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Abstract— This paper describes a novel approach for purely
vision based mobile robot navigation. The visual obstacle
avoidance and corridor following behavior rely on the segmen-
tation of the traversable floor region in the omnidirectional
robocentric view. The image processing employs a supervised
approach in which the segmentation optimal with respect to
the appearance of the local environment is determined by cross
validation over 3D scans captured by a photonic mixer device
(PMD) camera. The range data in the front view provides the
seeds and validation data to supervise the appearance based
segmentation in the omniview. Segmentation relies on histogram
backprojection which maintains separate appearance models
for floor, obstacles and background. A naive Bayes classifier
predicts the occupancy of the robots local environment by fusing
the evidence provided by different segmentations and models.
The classification error is analyzed on ground truth data
generated by a PMD camera and manually segmented scenes.
The scheme is highly robust with respect to ambiguous and
misleading visual appearances of obstacles and floor, thus en-
abling the robot to navigate safely in unstructured environments
of diverse appearance, texture and illumination. The proposed
vision algorithm and the navigation behavior demonstrate a
robust performance in extensive robotic experiments across
several hours of autonomous operation.

I. INTRODUCTION

Computer vision has received substantial recognition in
robotics in recent years [1]. Many approaches are inspired
by visual perception in animals, which behaviors often rely
on vision as the key perceptual stimulus. This development
is further promoted by the increasing availability of powerful
computer vision systems at affordable costs.

Mobile robot navigation conventionally relies on range
sensors which provide robust proximity information to
nearby obstacles. Vision, compared to range sensors, is much
more informative as it allows the distinction among objects
that are relevant for navigation, such as floor, obstacles,
walls, corridors and doors. Notwithstanding, in spite of the
large amount of information in an image, pure autonomous
visual navigation still remains a considerable challenge since:

• raw image data is rather complex, which implies the
need to segment and group objects, to extract their
relevant features and to aggregate those in a meaningful
manner,

• navigation behaviors usually rely on depth information
of the scene not provided by a single 2D image,

• visual cues such as intensity, texture, optical flow are
highly context dependent and
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• indoor environments vary substantially in visual appear-
ance and lighting conditions

Visual navigation has been investigated by numerous
researchers from both fields robotics and computer vision
[1]. Vision has been widely used for map based naviga-
tion in the context of vision based localisation and map
building. Mapless robot navigation is primarily concerned
with reactive behaviors that realize a tight coupling between
action and visual cues derived from the segmentation of the
image, the observation of features or landmarks traceable
across multiple frames or optical flow. The authors in [2],
[3] propose color histograms to model the appearance of
objects. Obstacles are classified as those regions which differ
significantly in their appearance from the floor in the bottom
part of the image. The method in [3] is superior in extracting
the ground plane accurately, even in the presence of obstacles
in the reference region. This robust segmentation is achieved
by an adaptive scheme that continuously updates the floor
model based on the recently traversed terrain. However, both
systems present drawbacks, since the robot is not able to
continue navigation if the appearance of the floor changes
abruptly, for example markers or carpets on an otherwise
homogeneous floor. The approach presented by [4] relies on
color histograms, thus is also sensitive to ambiguous texture
or color.

The idea of segmenting the floor ground plane for vi-
sual navigation has also been adopted by other researchers.
Martin designs the vision system by means of evolutionary
algorithms in order to estimate the depth of free space along
different directions thus mimicking a conventional proximity
sensor [5]. The authors in [6] detect ground patches by track-
ing corner points using planar homographies. The approach
in [7] segments the ground plane by estimating plane normals
from motion fields. However, both methods assume either
texture or movement and the field of view is restricted by
the opening angle of the monocular camera.

Photonic mixer device (PMD) cameras provide depth
information in addition to an intensity image and unlike
stereo vision do not require texture or contrast. Although
the limited field of view of the 3D camera is sufficient for
detecting frontal obstacles, it is in general too narrow to
navigate robustly in confined spaces. These scenarios require
behaviors with an omnidirectional perception of the local
environment, such as corridor centering, goal point homing
or door traversal [8].

Our approach employs a PMD camera to obtain the ground
truth segmentation in a narrow frontal field of view. The
accuracy of alternative segmentation schemes in conjunction
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with alternative visual cues is evaluated by cross validation
on the frontal view. The combination that performs best in
the current context is then applied to segment the omnidi-
rectional view providing 3600 depth information. Moreover,
the paper presents a naive Bayes classifier to detect the local
free space by fusing visual information provided by multiple
segmentations and models.

Recently, self-supervised detection of traversable terrain
has become an active field of research in outdoor robotics.
The so called near-to-far online learning has been success-
fully implemented by several researchers [9], [10], [11].
Many of these approaches use laser range finder scans to
detect flat drivable areas in front of the vehicle to provide
ground truth classification. This data is used to train a model
to identify traversable areas of off-road terrain beyond the
training region in the vehicles immediate vicinity.

Our approach albeit similar differs in several important
aspects, namely: a) PMD camera instead of laser scanner;
b) segmentation of the range image in addition to the 2D
image; c) multiple representations of the appearance based
floor model; d) multiple segmentation algorithms rather than
one; e) obstacle and background modelling and f) mixture of
experts approach in which the range information is used to
validate and select the optimal segmentation and not merely
to update the model.

The main contribution of this paper is the presentation
of a new robust segmentation method for visual navigation,
which confronts unstructured environments under diverse
appearance, texture and illumination conditions. The novelty
is a mixture of experts approach [12] in which the best
segmentation algorithm in conjunction with the best cue is
determined from ground truth segmentation of floor and ob-
stacles provided by a PMD camera. This labeled data is used
to initialize and validate alternative seed based segmentation
algorithms in the omnidirectional view. Two reactive visual
behaviors that rely on the segmented omniview are designed:
obstacle avoidance and corridor centering.

II. FLOOR SEGMENTATION

The Pioneer 3DX mobile robot is equipped with a PMD
camera and an omnidirectional camera. The PMD camera
provides 3D measurements at a 204x204 pixel resolution
across a 40◦ x 40◦ field of view. The omnidirectional sensor
consists of a CCD camera with a hyperbolic mirror and a
vertical field of view of 75◦ directed towards the bottom in
order to capture the floor.

The overall system architecture is shown in Fig. 1. The
supervised proposed segmentation proceeds in four stages: a)
range image segmentation into planar regions; b) projection
of these regions into the omnidirectional view; c) omniview
segmentation; d) validation and selection of optimal segmen-
tation and cue.

A 3D scan of the frontal region is generated from the depth
information of the PMD camera. The 3D scan is segmented
into planar surfaces by means of RANSAC. These segments
are then classified according to the orientation of the surface
normal, distance to the camera and area into three categories:

Fig. 1. System architecture

ground considered as free space, walls and obstacles. Scan
points that do not belong to a surface are labeled as obstacles.
These labeled regions are projected as ground truth segmen-
tation into the omnidirectional view. This ground truth allows
the selection of the visual cue and segmentation method that
is optimal with respect to the appearance and illumination of
the local environment. Part of the 3D scan segmentation is
utilized as seeds for the subsequent 2D appearance based
segmentation, the remaining data is used to validate the
performance of alternative segmentations and cues.

RANSAC is applied in an iterative manner, such that the
scan points that belong to the plane with most inliers are
removed from the data set. The next plane is estimated from
the residual points until the number of points belonging to
the best surface model falls below a threshold. The classified
3D points are projected into the omnidirectional view as
shown in Fig. 2. It illustrates the range image in which
brightness indicates proximity, the estimated and labeled
planes in 3D space, and the projection of these labels onto
the corresponding sector in the omnidirectional view.

(a) (b) (c)

Fig. 2. Seeds projection: (a) Range image, (b) Planes fitted from the 3D
data with RANSAC, (c) Seeds projected into the omnidirectional view.

A key aspect of marker based segmentation algorithms
is the selection of initial seeds. The more informative the
set of seeds, the better the final segmentation result. In the
following we propose four alternative segmentation schemes:
segmentation based on color histograms backprojection in
two different color spaces, watershed algorithm and model
based region growing method. Although we acknowledge the
potential utility of other appearance features such as texture
[13], only color is considered as it is difficult to extract
reliable texture due to the low resolution of the omni-image.

A. Histogram Backprojection

Color histograms provide a compact representation of
object appearance that offers the advantages a) to allow a
discrete representation of multi modal distributions, b) are
less sensitive to changes in viewpoint and scale, and (c)
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Example of histogram backprojection using three models: (a) input image with floor and obstacle seeds projected, (b) backprojection using
H-S floor model, (c) backprojection using H-S obstacle model, (d) backprojection using H-S background model, (e) label image combining the 3 H-S
backprojections, (f) watershed, (g) region growing

are partially robust with respect to occlusion. Although, a
histogram representation ignores shape and texture, it is
suitable for ground floor segmentation in visual navigation
[2], [3], [4]. These previous approaches utilize 1D histograms
in order to estimate the model of the free space. However,
in our experience 2D histograms proved to be more robust
and accurate in particular in scenes where floor and obstacle
are similar in appearance.

The color histogram models are based on the HSV
(Hue-Saturation-Value) and rgb (normalized RGB) color
spaces. These color spaces are more robust with respect to
changes in intensity, illumination and view point compared
to other color representations. Instead of merely building an
explicit color model of the floor, our approach maintains
additional models of the obstacles and the background. The
omnidirectional view extends about 15◦ beyond the horizon
line such that pixels above the horizon line certainly do not
belong to the floor. Thus the background model is estimated
from those pixels which radial distance from the image center
is above the corresponding horizon line. The obstacle model
is generated from pixels which the 3D segmentation either
labeled as obstacle or wall. Those regions that belong to the
horizontal floor plane provide the data to maintain the floor
appearance model. In order to improve generalization the
2D histograms are quantized into 32-32 bins to reduce the
dimensionality and are then averaged and normalized.

Histogram backprojection [14] finds areas in the image
which appearance matches with a reference model. We
adopt this technique in order to recognize the floor area
according to the histogram reference model obtained from
the ground truth 3D segmentation. The normalized histogram
reference model M in a 2D color space, is compared with
the normalized histogram H of the current frame I and the
backprojection image B is constructed by

B(u, v) = min

(
M(c(u, v))

H(c(u, v))
, 1

)
(1)

in which c(u, v) denotes the 2D color of pixel (u, v). The
backprojection image in the range between [0, 1] reflects
the degree of similarity between the area and the reference
model. Those colors that occur more frequently in the model
than in the overall current scene are likely to belong to the
floor. Fig. 3 shows some examples of backprojection.

To cope with dynamic changes in the environment, the
histogram models are updated using an exponential moving

average (EMA):

M̄(x, y)t = αM(x, y)t + (1− α)M̄(x, y)t−1 (2)

in which Mt denotes the histogram of the current frame and
M̄t−1 the previous average. The smoothing factor α is set
to 0.6 giving more importance to recent observations. The
EMA allows a smooth transition of the model under slowly
varying conditions. However, in fast changing conditions, the
histogram models change very fast and instead of updating,
we allow to memorize new models of significant difference.
The maximum number of models stored in a short term
memory is limited to five instances for obstacle and two
for floor and background in order to meet computational
constraints. Histogram intersection determines if the current
histogram overlaps with any of the models stored in the short
term memory:

d(M1,M2) =
∑
x,y

min(M1(x, y),M2(x, y)) (3)

in which a score of one corresponds to an exact match
and zero to a complete mismatch. In practice, a new model
is initialized if the histogram intersection between the current
frames and the most similar stored models falls below a
threshold of 0.4. New histogram models replace the oldest
model in case the maximum storage capacity is exceeded.
Models that do not match with any of the thirty most recent
frames are automatically discarded.

B. Watershed

Watershed segmentation [15] is understood by interpreting
the gradient image as elevation information. High magni-
tude gradients correspond to watershed lines. Pixels in the
elevation image are attracted to their local minimum, thus
forming so called basins. In marker based watershed, water
is flooded evenly from each marker to flood the basins.
The process stops once the water level reaches the highest
peak in the landscape. Basins connected with the same
original marker are merged into a single region. In order to
prevent unbounded growth of floor regions, the border pixels
corresponding to pixels above the horizon are considered
as non floor. An example of marker controlled watershed
segmentation is shown in Fig. 3f.

C. Region Growing

Region growing [16] starts with a set of seed points or
subregions and neighboring pixels are added based on their
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similarity in an incremental fashion to each region. In our
case, the similarity criterion is based on color, pixels that
have similar R, G and B values as the neighboring pixels
are added to the region. Region growing works well, if the
regions are separated by sharp edges in intensity or color.
Nevertheless, it is highly sensitive to variations in intensity
and illumination. A result of region growing segmentation is
shown in Fig. 3g.

D. Supervised Segmentation

It is apparent that no single segmentation scheme alone
provides a robust accurate segmentation across all scenes.
The idea is therefore to validate the accuracy of segmentation
on labeled ground truth data and then to select the method
best suited for the current floor texture and illumination. For
this purpose the ground truth segmentation data obtained
from the 3D scans is partitioned into training and validation
data. The training data is used to build the reference model
for the histogram backprojection and to provide the initial
seeds for marker based watershed and region growing. A
false negative is constituted by a floor pixel incorrectly
classified as obstacle and a false positive is an obstacle pixel
incorrectly classified as floor. The segmentation accuracy is
determined based on the false positive rate fp, number of
false positives divided by the total number of negatives, and
false negative rate fn on the validation data. Both rates are
aggregated into a total classification error

f = (2fp + fn)/3 (4)

in which false positives are weighted twice as strong, since
an obstacle miss is potentially more severe in the context of
obstacle avoidance.

The segmentation validation utilizes two-fold cross vali-
dation, in which the roles of training and validation data set
are reversed and the classification error is averaged over both
folds. The segmentation method with lowest aggregated clas-
sification error is applied to the entire omnidirectional view.
In order to save computational resources the segmentation
validation and selection is only repeated every fifth frame.
The final segmentation is filtered by a 5x5 median filter in
order to eliminate isolated pixels and noise.

E. Naive Bayes Classification

The next step is to achieve robust floor segmentation
without supervision and validation of the segmentation by
depth data. The 3D data is only used offline to compute the
likelihood of features and class priors.

Instead of selecting the optimal among the four alternative
segmentations based on cross validation, the naive Bayes
classifier labels pixels as either occupied or free space.
The features are constituted by the similarity values of the
backprojection images for the three different models, floor,
obstacle and background in conjunction with the cues of hue,
saturation and rgb color. The likelihood p(fi|Cj) of a contin-
uous feature fi given the class Cj is modeled by a Gaussian
distribution. The likelihoods of the data and the class priors
are computed from the observed frequencies of classes and

features in the training data. The training data consists of the
backprojection similarity with different models of almost two
million pixels captured from 500 images of which the true
class label is established from the PMD depth information
and 3D segmentation. The class priors and feature probability
distributions are approximated with relative frequencies from
the ground truth provided by the PMD camera. The classi-
fication performance is validated on additional 500 images
with ground truth obtained from PMD data and 30 images in
which the actual floor area is segmented by hand. The naive
Bayes classifier computes the a posteriori probability of the
classes C = {Floor,Obstacle} according to the likelihood
of the conditionally independent features:

p(Cj |fi) =
1

Z
p(Cj)

n∏
i=1

p(fi|Cj) (5)

in which the normalisation factor Z is the evidence of the
features fi. The ultimate decision boundary depends on the
application specific relative costs of false positive and false
negative classifications. Fig. 4 shows the receiver operator
characteristic (ROC) curve of the naive Bayes classifier for
different feature sets. The upper ROC curve refers to test
data obtained from PMD depth information, the lower plot
depicts the classification error on the manually segmented
and labelled image set. It is apparent that hue and satura-
tion histogram backprojection are superior to r-g histogram
backprojection. In fact the ROC curve for only hue and
saturation histogram backprojection almost coincides with
the performance of the Bayes classifier that uses r-g segmen-
tation in addition. It becomes also apparent that maintaining
separate models for floor, obstacle and background results in
a much better classification than classification based on the
segmented floor model alone. The classification performance
is similar across the PMD validation and the hand labeled
data set. In fact the classification error on the hand labelled
data is even lower. We attribute this phenomenon to the
fact that the depth based segmentation is less accurate than
hand segmentation. Thus the test data set itself contains a
small fraction of incorrect samples that contribute to the
classification error.

III. VISUAL BEHAVIORS

The corridor centering behavior is supposed to align the
robots heading with the orientation of the walls and centering
the robot in the middle of the corridor. The robots heading
error and lateral offset are reflected in the distribution of
floor area in robocentric coordinates. For this purpose the
segmented floor region is characterized by image moments
[17]. From these moments the distribution of the free space
is approximated by an ellipse with semi major axis a,
semi minor axis b, and orientation ϕ as shown in Fig. 5a.
Considering a look ahead point A located on the major axis
at a distance d from the centroid, the angles α and β are
easily computed.

In the experiments the distance d in pixels corresponds to
a distance of 2m. The turn rate to align the robot with the
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(a)

(b)

Fig. 4. Naive Bayes classifier ROC curves (a) for PMD ground truth data
set, (b) for hand label ground truth data set

(a) Corridor centering (b) Obstacle avoidance

Fig. 5. Visual behavior features

corridor middle line results from a stabilizing error feedback
proportional control law:

v = v0
ω = −Kaα−Kbβ

(6)

in which the gains Ka and Kb are tuned to achieve a smooth
convergence. The robots translational velocity for corridor
following is constant v0.

The obstacle avoidance behavior monitors the frontal
region of the omnidirectional image. The avoidance region R
is defined by the aperture angle ψ and the activation distance
da as illustrated in Fig. 5b. If a non floor pixel denoting an
obstacle is detected inside R, the behavior is activated. The
perception is aggregated into the distance dm and heading
θ of the closest obstacle. The perception is mapped onto a

TABLE I
COMPARISON OF THE SEGMENTATION SCHEMES UNDER TWO DATA SETS

PMD ground truth Hand labeled
Method FPR TPR FPR TPR
H-S histogram features: F 0.173 0.855 0.089 0.905
H-S histogram features: F|O| 0.123 0.845 0.094 0.971
H-S histogram features: F|O|B 0.137 0.845 0.096 0.911
r-g Histogram features: F 0.210 0.828 0.118 0.923
r-g Histogram features: F|O 0.145 0.836 0.105 0.870
r-g Histogram features: F|O|B 0.147 0.825 0.112 0.896
Histogram all 6 features 0.158 0.867 0.085 0.904
Watershed 0.021 0.948 0.140 0.749
Region growing 0.097 0.932 0.149 0.676
F: Floor, O: Obstacle, B: Background

motor action

v = vadm/da
ω = sgn(ω0) · ωa · sin θ

(7)

The sign of the initial turn rate ω0 depends on whether
the obstacle is located in the right or left half plane, the
robot then turns in the opposite direction. A turn flag
sgn(ω0) memorizes this turning direction which is main-
tained throughout the entire avoidance manœuvre. The mag-
nitude of the turn rate is modulated by the relative heading of
the obstacle. The constants va and ωa denote the avoidance
translational and rotational velocities.

IV. EXPERIMENTAL RESULTS

Table I compares the true positive and false negative rates
of watershed and region growing seeded with one percent of
labeled pixels as seeds with the unsupervised classification
errors of the backprojection schemes. The results confirm the
conclusions obtained from the ROC curve analysis, namely
that three models outperform the single floor model and
that hue and saturation are more reliable cues compared to
color. Using color cues in addition to hue and saturation
does not improve the accuracy. On both test sets the hue
saturation classifier with three models achieves true positive
(floor classified as floor) rates between 0.85 − 0.9 if one
accepts a false positive (obstacle classified as floor) rate
between 0.1− 0.13.

The classification performance of watershed and region
growing is superior to the Bayes classifier on the PMD
test set, with watershed outperforming region growing. It is
not surprising that watershed and region growing achieve
high classification rates on the PMD test set, as the seeds
stem from the same narrow frontal region as the test data.
The true generalized classification error of watershed and
region growing becomes apparent on the manually labeled
data set, in which the test data is uniformly distributed
across the omnidirectional view. In this case the classification
performance is clearly inferior in comparison to the Bayes
classifier. The dependence of watershed and region growing
on a representative set of seeds is a clear disadvantage over
more robust histogram backprojection.

The Pioneer robot is equipped with a 1.8 GHz dual-core
standard laptop for running the computer vision algorithms.
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Considering unoptimized code, the complete processing time
of a 320x320 pixels cropped omnidirectional image includ-
ing the validation step, takes between 150 to 180ms. One
complete 2D histogram backprojection segmentation takes
about 15ms, watershed segmentation takes 10ms, and region
growing takes on average 30ms.

Figure 6 shows the results of four prototypical scenarios
together with the corresponding floor segmentation results.
Figure 6a, shows the segmentation of a tiled floor with strong
sun reflection entering from the windows at the right side.
The resulting segmentation is obtained from naive Bayes
classification with the complete set of features. The ability
of our scheme to adapt to new unseen floor surfaces is
illustrated in Figure 6b in which the floor color and texture
abruptly change behind the door. Despite this ambiguity in
appearance the entire floor is correctly segmented. The final
figure shows a situation of imperfect lighting conditions,
a flat carpet to the left and an obstacle to the right. R-g
histogram backprojection performs best as in this particular
scenario color constitutes the most discriminating cue able
to generalize ground floor, carpet and obstacle beyond the
seeded regions. Notice, that the regions with light reflections
are still correctly segmented due to the masking of saturated
areas.

(a) (b) (c)

Fig. 6. Segmentation Examples

The proposed scheme is able to navigate the mobile
robot safely through environments over prolonged periods
of operation. Several test runs were conducted, some of
them taking more than 20 minutes, which accumulate to
several hours of validation under realistic conditions. The
enclosed videos show examples of navigation from the
omnidirectional perspective.

V. CONCLUSION

This paper describes a novel approach for purely visual
segmentation of free space for mobile robot navigation. The
omnidirectional floor segmentation employs a supervised
mixture of experts approach which determines the segmenta-
tion method that is optimal for the current situation by cross
validation over ground truth data provided by a PMD camera.

An unsupervised scheme is also proposed, in which a naive
Bayes classifier fuses the evidence provided by different seg-

mentation methods and features. The consideration of mul-
tiple appearance models for floor, obstacles and background
considerably improves the segmentation performance.

The visual obstacle avoidance and corridor following
utilize the distribution of local free space to control the robots
motion. The robot is able to operate safely in unstructured
environments of diverse appearance, texture and illumina-
tion. The proposed segmentation and visual behaviors were
successfully tested and validated in robotics runs over several
hours.
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