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Abstract— While a robot control framework generally focuses
on real-time performance and efficient data exchange between
cooperating tasks or processes, an application such as robot-
assisted surgery often demands information from, and inte-
gration with, a number of other devices. Thus, the software
framework for the integrated system may have different re-
quirements and priorities than a framework for real-time robot
control. This paper reports on a component-based architecture
that seamlessly bridges the gap between real-time robot control
and a distributed, integrated system. The starting point is the
cisst library, which provides a component-based framework for
lock-free and efficient data exchange between multiple threads
within a single process, which is suitable for real-time robot
control. This paper describes the extension of the cisst library
to support distributed systems, while keeping the same pro-
gramming model as the single-process, multi-threaded scenario.
Thus, application software does not need to know whether the
component providing services is within the same process, in a
different process, or on a different computer. In comparison,
most standard middleware packages support components that
fall within the last two categories (different processes on the
same computer or different computers). This does not allow
them to take advantage of the higher performance that can be
achieved using standard lock-free data structures that do not
rely on the operating system or on middleware services. Thus,
the novelty of this approach is that the same component-based
architecture and associated programming model extends from
a multi-threaded scenario (which provides the best real-time
performance) to a standard multi-process distributed system.

I. INTRODUCTION

As robots become more prevalent in society, there is a
need for integration with other devices. This is especially
true in the area of medicine, where several robot systems
have already been introduced into the operating room, but
still function primarily in a “stand-alone” configuration with
proprietary communication protocols and limited interaction
with other medical devices.

We believe that future medical robots will need to integrate
with a range of external sensors and imaging devices and
utilize both pre-operative and intra-operative information. To
address these needs and enable rapid prototyping of new
applications for robot-assisted surgery, we are developing the
Surgical Assistant Workstation (SAW) software framework[1],
[2]. SAW consists of a component-based framework and a
set of implemented components that provide interfaces to
many of the hardware and software modules commonly used
for robot-assisted surgery. Hardware interface components
support common robotic devices, imagers, and other sensors,
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Fig. 1: SAW Components

including a “wrapper” for the research interface [3] to
the da Vinci surgical robot (enabled upon conclusion of
a collaborative agreement with the manufacturer). Software
components provide functionality such as video processing,
3D user interfaces, and robot motion control.

The SAW framework is based on the cisst libraries [4]
(see Fig. 1). This paper presents the underlying component-
based framework in cisst and introduces an extension of this
framework from multi-threaded (single process) systems to
multi-process and multi-host systems via a network layer. The
network layer is currently implemented using the Internet
Communications Engine (ICE), but we include an abstraction
layer that enables other network middleware to be used.

The key point of our architecture is that it is designed not
only for real-time robot control, but also for the integration
of robots into larger, more complex systems. Thus, the ar-
chitecture satisfies real-time performance requirements while
also enabling the use of conventional operating systems and
devices. Furthermore, the same component-based program-
ming model is used regardless of whether the programmer is
implementing hard-real-time robot control with a real-time
operating system (possibly with multiple threads in a single
process), or data processing (e.g., capturing and processing
video streams) with a conventional operating system such as
Microsoft Windows, or both.

II. RELATED WORK

A number of architectures, frameworks, and packages to
support efficient development of robot control systems have
been proposed and developed. Although many of them have
adopted a component-based architecture with the goal of
achieving software reusability, their overall designs differ,
often due to the desire to efficiently support a particular
project or environment. Several reviews of such systems for
robotics research have already been published [5], [6], [7], [8],
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[9], [10], and there is a web-site dedicated to cataloguing and
reviewing these systems as well as standardizing a reference
architecture for robotics [11].

Several commonly used frameworks for recent robotics
research include Player, OROCOS, Orca and ROS.
Player: Player [12] is a popular set of tools for mobile robot
research including a range of robotic device drivers. Concep-
tually, it is a hardware abstraction layer for robotic devices
that also includes data communication mechanisms among
drivers and control programs. Communication interfaces are
based on a TCP socket-based client/server architecture.
OROCOS: The Open RObot COntrol Software (OROCOS)
[13] was started in 2001 to develop open source robot
control software. It includes real-time C++ libraries for
advanced machine-tool and robot control. Orocos components
communicate with each other using interfaces which consist
of properties, events, methods, commands and data flow ports
and this communication relies on the ACE ORB (TAO), a
popular open-source CORBA implementation.
Orca: Branching from the OROCOS project, the Orca Project
[14], [15] aims to provide building-blocks (components) that
can be combined together to build arbitrarily complex non-
real-time robotic systems. It uses the Internet Communication
Engine (ICE) [16] as network middleware.
ROS: Willow Garage’s Robot Operating System (ROS) [17] is
a more recent entry to the field, but has undergone rapid devel-
opment. It is an open-source package that provides operating
system types of services, such as hardware abstraction, low-
level device control, and communication between processes,
as well as numerous tools to facilitate development. The intent
is to create a common platform upon which researchers can
build, and then share, high-level robotic algorithms in areas
such as navigation, localization, planning, and manipulation.

Although the above frameworks share a component-based
design philosophy, each has its own characteristics and
architecture. The next sections summarize the cisst component
framework and introduce the network layer; these are followed
by a discussion of the differences between cisst and the other
software packages.

III. THE cisst COMPONENT FRAMEWORK

The cisst package [18] is a collection of open-source C++
software libraries that are designed to ease the development
of computer-assisted intervention systems. It consists of
two layers, foundation libraries and component framework,
as in Fig. 2. According to [19], “a component framework

Fig. 2: The cisst Library
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Fig. 3: Communication between tasks

is a skeleton of a component implementation that can be
specialized by a component developer to produce custom com-
ponents.” In the cisst package, the component framework is
primarily provided by the cisstMultiTask library; specifically,
this library defines a base component class, mtsComponent,
and a number of derived component frameworks that fa-
cilitate creation of components with active execution mod-
els, such as mtsTaskPeriodic, mtsTaskContinuous,
mtsTaskFromCallback, and mtsTaskFromSignal.
All of these component frameworks contain a list of provided
interfaces and required interfaces. The “task” components
contain a thread and therefore also contain elements, such as
a state table and a set of input queues, that support efficient,
lock-free and thread-safe data exchange, as shown in Fig. 3
[20]. The state table is a circular (ring) buffer that stores a
time history of the “important” data in a task; this data can
then be read by other components. The state table thus has a
single writer and potentially many readers, and thread-safety
can be assured without the use of a mutex (lock). The input
queues are used to receive commands or events from other
components. A separate queue is created for each connected
component, so that each queue has only a single writer and a
single reader, thus also guaranteeing lock-free thread-safety.

The system defines a component manager that is used to
control components (e.g., start, stop) and to create connections
between their provided and required interfaces. For example,
the required interface of component A can be connected to
the provided interface of component B, as shown in Fig. 4.
In this context, it is convenient to refer to component A as
the client and component B as the server, though it should be
noted that every component can have provided and required
interfaces and therefore act as both client and server.

Each provided interface contains a number of command
objects that encapsulate the available services, which generally
are implemented by class member functions of the server
component. Command objects are strongly typed, and can
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Fig. 4: Client-server components showing command and event
objects

be one of four types: void, write, read, and qualified read
(qualified read has two parameters: one input, the qualifier,
that specifies the data to be read, and one output for the
returned data). Note, however, that the command object also
encapsulates the data exchange mechanism. For example,
in most cases executing a void or write command object
(in the client thread) does not result in an immediate call
to the member function in the server, but rather causes the
request to be queued for later execution by the server task,
within its own thread, as shown in Fig. 3. This ability to
encapsulate the data exchange mechanism in the command
object also enables the “behind the scenes” implementation of
a network interface, as described in the subsequent sections.
The provided interface may also generate events, either with
a payload (write event) or without (void event). The client
task can use command objects to specify the event handlers
for these events.

The client’s required interface contains a list of com-
mand pointers that are set to point to the corresponding
command objects in the server’s provided interface. For
convenience, the cisstMultiTask library defines a set of func-
tion classes (mtsFunctionVoid, mtsFunctionWrite,
mtsFunctionRead, mtsFunctionQualifiedRead)
that encapsulate the command pointer and define an over-
loaded function call (parentheses) operator. This enables a
more intuitive syntax for invoking a command object; i.e., it
looks like a regular function call. The binding of function
objects to command objects is done by comparing string
names. When the required interface is connected to a provided
interface, the system goes through the list of function objects
(in the required interface) and looks for a command object (in
the provided interface) that has the same name. This string
comparison is only performed during the initial connection;
afterwards, the client task just executes the command object
(via the bound function object).

IV. DESIGN

When extending the current data exchange mechanism of
the cisstMultiTask library to support inter-process communi-
cation (IPC), we set up design requirements as follows:

• Existing code should compile with little or no code-level
modification (backward compatibility)

• Users should require minimal code-level changes to
distribute their components over a network

• Maintain the current programming model so that ap-
plication software does not need know the system
configuration

• Support all data exchange mechanisms transparently
Two approaches that we take to meet these requirements

are the Proxy Pattern[21] and the abstraction of the network
interface layer. In the following section, we describe details
of the two approaches and show how we chose networking
middleware and how minimal code-level changes are required
to distribute components across networks.

A. Proxy Pattern

In the cisstMultiTask library, data communication between
components occurs through a pair of connected interfaces
(provided interface and required interface), so the starting
point to distribute components over a network is to split
this connection. However, the design goals require that the
current data exchange mechanism should be preserved and be
completely supported. To satisfy these two conflicting goals,
we adopted the Proxy Pattern.

1) Basic Concept: When two objects–Object A and Object
B–are locally connected to each other (i.e., running within
a single process) as in Fig. 5a, the basic concept of the
Proxy Pattern is to replace the local connection between
them by a logical local connection over a network. Two
proxies–the Object A Proxy and the Object B Proxy–are set
up in both processes and locally connect to the corresponding
original object in the same process, as in Fig. 5b. Note that
a proxy object is always local to its original peer object and
the original local connection remains unchanged from the
original objects’ point of view.

(a) Single process

(b) Multiple processes

Fig. 5: The concept of the Proxy Pattern

2) Application to the cisstMultiTask library: If this proxy
concept is applied to two tasks connected to each other as in
Fig. 6a, the local connection can be logically extended across
a network using task proxies and two types of interface proxies
(provided interface proxy and required interface proxy). This
is shown in Fig. 6b.

This logical extension of a local connection needs further
proxy objects to be introduced because the fundamental data
exchange mechanism in cisst is based on the Command
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(a) Single process (b) Multiple processes

Fig. 6: The Proxy Pattern in the cisstMultiTask library

TABLE I: List of Proxies in the cisstMultiTask Library

Original Class Proxy Class

(Proxy Base Classes)
mtsProxyBaseCommon
mtsProxyBaseServer
mtsProxyBaseClient

mtsManagerGlobal
mtsManagerProxy
mtsManagerProxyServer
mtsManagerProxyClient

mtsComponent mtsComponentProxy

mtsComponentInterface
mtsComponentInterfaceProxy
mtsComponentInterfaceProxyServer
mtsComponentInterfaceProxyClient

mtsCommandVoid mtsCommandVoidProxy
mtsCommandWrite mtsCommandWriteProxy
mtsCommandRead mtsCommandReadProxy
mtsCommandQualifiedRead mtsCommandQualifiedReadProxy

mtsFunctionVoid mtsFunctionVoidProxy
mtsFunctionWrite mtsFunctionWriteProxy
mtsFunctionRead mtsFunctionReadProxy
mtsFunctionQualifiedRead mtsFunctionQualifiedReadProxy

mtsMulticastCommandWrite mtsMulticastCommandWriteProxy

Pattern. Thus, it is necessary to create proxy objects for the
different command types. Table I shows a complete list of
internal objects that are pertinent to the logical extension of
a connection across a network. All of these proxy objects
are completely hidden from the application layer (i.e., library
user) and they are all dynamically created and managed
internally.

An example of configuration with two processes is shown
in Fig. 7. Process P1 has two components, C1 and C2. C1 has
two required interfaces, r1 and r2, and C2 has one required
interface, r1, and one provided interface, p1. Process P2 has
two components, C2 and C3. C2 has two provided interfaces,
p1 and p2, and one required interface, r1. C3 has one
required interface, r1. These components and interfaces are
connected as follows:

Connect(P1, C1, r1, P2, C2, p1)
Connect(P1, C1, r2, P2, C2, p2)
Connect(P1, C2, r1, P2, C2, p2)
Connect(P2, C3, r1, P2, C2, p2)

The first three connections are remote and involve creation
of proxies, whereas the last one is local and does not need
any proxy. To establish these connections, the component
proxy P2C2onP1 is created in P1 and two component
proxies, P1C1onP2 and P1C2onP2, are generated in P2.

Furthermore, interface proxies are created for each component
proxy as shown in the figure and command/event/function
proxies are also created for each interface proxy as needed
(not shown in this figure). Note, however, that from each
component’s point of view, all of these connections are
logically local connections.

B. Abstraction of Network Interface Layer

We defined three base classes to encapsulate all the
implementation details for networking and make adding a new
proxy type simple and systematic. When a new network proxy
object is to be added, we can just make it inherit from either
mtsProxyBaseServer or mtsProxyBaseClient, de-
pending on its role in networking. As an example, prox-
ies of mtsManagerGlobal–which mediates data com-
munication between component managers–and proxies of
mtsComponentInterface–which handles data exchange
between interfaces–are derived from those two base classes
and thus implemented in a very similar way without any
additional code for networking. With these base classes, we
could not only significantly increase code reusability, but
also manage proxy objects in a more consistent manner.
Furthermore, this design allows the cisstMultiTask library to
be independent from a specific network middleware. Currently,
the library uses ICE but is not dependent on it. If we
redefine or modify the proxy base classes, it is possible to
substitute another middleware package–even a native socket-
based implementation.

C. Networking Middleware Selection

There are many networking middleware packages currently
available, such as Data Distribution Service (DDS), CORBA,
SOAP, Spread, and ICE. Because the network module
introduces additional processing overhead for data exchange
between tasks, it naturally affects the overall performance
of a system. From our own review and previous studies
on a robotics system with middleware [22], [15], [6], we
concluded that ICE best satisfied our design requirements for
the following reasons:

Fig. 7: A Sample Configuration
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• Multi-language and cross-platform support: ICE sup-
ports C++, Java, Python, etc. Like cisst, it can also run
under Windows, Linux, and MacOS X.

• Interface Description Language (IDL): ICE provides
the Specification Language for ICE (SLICE) to define
an interface and a data structure for a proxy in an easy,
flexible, and extensible way. Since component interfaces
and corresponding data structures are key aspects for
software reusability [23], SLICE can be a useful tool
for designing the network layer.

• High network performance: As reported by ZeroC,
ICE is known to perform efficiently in terms of latency
and throughput [24].

• Proxy Pattern: The key concept of ICE is the Proxy
Pattern, which is also the basic approach that we take.
Because of this common pattern usage, the overall
structure and implementation of the networking modules
can be more consistent and simplified.

D. Code Changes
The proxy-based design requires minimal code changes

to convert a standalone application to a network version
by encapsulating proxies inside the cisstMultiTask library
and hiding them from users. To illustrate, consider a case
where two components are running in the same process.
A controlTask controls a robot and offers a provided
interface named prvIntName and a UITask has a required
interface named reqIntName. The library includes a Local
Component Manager (LCM) which is implemented as a Sin-
gleton object. An application registers its components to the
LCM and uses it to manage them (e.g. create/start/stop/kill)
and establish connections between them. In this case, the core
implementation at the code-level would be the following:

manager = mtsComponentManager::GetInstance();
manager->AddComponent(controlTask);
manager->AddComponent(UITask);
manager->Connect(

"UITask", "reqIntName",
"controlTask", "prvIntName");

The conversion procedure to distribute the components–i.e.,
conversion from a standalone implementation (multi-threaded
in a single process) to a networked implementation (multiple
processes)–consists of three simple steps:
1) Execute the Global Component Manager (GCM): The
GCM is a centralized component that manages all LCMs
in a system and provides several useful features such as
cataloguing a list of LCMs connected or inspecting contents
of components. Conceptually, the basic functionality that
GCM does is similar to the CORBA naming service but
it can provide additional features such as real-time data
visualization or centralized data collection across the network.
The cisstMultiTask library provides two different versions of
the GCM–console-based application and GUI application–as
a standalone utility.

$ GlobalComponentManager // execute GCM

2) Define Server Component: Set up the LCM and add
server components to it. In the case of a networked LCM,

two arguments are required: the IP address of the GCM and
the name of the LCM. Then, proxy objects are internally
created and the LCM is registered to the GCM.

manager = mtsComponentManager::GetInstance(
"192.168.0.101", "ServerProcess");

manager->AddComponent(controlTask); // as before

3) Define Client Component and Connect: Set up the
LCM and add client components to it. After creating a LCM
instance as above, the LCM requests connection between two
components across a network. If connection is established
successfully, other proxy objects are created and logically
connect the two components across the network.

manager = mtsComponentManager::GetInstance(
"192.168.0.101", "ClientProcess");

manager->AddComponent(UITask); // as before
manager->Connect(
"ClientProcess", "UITask", "reqIntName",
"ServerProcess", "controlTask", "prvIntName");

From our experience converting several projects from stan-
dalone applications to distributed applications, the conversion
process has proven to be simple and easy enough to be done
in several minutes.

V. COMPARISON WITH OTHER PACKAGES

Robot control packages have their own characteristics,
architecture, and major target environments. The cisst library
does too, but is a relatively general-purpose and flexible
framework compared to the other robot control packages
mentioned earlier. In this section, we compare the cisst library
with other packages–Player, Orocos, Ora, ROS–and review
major differences in terms of system characteristics.
Networking Layer: All packages reviewed support a dis-
tributed system via either external network middleware or
internal networking layer. The cisst library (ICE), Orca (ICE),
and Orocos (CORBA ACE TAO) fall into the first category
and Player and ROS fall in the second category.
Interface Description Language (IDL): Since all packages
adopt a component-based software engineering philosophy,
they need an interface that defines data communication
between distributed components. This interface description is
tightly coupled with the networking layer and there are two
basic approaches. The cisst library (SLICE), Orca (SLICE),
and Orocos (CORBA IDL) use the external package’s IDL
while Player (configuration file) and ROS (message definition
(.msg) file) use their own mechanism. The cisst library uses
the IDL internally (e.g., to create the proxy classes), but relies
on standard type libraries (e.g., cisstParameterTypes)
to define necessary services such as serialization and deserial-
ization. Note that cisst supports a complete set of component
interface objects–four commands, two events–across networks,
whereas Orocos does not yet fully support its component
interfaces (the event interface is not available) and permits
only primitive C++ types and std::vector<double> to
be used across networks.
Operating System Support: The cisst library is truly
platform independent and includes an operating system
abstraction library (cisstOSAbstraction) that supports
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Windows, Linux, Mac OS X, real-time Linux variants (e.g.,
RTAI), and QNX. The other packages are targeting Unix-
based platforms and have partial or no support for Windows
(Orocos has just recently provided Win32 support). Cross-
platform support is important for robot-assisted surgery
applications (the main application domain for cisst) because
there often is a constraint to use a particular operating system,
such as Windows, to enable integration of hardware devices
supported only on that platform.
Real-time Support: The cisst library and Orocos support
hard real-time while Player, Orca, and ROS do not focus
on real-time performance. In case of ROS, however, it can
be extended for real-time robot control, as in the Willow
Garage PR2 robot, and has been integrated with the Orocos
Real-Time Toolkit (RTT).
System Configuration: While Player, Orca, and ROS are
based on inter-process communication (IPC), the cisst library
and Orocos have support for inter-thread communication
(ITC) within a single process as well as IPC. In case of the
cisst library, the programming interfaces (API) and internal
data exchange mechanism are identical in both cases.

These comparisons are summarized in Table II.

TABLE II: Comparison of Robotic Software Packages

OS Support
RTOS

1 Configuration2

Windows Linux MT MP MH

cisst X X X X X X

Player M X X X

OROCOS X X X X X X

Orca M X M X X

ROS M X M X X
1 means support for hard real-time (not just runnable on RTOS)
2 MT: multi-thread, MP: multi-process, MH: multi-host

X: fully supported, M: partial support

VI. CONCLUSIONS

We presented the cisst library focusing on its component-
based framework and network layer. The library supports
various platforms and the architecture of the library enables
integration of real-time and non-real-time components using
the same component-based programming model. Currently,
the SAW software framework, and underlying cisst library,
are used to develop several robot-assisted surgical applications
and we anticipate that it will be used for more diverse
domains that can benefit from its flexible architecture and
characteristics.
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