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Abstract—This paper proposes a constructive control approach, 
dynamic state feedback formation control, for achieving the 
realization of the Multi-Robot Formation System (MRFS) with 
respect to the problem of dilation of a formation shape and 
stabilization issue in nonholonomic system simultaneously. 
Combining with theoretical analysis, the proposed control 
approach has been successfully to deal with the following design 
issues: one is to elude the switch control of the nonholonomic 
MRFS for preventing the divergence of the MRFS; another one is 
to stabilize the MRFS which is allowed to change the 
interconnection structure dynamically.  

Index Terms—Formation Control, Dynamic Feedback Control, 
Multi-Robotic System, Stabilization. 

I. INTRODUCTION 

widely studied design concern about the MRFS is its 
interconnection stability, which is defined as the capability 

to create or maintain the desired formation shape while 
performing formation control. Another concern, following the 
interconnection stability issue of the MRFS, is how to design a 
formation control in terms of the nonholonomic subsystem, 
which seems to have become more highly regarded than before. 
Therefore we have to investigate the following design 
problems: 
1. Find the stability criteria among subsystem stability, 

interconnection stability and formation system stability. 
2. Stabilize the MRFS with respect to nonholonomic 

subsystems in terms of limited sensor/communication 
capability. 

For the second statement of the problem, it particularly 
represents that the global nonholonomic path planning 
approach cannot be applied. 
 Numerous researches have concerned the nonholonomic 
subsystem and interconnection structure of the MRFS. A 
feedback linearization control approach for the nonholonomic 
MRFS with Leader-Follower is proposed in [1] and later, in [2], 
the author considers several formation strategies with different 
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interconnection structure applied in indoor environment. With 
this control structure, Das et al.[3] practically design a 
vision-based system. The switching between decentralized 
controllers that allows for changes in formation with obstacle 
avoidance of the MRFS. Lawton et al.[4] conduct 
behavior-based formation control with respect to dynamics 
rather than kinematics of a WMR. In addition, for dealing with 
the measurement uncertainty, an observer based nonlinear 
Lyapunov based output feedback control is proposed in [5]. 
Recently, Ji et al.[6] focus on the connectedness issue using 
graph Laplacian in the multirobot coordination problem. Also, a 
constrained forced based control approach is proposed  by Zou 
et al.[7] with respect the dynamics of a WMR. Ren and Soresen 
in [8] study the interconnection issues of the MRFS with respect 
to the physical limitation of the communication bandwidth and 
the stability of the interconnection structure as well as 
consensus problem in communication system. Do[9] uses the 
backstepping control scheme to control the reduced order 
dynamics of a WMR.  

This research, based on the existing researches, intends to 
go further to investigate the stability and control issues of the 
MRFS. With this aspect, several design challenges shall be 
overcome: interconnection stability, subsystem stability and 
nonholonomic constraints. The former can be recast as the 
rigidity condition of a properly defined graph [6, 10]. 
Combining with the subsystem stability condition, one can 
yield it as a consensus problem[11] with respect to the 
communication issue.  

This paper is organized as follows: initially, in Section II, the 
theoretical analysis of the MRFS is proposed. Then, the stability 
analysis of the formation system is defined and analyzed in 
Section III. The dynamic state feedback control of the MRFS is 
obtained in Section IV. In Section V, an experiment of the 
MRFS is examined. Finally, the conclusions are made in 
Section VI.  

II. THEORETICAL ANALYSIS 

In this section, the general model of a MRFS is initially 
established. In addition to simplifying the problem, we 
temporarily assume that the rigidity condition of the 
interconnection structure of the MRFS is satisfied. Later the 
algebraic differential topology of the nonholonomic MRFS is 
obtained and the result is significantly helps us to understand 
the differential structure of the nonholonomic MRFS. 
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A. General Formula of MRFS 

Consider an MRFS with the formation state: 

{ }2 ;1 ,ijz z i j i j n= ∈ ≠ ≤ ≤  where n  denotes the number of 

WMRs in the formation team, along with i  and j  being the 

sub-indices which represent the jth connection of the ith WMR. 
Following the definition of the formation variables in [7], the 
component form of the formation states defined in the 
Euclidean space of the global coordinate can be generally 
described as:  

 
pj piij

ij
ij j i

q ql
z Q

q qθ θ
ϕ

 − 
= ∈  

−    
 . (1) 

Here, 
T k

i pi iq q qθ = ∈    and 
T k

j pj jq q qθ = ∈    where 

pi iq N∈  and pj jq N∈  denote the position state of the WMR 

with iN  and jN  being the subspace of the base space B with 

,i jN N B⊂ , iqθ  and jqθ  denote the orientation state of the 

WMR, and mQ ∈  denotes the abstracted space with k m≥ . 

Additionally, the following property is satisfied: i jN N B⊂  

for all ,i j . Following the definition, iz  is denoted as the sum 

of the jth connection to the ith WMR i ij
j

z z=  for all i . 

Following the definition, if there exists a smooth and 
differentiable map :h N Q→ , i

i
N N=   for all i , with 

respect to the interconnected structure Ω  of the MRFS, we say 
h  is a diffeomorphism when k m=  and similarly, we say h  is 
a surjection when k m>  such that 

[ ] ( )1 ,
T

nz z z h q= Ω   with  

[ ]1

T kn rn
nq q q ×= ∈  ; kn kn×Ω ∈  with r  being the 

dimension of the WMR control.  
Suppose that a virtual center of the MRFS moves along a 

desired trajectory ( ) 2c t ∈  in two-dimensional space so that 

the MRFS is driven from an initial state ( )0 0cq c t=  to a final 

state ( )cf fq c t=  where 0t  and ft  denote the initial and final 

time, respectively. The control goal, thus, is to move the MRFS 
to follow ( )c t  in addition to maintaining the given 

interconnection structure (resp. formation shape) 
simultaneously.  

Therefore, initial configurations of the MRFS require the 
desired interconnection structure dΩ , the desired formation 

state dz , and a virtual formation center 2
cq ∈ , which is 

located inside the closed region of the formation shape.  The 
kinematics of the ith WMR for all i  can be generally regarded 

as a driftless affine control system ( )i ij i i
j

q g q u=  with 

1, ,j n=   or we can generally write ( )i i i iq g q u=  with 

[ ]1

T m r
i i irg g g ×∈    and r

iu ∈ . 

 Generally, consider a MRFS: 

 ( ) ( ) ( )( ),q t f q t u t= . (2a) 

 ( ),z h q= Ω . (2b) 

where : kn rn rn knf × × →    is a smooth function. We 

formally pose the problem of stabilizing the formation state z  
by means of state feedback. The desired states of the 
subsystems are to derive naturally via forwarding geometrical 

constraints such that the set of the desired state { }
1
, ,

nd dq q  of 

the subsystems is well defined if the initial configurations of the 

MRFS are given, i.e., [ ]0 cos sin
T

di c dic dic dicq q l ϕ ϕ= + ×  for 

all i  where dicl  and dicϕ  denotes the formation states from ith 

WMR to the virtual center of the MRFS. 
 Now we define the general control system in terms of the 
nonholonomic MRFS in Eq. (2). 
Definition 2.1 Control System: A control system ( ),S B F=  

consists of the following. 
 A fiber bundle : M Bπ →  called the control bundle. 
 A smooth map :F M TB→  which is fiber preserving. 
A map is fiber preserving if b Fπ π= , where :b TB Bπ →  is 

the tangent bundle projection. Considering the integral flow of 
the control system, an extensive definition is made in the sense 
of the fiber bundle structure. 
Definition 2.2: A smooth curve :mc I M→  with I ⊆  is 

called the trajectory of the control system ( ),B F  if there exists 

a curve :c I B→  such that ( )mc cπ =  and ( ) ( )( )mc t F c t′ = .  

 In local coordinates, this definition is translated into the 
well-known concept of trajectories in a control system by 

( ), ,q f q u t= . Regarding the kinematics of the MRFS, the 

formation state z  is reduced from 2n  to n  if we consider 
the relative length only so that the constraint for the relative 
angle is embedded via a differential topology of the 
nonholonomic system. We rearrange Eq. (2a) and Eq. (2b): 

( )
( )

1,

, .

p p p

p

q f q u

z h q

=

= Ω


 (3) 

According to Eq. (3b), the differential equation in the oriented 
angle is able to be combined.  

2

pfz h

q uθ

=

=





L
 (4) 

3575



 
 

 

where L  denotes the Lie derivative with ,
pf ph f h q∂ ∂L . 

Notice that the MRFS is still nonholonomic and cannot be 
stabilized via a smooth static feedback control. Also, we may 
apply a smooth dynamic state feedback control for stabilizing 
the system in Eq. (4). If one gives the desired formation state dz , 

Eq. (4) can be further obtained as:  

2 .
pf dz h z

q uθ

= −

=

 



L
 (5) 

The control purpose of the MRFS in Eq. (5) is thus expressed to 
design the control 1u   and 2u  for zeroing the output of z  

without setting the control output as zero only.  
Remark 2.3: Consider two control systems, ( ),B B BS B F=  and 

( ),Q Q QS B F= , with respect to some submersion : B QΦ → . 

Then, the vector fields in BS  maps from vector fields in QS  and 

are found by the following process: 

( ), ,pq q u Mθ ∈  

BF  

( ), ,p pX X u TB  ∈   

T Φ  

[ ]( ), , .Z Z u TQ∈  

Parallel to the design a control of the MRFS, if we remove 
the assumption of the rigidity condition of the MRFS in this 
section, one yield a challenge in selection of the interconnection 
structure for achieving the rigidity condition of the formation 
shape. Consequently, we try to investigate the relationship 
among subsystem stability, interconnection stability, and 
formation system stability. 

III. STABILITY OF MRFS 

Now, we release the assumption of the rigidity condition in 
Section II and begin by translating the stability problem into 
purely algebraic terms in a local sense. In the neighborhood of 

i iq V∈  and i iz U∈  with iV B⊂ ; iU Q⊂ , suppose there exists 

0
iqδ >  around iq  and similarly, there exists 0

izδ >  around iz  

so that small enough balls ( ),
ii qB q ε  and ( ),

ii zB z ε  with 

0
iqε > ; 0

izε >  exist on iV  and iU , respectively. Thus, the 

upper bound of the open balls ( )sup ,
i ii q qB q rε =  and 

( )sup ,
i ii z zB z rε = , with 

izr  and 
iqr  being the maximum radius 

of the balls can be found. Now, we set ( )min ,
i i iq q qrε δ=  and 

( )min ,
i i iz z zrε δ= , and the following definitions can be given. 

Definition 3.1 (Interconnection stable): Let ijz  be piecewise 

continuous in t , and suppose that dijz  is given such that the 

formation state error is defined as ( ) ( ) ( )ij ij dijz t z t z t−  .  The 

system is interconnection stable if for every 0ziε >  there exists 

a 0ziδ >  such that if ( )0 iij z
j

z t δ≤  then ( )lim
iij zt

j

z t ε
→∞

≤   

for all i . 
In addition, the state error of the ith WMR of the MRFS, 

( ) ( ) ( )i i diq t q t q t−  , is defined for finding the conditions of 

the subsystem stability. 

Definition 3.2 (Subsystem stable): Let ijz  be piecewise 

continuous in t  and dijz be a given. The equilibrium point 

( )0 0ijz =  and ( )0 0iq =  for all ,i j  in the formation error 

state and subsystem error state respectively is 
 subsystem system stable: if there exists ( )0 iij z

j

z t δ≤  and 

( )0 ii qq t δ≤  then ( )lim
ii qt

q t ε
→∞

≤ , for all i ; 

 asymptotically subsystem system stable: if there exists 
 ( )0 iij z

j

z t δ≤   and ( )0 ii qq t δ≤  then ( )lim 0it
q t

→∞
→ , 

for all i ; 
 subsystem system unstable: if it is not subsystem stable. 

The following lemma identifies the relationship between the 
interconnection stability and the subsystem stability of the 
MRFS. 

Lemma 3.3: The following statements are true: 
 The MRFS is interconnection stable if the subsystem stability 

is satisfied; 
 The MRFS is subsystem unstable if and only if the 

interconnection stability is not held. 
Proof:  

For the first statement, we shall prove that, if 

( ) ( )( )lim
i ji j q qt

q t q t ε ε
→∞

+ ≤ +  , then ( )lim
iij zt

j

z t ε
→∞

≤   for 

all i . From Definition 2.2, we have ( )0 ii qq t δ≤   and 

( )0 jj qq t δ≤ . Hence, according to Figure 1, the inequality can 

be written as 
i jq dij q ijz zδ δ+ + ≥  with 0

i jq qδ δ+ >  such 

that we have ( )0 i jij q qz t δ δ≤ +   which can be represented as 

( ) ( ) ( )( )0 0 0lim limij i jt t
j

z t q t q t
→∞ →∞

≤ +    by Definition 3.1 and 

Definition 3.2. With this result, the boundary 
i i jz q qε ε ε≤ +  can 

be found such that ( )lim
iij zt

j

z t ε
→∞

≤   for all i .  
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Fig. 1. The diagram from formation state space to the individual state space. 

For the second statement, we first claim that the subsystem is 
unstable and the interconnection stability is held.  From the 
preceding proof, the unstable subsystem implies that it is able to 

be written as ( ) ( )( )lim
i ji j q qt

q t q t ε ε
→∞

+ ≤ +  , which implies 

that 
i jq qε ε+ is unbounded. Hence, the bounded 

izε  does not 

exist, so the claim is not true. On the contrary, we claim that the 
MRFS is interconnection unstable but the subsystems are 
locally stable. Mathematically, the interconnection being 
unstable demonstrates 

izε  is unbounded such that 
i jq qε ε+ is 

unbounded, which indicates that the subsystem is unstable, so 
the claim cannot be true.       
 Lemma 3.3 clearly indicates that, if the subsystem is stable, 
the interconnection stability is guaranteed and there also exists a 

unique map ( )
ipqΦ  from B  to Q  for all i . Following this 

result, a more strict definition with respect to the formation 
stability is needed. 

Definition 3.4 (Formation system stable): Let ijz  be 

piecewise continuous in t  and dijz be a given. The equilibrium 

point ( )0 0ijz =  and ( )0 0iq =  in the formation error state and 

subsystem error state for all ,i j  is 

 Formation system stable: if there exist ( )0 iij z
j

z t δ≤   and 

( )0 ii qq t δ≤   then ( )lim
iij zt

j

z t ε
→∞

≤   and 

( )lim
ii qt

q t ε
→∞

≤  for all i ; 

 asymptotically formation system stable: if there exist  

( )0 iij z
j

z t δ≤ 
 
and ( )0 ii qq t δ≤  then 

( )lim 0ijt
j

z t
→∞

→    and ( )lim 0it
q t

→∞
→ , for all i ; 

 formation system unstable: if the aforementioned conditions 
do not exist. 

IV. DYNAMIC STATE FEEDBACK CONTROL 

In this section, a dynamic state feedback formation control 
with respect to the interconnection structure is proposed for the 
nonholonomic MRFS based on Lyapunov theory. 
 For connecting the rigidity matrix and the formation 
dynamics, we may introduce an adjacency matrix to describe 

the interconnected structure of the MRFS. The adjacency 
matrix[12] (or so-called interconnection matrix), GA  , is 

imposed and represented as a binary matrix which implies jq  

acts on iq  if the element in ith row and jth column of the matrix 

equals “1” denoted as GijA . It is the fact that all of the 

connections of the ith WMR to all neighbor interconnections are 

able to form a set: ( ){ }, 1ij Ga A i j j n= ≤ ≤  where i  and j  

denotes the ith raw and jth column in the adjacency matrix. 
Therefore, regarding with the interconnection structure, the 
kinematics of the MRFS could be rewritten as:  

0T I
pij ij pij

i T J
j ipij ij pij

q q
z

qq q θ

  Ω  
= −     Ω     






 (6) 

with 2ijI
ij

ij

a I

l
Ω = ; 2ijJ

ij
ij

a J

l
Ω =  ; 2

1 0

0 1
I

 
=  
 

; 2

0 1

1 0
J

− 
=  
 

 ; 

2
pij pj piq q q− ∈   where ijl  denotes the relative length 

and ijϕ  denotes the relative oriented angle. 

 We select the Lyapunov function 
1

2
T

i ii i iL a q q=    in each of the 

subsystems. Additionally, we limit the output of the angular 
velocity to prevent the behaviors of sliding and slipping. 
Nevertheless, this may lead the saturation in the control, so we 
have to carefully choose the operation point in the control 
design by means of manipulating the control gain. 

To aid in the judgement of the stability criteria, we also 
impose an interconnection Lyapunov function: 

:

1

2
T

ij ij ij ij ij
j j i

L w a z z
≠

=     with ijw  being an element of the weight 

matrix 3 3n nW ×∈ . By the additive property of the energy, the 
formation Lyapunov function, F

iL  can be simply split into two 

parts: the individual Lyapunov function of the ith WMR and the 
normalized interconnection Lyapunov functions of the jth WMR 
which acts on the ith WMR 

1

1
F
i i ij

j

L L L
n

= +
−   (7) 

In Eq. (7), iL  is generated from the ith subsystem and ij
j

L  is 

produced by the interconnection of the MRFS for the ith 
subsystem. In the component form, it can be written as: 

1 1

1

2

1
     

2

piF
i pi i i

i

TT T
Gi n n

q
L q q P

q

L z z z z

θ
θ

 
 =   

 

 +  


 



   
 (8) 

where 3 3
iP ×∈  is positive definite; GiL  denotes the ith raw of 

the normalized weighted laplacian matrix with 
1

1G GL W I A
n

 ⋅ − − 
  with W  being a weighted positive 
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definite matrix.  Hence, the necessary condition for the 
asymptotically formation stability is established via the 
following theorem: 

Theorem 4.1: Considering the MRFS described in Eq. (11-12), 
the system is said to be asymptotically interconnection stable if  

( ) ( )I IF W W F G⋅ Ω + ⋅ Ω = −   

with [ ]1

T

nF F F=   where i pi iF f q= ∂ ∂  denotes a Jacobian 

matrix which is proceeded with the linearization scheme from 
the nonlinear function pif  in Eq. (3) ; G  being positive matrix. 

Proof.  The time derivative of Equation (8) can be reduced as 
the following formulation: 

( ) ( )

( ) ( )( )

1

2

1
        

2

T I T I
ij pij ij ij pij pij ij ij pij

j j

T I I
pij i ij ij ij ij i pij

j

L q W q q W q

q F W W F q

 
= ⋅ Ω + ⋅ Ω 

 
 

= ⋅ Ω + ⋅ Ω 
 

 



     

 
 (9) 

Thus, we reformulate the result in Eq. (9) in associated with a 
matrix formula: 

( ) ( )I IF W W F G⋅ Ω + ⋅ Ω = −  
(10) 

where G  is a positive matrix. According to the Lyapunov 
stability theorem, if IΩ  and G  are positive definite, then the 
MRFS is asymptotically stable.                                             

Theorem 4.1 also provides the necessary condition of the 
formation system stability in association with the 
interconnection matrix. The condition is that the 
interconnection matrix IΩ  shall have full dimension. As a 
consequence, IΩ  has to be a non-singular matrix from the 
linear system theory. Practically, let us now consider a MRFS in 
terms of it interconnection structure in Eq. (6). The Lyapunov 
function in Eq. (9) can be further taken as the partial derivative: 

( )

( )

1

2

, , , ,

   , , , ,

ijF i
i

ji j

i ij ij pi pj j
j

pi i i ij ij pi pj i i i i
j

LL
L

q q

f a z q q q

q S f a z q q q v q w

θ

θ θ

∂∂= +
∂ ∂

=

 
+ + + 
 









 (11) 

with ( )( )1 cosi ij ij dj ijf z zρ γ= −  ; 2 cosi ij ij ijf zρ ϕ=  with 

ij ij i jq qθ θγ ϕ= + −  ; cos sin 0

0 0 1

T

i i
i

q q
S θ θ 

=  
 

. Therefore, the 

formation control can be chosen by the following theorem: 

Theorem 4.2: Considering that the MRFS follows Eq. (11-12), 
if the velocity and angular velocity is chosen by 

1

2

2

;

0      if  0;

.

F
i pi i

j

pi i i
i j

pi i i
j

i i i

f K L

q S f
v

q S f

w K qθ θ

− −

  

+  =   


  + = 
 

= −






 (12) 

then the MRFS is asymptotically stable where 0pi iK Kθ≥ ≥  

denotes the positive control gain. 
Proof: After putting the controller in Eq. (12) into Eq. (11), the 
Lyapunov equation is obtained: 

( ) 2F F F
i pi i pi i i pi iL K L K K q K Lθ θ= − − − ≤ −  (13) 

Observing Eq. (13), the MRFS with the control of the ith WMR 
for all i in Eq. (12) is exponentially stable.               
 The result from Theorem 4.2 certainly reveals that, if the 
energy is exponentially decaying, then the reachability of the 
subsystems of the MRFS is guaranteed. Now, the overall 
control issues can be linked together: internal dynamics and the 
interconnected structure. 

Remark 4.3 According to Theorem 4.2, the control of the 
MRFS satisfies the formulation of the smooth dynamic 
feedback control design 

( )
( )

,

,

u q z

z h q z

α=

=
 (14) 

so that Brockett’s necessary condition for the piecewise control 
design by means of the smooth static feedback of the 
nonholonomic system can be overcome by the proposed 
dynamic state feedback control design in the MRFS in Theorem 
4.2. In the next section, an experiment is conducted for 
evaluating the theoretical results.  

V. EXPERIMENTAL RESULT 

An experiment is set up to evaluate the proposed approach. 
The MRFS with three WMRs that move on a free 2D space is 
the major application scenario.  

 
Fig. 2. Physical layout of the setup of the experiment. 
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Each of the mobile robots is equipped with encoders and is 
connected virtually with a wireless communication device 
shown in Fig. 2. Thus, three mobile robots (P3DX) made by 
Active Media Inc. play a role as an experimental platform. The 
average speed is 0.25 secm  and the average acceleration is 

21 secm . In the initial setting, we put the three WMRs in their 

specified places and respectively regard the positions as their 
starting points. Also, the relative distance with each other is 
initially set to 2.5 (m). After 20 sec from the starting time, the 
desired relative distance is set to be 3.5 (m). 60 sec later, the 
relative distance is set back to  2.5 (m). 
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Fig. 3. The trajectories of the MRFCS. 

 
Fig. 4. The relative distances ( 12L , 13L , 23L ) of the MRFS. 

 The experimental results are drawn in Fig. 3 and Fig. 4, 
respectively. The first drawing describes both the trajectory of 
the individual WMR and the relative distance from WMR i to 
WMR j which is denoted as Lij  with { }, 1, 2,3i j = . In Fig. 4, it 

is significant that the relative distance between WMR 2 and 
WMR 3 is relatively more stable than the one from WMR 1 to 
WMR 2 and WMR 1 to WMR 3 due to the property of the 
nonholonomic system. The formation control parameter in piK  

and iKθ  are both selected as 0.01 and 0.001. This follows the 

analysis result in Theorem 4.2 precisely. 

VI. CONCLUSION 

In this research, the problem of dilation formation shape is 
successfully solved by means of smooth dynamic state stable 

feedback control. By the way of introducing the higher 
dimension variable, the proposed control approach of the 
MRFS is essentially used solve the following design problem: 
the stable control for the nonholonomic MRFS with respect to 
the interconnection structure for preventing the divergence of 
the MRFS; another one is that the global path planning is 
impossible to perform in large scale subsystems of a MRFS. 
Furthermore, the theoretical analysis is set up so that the 
necessary condition for the formation system stability is 
distinctly obtained with respect to the nonholonomic 
subsystems. Finally, the experiment is performed to evaluate 
the proposed control approach.  
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