used is discriminating.
Taking into account sequential correlations in this data, in
the form of a Hidden Markov Model, does not improve
classification results in this instance, and will introduce lag
into class boundary estimates.
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The non-parametric Dirichlet process mixture model
derivatives; the Infinite Gaussian mixture model and Vari-
ational Dirichlet Process model are both capable of au-
tonomously learning the number of classes in the benthic
dataset presented. However, the VDP proved to be superior
in that its learning algorithm is fast and deterministic like
Expectation Maximisation, and although an approximation
to a true DPMM, it still retains the inherent capability of
being able to represent an infinite number of classes.

As future work we will look into incremental, online learn-
ing techniques for the VDP so not all of the habitats need to
be present within the preliminary survey in order recognise
new habitats, and cue adaptive behaviours. We are also in
the process of using the VDP as a ‘supervisor’ for training
Gaussian Process (GP) regression and classification models
[35]. Combining the VDP with GPs in this way will allow
spatial maps of benthic environments to be autonomously
learned. These probabilistic maps will could then provide
additional adaptive capabilities to an AUV.
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