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Abstract— This paper discusses the advantages of singular
configurations of a two-link robot arm in achieving tasks of
pulling or lifting a heavy object. Optimal base location and
arm motion for minimizing the joint torques are examined by
numerical simulations, and the base location where the robot
arm is near a singular configuration at the start time of task is
optimal. It is shown analytically that joint torques can supply
energy to the system composed of the robot arm and the object
efficiently near singular configurations of the arm. The energy
supply rates at two singular configurations are derived based
on the equations of motion of the system.

I. INTRODUCTION

Lifting or pulling a heavy object is a physically strenuous
task for humans. The robots are expected to do such tasks
in behalf of us [1]. To reduce the energy consumption, the
tasks should be done as efficiently as possible. A mobile
manipulator would serve as a robot that helps us at home
in near future. It can utilize the motion of both the mobile
base and the manipulator to achieve the tasks. The problem
of planning the motion has attracted the attention of many
researchers [2], [3]. But, even if the mobile base is fixed
during a task, we can choose the base location at the start
time and the motion of the arm during the task. The latter
problem is simpler than the former one, and thereby we
can examine in detail the features of the dynamics of the
system composed of the arm and the object for the latter
problem. In this paper, we deal with the problem of finding
the optimal base location and arm motion for a two-link robot
arm, and investigate an important feature of the dynamics
near singular configurations of the arm. The feature would
be also applicable to solving more complicated problems.

Singular configurations of a robot arm are the postures
where the manipulability of the robot arm is degenerated
[4], that is, the kinematic mapping between joint space and
task space is singular. For a two-link robot arm, there are
two singular configurations, where the robot arm is stretched
out or folded completely. The motion planning of the robot
arm through the singular configurations is difficult, because
the velocity vector of the end effector is restricted in a
certain direction. Several methods to solve the difficulty
have been proposed by using a time scale transformation
and so on [5], [6]. In many studies on motion planning, it
is common to avoid the singular configurations because of
the undesirable feature of the kinematics [7]. On the other
hand, how is the dynamics of the robot arm affected by the
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kinematic feature of singular configurations? The dynamic
manipulability proposed in [8] measures the acceleration of
the end effector, that is, the acceleration in task space. In
the statics, a robot arm can sustain a large load by small
joint torques near a singular configuration [9]. In [10], joint
torques that are necessary to generate an end effector motion
along the singular direction is specified. In [11], we have
examined the optimal base location and arm motion of a
two-link robot arm for door opening task, and have shown
that the base location where the robot arm is almost stretched
out at both the start and end of door opening is optimal for
a sufficiently heavy door.

In this paper, we consider the problem of pulling or lifting
a heavy object by a two-link robot arm. The cost function
for optimization is chosen as the integral of squared joint
torques during the task. When the object is heavy, a large
amount of energy is needed to achieve the task. The energy
is supplied to the system composed of the robot arm and
the object by the product of joint torques multiplied by joint
angle displacements. In that sense, dynamic features of the
system in joint space are very important to the achievement
of the task. We examine the acceleration of joint angles
generated by joint torques in detail and show that the torques
can supply energy most efficiently at singular configurations
for a sufficiently heavy object. Although both of two singular
configurations of a two-link robot arm have an advantage
in supplying energy, the supply rate at the configuration
where the robot arm is stretched out is better than at the
configuration where the robot arm is folded completely. For
the door opening task in [11], we could see the advantage
of singular configurations clearly, because the position of
the end effector is restricted on the path of a door knob
and the primary role of joint torques is to supply or absorb
energy. For the tasks of pulling or lifting a heavy object,
the joint torques have to not only supply energy but also
control the position of the object. Nevertheless, numerical
simulation results show that the configuration of the robot
arm at the start time of the task is almost singular at the
optimal base location. The feature of the dynamics near
singular configurations is useful for achieving the tasks.

II. PROBLEM FORMULATION

We suppose that a two-link robot arm grabs a heavy
weight, and pulls or pushes it to the desired position. The
following assumptions are made for simplicity;

1) The location of the robot base can be chosen at the
start time, and it is fixed during the task.

2) There are no frictions at the joints of the robot arm.
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Fig. 1. Two-link robot arm with a weight

3) The weight can be modeled as a mass point.
4) The weight is made to be moved along a straight line

from the initial position to the desired position.
There are infinite number of paths of the weight that connect
an initial position to a final position. The desirable paths
are different depending on the tasks and the environments
such as obstacles. In this paper, we choose a simple path,
a straight line, as in the assumption 4). When the weight
is sufficiently heavy, the straight line would be a reasonable
path in the absence of obstacles.

A. Two-Link Robot Arm

As shown in Fig. 1, the joint between the robot base and
the first link of the arm is called Joint 1, and the joint between
the first link and second link of the arm is called Joint
2. We introduce a coordinate frame, (x, y), whose origin
is placed on the initial position of the weight, and the y
axis is set to be along the path to the desired position. The
location of the robot base is denoted as pb = [xb, yb]T ,
and the angles of Joint 1 and 2 are denoted as θ1 and
θ2 respectively. The input torques at Joint 1 and 2 are
expressed as τ1 and τ2 respectively. The angles and the
torques are represented in vector forms as θ = [θ1, θ2]T

and τ = [τ1, τ2]T . We summarize the inverse kinematics
and dynamics of the system below.

Denoting the position of the end effector of the robot arm
as pe = [xe, ye]T , we can express it by using joint angles θ.

pe = f(θ) =
[

xb + l1 sin θ1 + l2 sin(θ1 + θ2)
yb − l1 cos θ1 − l2 cos(θ1 + θ2)

]
, (1)

where l1 and l2 are the lengths of the first and second links
respectively. When the trajectory of the end effector pe(t) is
given for 0 ≤ t ≤ T , we can obtain two points of θ for each
time t as long as θ2 ̸= kπ (k is an integer). To get a unique
solution of θ, we choose one of them that satisfies θ2 ≥ 0
at t = 0. For t > 0, θ2 is chosen so that θ̇2 is continuous.
From (1), we can obtain the following equations:

ṗe = Jθ̇ , p̈e = Jθ̈ + J̇ θ̇ , (2)

where J is the Jacobian matrix of f and can be written as

J =
[

l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)
l1 sin θ1 + l2 sin(θ1 + θ2) l2 sin(θ1 + θ2)

]
. (3)

By using (2), we can obtain θ̇ and θ̈ from pe(t) as long as
det(J) ̸= 0 ⇔ θ2 ̸= kπ.

The equations of motion of a two-link robot arm can be
written in the following form:

τ = M(θ)θ̈ + h(θ, θ̇) + τ g(θ) + JT F , (4)

where the kinetic energy of the two-link arm can be ex-
pressed as Ea = (1/2)θ̇

T
M(θ)θ̇ by using M(θ), and h

can be expressed as h = Ṁ(θ)θ̇ − (∂Ea/∂θ)T . The term
τ g(θ) is derived from the potential energy of the arm Pa(θ)
as τ g = (∂Pa(θ)/∂θ)T , and F = [F1, F2]T is the force
applied to the weight by the robot hand. From the equations
of motion of the weight, F can be written as

mwp̈e = F , (5)

where mw is the mass of the weight. From (2), (4) and (5),
we can obtain

τ = (M(θ) + mwJT J)θ̈ + h(θ, θ̇) + mwJT J̇ θ̇ + τ g(θ) ,
(6)

When the trajectories of joint angles, θ(t), are given from
the inverse kinematics, the trajectories of joint torques, τ (t),
can be calculated from (6).

B. Optimal Base Location and Arm Motion
In this paper, we examine the optimal base location and

arm motion of the two-link robot arm in two cases: Case A
and Case B. In Case A, each link of the robot arm rotates
in a horizontal plane, and the weight is pulled or pushed
horizontally. The external force τ g in (6) is zero in this case.
In Case B, each link of the robot arm rotates in a vertical
plane, and the weight is lifted up vertically. In both cases,
the initial and final positions of the weight are set to be
pe = [0, 0]T and pe = [0, yT ]T respectively. Note that the
y axis is horizontal in Case A and vertical in Case B. We
consider a trajectory that connects those two positions along
y axis as in Fig. 1, and denote it as pe(t) = [0, ye(t)]T . The
conditions on ye(t) at the start time, t = 0, and the end time,
t = T , are given as follows:

(ye, ẏe)|t=0 = (0, 0) , (ye, ẏe)|t=T = (yT , 0) . (7)

We introduce the following cost function as a criterion for
optimization.

Jc(ξ) =
∫ T

t=0

(τ2
1 + τ2

2 )dt , (8)

where ξ represents the parameters for optimization. It is
chosen for each case as follows.

Case A: ξ = {pb, ye(t)} , Case B: ξ = {pb, ye(t), T} .

In Case B, the end time of lifting up should be included in
ξ. The value of the cost function highly depends on the end
time because of the gravity term τ g. In Case A, after scale
transformations of time t and torque τ , we can choose the
end time as T = 1 [s] without loss of generality. In this
paper, we deal with an optimization problem of finding the
parameters that minimize Jc:

ξ∗ = arg min Jc . (9)
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III. OPTIMIZATION METHOD

The main purpose of this paper is to show an advantage of
singular configurations of the robot arm in achieving tasks.
We do not have to find the optimal solution ξ∗ that minimizes
the cost function (8) rigorously. We approximate ye(t) as
fifth order spline functions of time, and find the coefficients
of splines that minimize the cost function. The location of the
robot base (xb, yb) is discretized into a grid, and, at each grid
point, the quasi-optimal motion of the weight is calculated
by using the spline functions.

A. Search for optimal motion of weight

We divide the time interval [0, T ] by n and assume that
the trajectory of ye(t) in each time interval [ti, ti+1] (i =
0, · · · , n−1 and tj = jT/n for j = 0, · · · , n) is expressed by
a fifth order polynomial function of time, φi(t), as follows:

φi(t) = yi + bi(t − ti) + ci(t − ti)2 + di(t − ti)3

+ei(t − ti)4 + fi(t − ti)5 , (10)

where yi, bi, ci, di, ei and fi are scalar parameters. To make
the input torque τ continuous, we choose the functions φi(t)
such that φi(ti+1) = φi+1(ti+1), φ̇i(ti+1) = φ̇i+1(ti+1),
φ̈i(ti+1) = φ̈i+1(ti+1), for i = 0, · · · , n − 2. When the
polynomials satisfy those conditions and (7), there are 3n−1
independent parameters, and they can be chosen as Φ =
(y1, · · · , yn−1, e0, f0, · · · , en−1, fn−1). We assume that ye(t)
monotonically increases at t = ti and put a constraint that
0 ≤ y1 ≤ · · · ≤ yn−1 ≤ yT . At each location of the robot
base, we search for the values of Φ in Case A or (Φ, T ) in
Case B that minimize the cost function (8), by the Quasi-
Newton method.

B. Search for optimal location of robot base

The grid search method is used to find the optimal base
location. The region of (xb, yb) defined by [xmin, xmax] ×
[ymin, ymax] is divided into a grid, where each rectangle is
given by ∆x×∆y. By calculating the cost function at each
grid point by the method in III-A, we can find the optimal
location of the robot base.

IV. NUMERICAL SIMULATIONS

In this section, we will show the optimal solution obtained
by numerical simulations. To find the optimal values of Φ or
(Φ, T ), the MATLAB function fmincon was used. In both
Case A and B, the displacement of the weight, yT , is set to
be 0.3 [m], and the time interval T is divided into four sub-
intervals, that is, n = 4. The initial values of Φ are given
so that the initial spline curves coincide with a single third
order spline curve that satisfies (7). The lengths of two links
of the arm are chosen as l1 = 0.3 [m] and l2 = 0.35 [m].
Their mass and inertia are set to be 0.49 [kg], 0.12 [kg·m2],
0.66 [kg] and 0.12 [kg·m2] respectively.

Case A: Horizontal Motion

The mass of the weight is set to be 10.0 [kg], and the
end time T is chosen as 1.0 [s]. At first, the grid points
of (xb, yb) were made by choosing ∆x and ∆y as 0.05
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[m], and the cost function Jc in (8) was calculated at each
point. Figure 2 shows the contour plot of Jc. The contours
are almost symmetrical with respect to the middle point of
the path of the weight, (0, 0.15). There exist two candidates
of global minimum at the locations denoted as L1 and L2.
The values of Jc at both locations are almost the same,
and they are 5.03 [N2m2s]. Next, to obtain more accurate
solution of the optimal location, the grid points near L1 or
L2 were made by choosing ∆x and ∆y as 0.01 [m]. Figure
3 shows the contour plot of Jc near L1, and the optimal
location denoted as L′

1 is (xb, yb) = (0.06, 0.64). The value
of Jc at L′

1 is 4.34 [N2m2s]. The contour plot of Jc near
L2 is also similar to Fig. 3. The optimal location near L2

is (xb, yb) = (−0.06,−0.34), and the value of Jc is 4.34
[N2m2s], which is almost the same as the one at L′

1.
Here, we consider the locations denoted as S1 and S2

in Fig. 2 where (xb, yb) = (0.0, 0.65) and (xb, yb) =
(0.0,−0.35) respectively. When the robot base is located at
S1, the robot arm is stretched out and aligned with the path
of the weight at the start time as in Fig. 2, and the matrix J
defined by (3) is degenerated. For the location S2, the robot
arm is stretched out at the end time. We call such a location
singular location in this paper. It should be noted that the
optimal locations obtained near L1 and L2 are close to the
singular locations. Figures 4 and 5 show the time histories of
(ye, ẏe, ÿe) and τ at the location L′

1. Around the start time,
the arm pulls the weight to accelerate it near the singular
configuration. The acceleration is larger than the deceleration
around the end time, while the norms of the required torques
around the start and end time are not so different.
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Case B: Vertical Motion

The mass of the weight is set to be 5.0 [kg], and the initial
value of T is chosen as 0.5 [s]. At first, the grid points
of (xb, yb) were made by choosing ∆x and ∆y as 0.05
[m], and the cost function Jc was calculated at each point.
Figure 6 shows the contour plot of Jc. The contours are
not symmetrical because of the gravity. The location of the
minimum of Jc is (xb, yb) = (0.05, 0.6) and denoted as
L1. By choosing ∆x and ∆y as 0.01 [m] near L1, we
obtained more accurate solution of the optimal location as
(xb, yb) = (0.03, 0.64). The location is denoted as L′

1 in Fig.
6, and the initial configuration of the robot arm at L′

1 is also
shown in the figure. The value of Jc at L′

1 is 27.2 [N2m2s]. In
Fig. 6, we can see that the cost function has a local minimum
at the location denoted as L2. The location is calculated as
(xb, yb) = (−0.09,−0.05) by using ∆x = ∆y = 0.01. The
value of Jc at L2 is 68.5 [N2m2s]. It should be noted that the
initial configuration at L2 is close to a singular configuration
where the robot arm is folded completely, that is, θ2 = π.

V. EFFICIENT ENERGY SUPPLY NEAR SINGULARITY

In [11], we have shown that the singular configuration
where θ2 = 0 is useful for providing energy to the system
efficiently by joint torques. In this section, it will be shown
that the singular configuration where θ2 = π is also useful
for that purpose, and the differences between the results in
IV and those in [11] will be discussed.

A. Energy Supply

In this subsection, we consider only Case A for simplicity.
It is supposed that the robot arm is in a singular configuration
at the start time and pulls a weight horizontally. The singular
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configuration shown in Fig. 7 (a) is denoted as C0, and the
one in Fig. 7 (b) is denoted as Cπ . The small displacements
of joint angles from each singular configuration are denoted
as δθ, and the small displacement of the end effector caused
by δθ is denoted as δpe (Fig. 7). To simplify the analysis,
we make the following assumptions:

5) At the start time, the arm and the weight are at rest,
and a bounded and constant torque τ is applied at the
joints for t ≥ 0.

6) The mass of the weight is much larger than the mass
and inertia of the robot arm.

The work done by joint torque can be written as WJ =
τT δθ. In statics, it is equal to the energy supplied to the
weight and can be represented as WJ = F T δpe by using
the force F applied to the weight. But, this equation means
that an infinitesimal torque τ can cause a finite force F ,
and the statics is insufficient to explain the behavior of the
system [11]. We consider the dynamics of the system below.

In Case A, (6) can be rewritten as

θ̈ = P (τ − h − mwJT J̇ θ̇) , (11)

where
P = (M + mwJT J)−1 . (12)

Since θ̇ = 0 at the start time under the assumption 5), we
can approximate θ̈ as

θ̈ ≈ Pτ . (13)
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The small displacement of θ at t = δt can be represented as
δθ ≈ (δt2/2)Pτ , and the work done by joint torque τ can
be written as

WJ = τT δθ ≈ (δt2/2)τT Pτ . (14)

Since P is symmetric, it can be expressed as

P = λ1eλ1e
T
λ1

+ λ2eλ2e
T
λ2

, (15)

where eλi is the normalized eigenvector for eigenvalue λi

(i = 1, 2) and eT
λ1

eλ2 = 0. From P > 0, λi > 0 and we
assume that λ1 ≥ λ2. The work WJ can be maximized by
choosing the joint torque as τ ∥ eλ1 :

WJ ≈ (δt2/2)λ1∥τ∥2 , when τ ∥ eλ1 . (16)

Under the assumption 6), the eigenvalues can be calculated
as follows:

λ1 =
2

mw(k1 −
√

k2
1 − 4k3) + (a − ak1−2k2√

k2
1−4k3

) + O( 1
mw

)
,

λ2 =
2

mw(k1 +
√

k2
1 − 4k3) + (a + ak1−2k2√

k2
1−4k3

) + O( 1
mw

)
,

where, denoting the i-j component of M as Mij (M12 =
M21), a = M11 + M22 > 0,

k1(θ2) = l21 + 2l22 + 2l1l2 cos θ2 > 0 , (17)

k2(θ2) = M11l
2
2 + M22(l21 + l22 + 2l1l2 cos θ2)

−2M12l2(l2 + l1 cos θ2) , (18)

k3 = l21l
2
2(1 − cos2 θ2) . (19)

When the configuration of the robot arm is not singular,
cos2 θ2 ̸= 1 and k3 > 0. Then, both of λ1 and λ2 approach
zero as mw → ∞. As a result, the work WJ approaches
zero. The joint torque τ cannot accelerate the joint angle θ,
because the weight is too heavy. In other words, when the
matrix J is not degenerated, WJ can be approximated as

WJ ≈ (δt2/2)τT (mwJT J)−1τ ≡ WJ1 , (20)

and WJ1 → 0 as mw → ∞.
When the configuration of the robot arm is singular,

cos2 θ2 = 1 and k3 = 0. Then, only λ2 approaches zero
as mw → ∞, and λ1 can be calculated as

λ1 = k1/k2 + O(1/mw) . (21)

Since eλ2 converges to the column space of JT from (12)
as mw → ∞, e1 satisfies eT

λ1
col(JT ) ≈ eT

λ1
eλ2 = 0.

Consequently, λ1 and eλ1 can be calculated for the singular
configurations C0 and Cπ respectively as follows.
• When the robot arm is in C0, that is, when cos θ2 = 1,

λ1 ≈ ∥c0∥2

cT
0 Mc0

≡ λ10 , eλ1 ≈ c0

∥c0∥
, (22)

where c0 = [l2,−(l1 + l2)]T .
• When the robot arm is in Cπ , that is, when cos θ2 = −1,

λ1 ≈ ∥cπ∥2

cT
π Mcπ

≡ λ1π , eλ1 ≈ cπ

∥cπ∥
, (23)
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where cπ = [l2, l1 − l2]T .
Equations (22) and (23) mean that, when the matrix J is
degenerated at Cα, the work WJ can be approximated as

WJ ≈ δt2

2
(cT

ατ )2

cT
αMcα

, (24)

where α = 0 or π. In order to maximize WJ , we can choose
τ as τ ∥ cα and obtain

WJ ≈ δt2

2
∥cα∥2∥τ∥2

cT
αMcα

≡ WJ2α
, when τ ∥ cα . (25)

From (20) and (25), we can see that WJ1 ≪ WJ2α

because of the assumption 6). Therefore, when mw is large
enough, the joint torque τ can generate the energy most
efficiently at the singular configurations. Moreover, by noting
that M also depends on θ2, it can be shown that cT

0 Mc0 =
cT

π Mcπ . Therefore, we can obtain

λ10 > λ1π , (26)

from ∥c0∥ > ∥cπ∥, that is, WJ20 > WJ2π .
Figure 8 shows the variations in λ1 and λ2 as functions of

θ2 for mw = 0, 5 and 10 [kg], where the physical parameters
of the robot arm are the same as in IV. When θ2 ̸= 0
or π, both eigenvalues decrease as mw increases. But, λ1

converges to a certain nonzero value when θ2 = 0 and π,
which is consistent with (22) and (23).

B. Energy Flow

When the robot arm is in a singular configuration, the
work WJ generated by τ is not directly transmitted to
the kinetic energy of the weight. From the assumption 5),
(2) and (13), p̈e can be approximated as p̈e ≈ Jθ̈ ≈
JPτ ≈ λ2Jeλ2e

T
λ2

τ , where we used that Jeλ1 ≈ 0 at
the singular location assuming that mw is sufficiently large.
A small increase of the energy of the weight, δEw, can be
approximated as

δEw = mwλ2
2∥Jeλ2e

T
λ2

τ∥2δt2/2 = O(1/mw) → 0 ,

as mw → ∞. Therefore, even if τ includes nonzero com-
ponents along both eλ1 and eλ2 , δEw can be approximated
as zero. When τ includes a nonzero component along eλ1 ,
nonzero energy WJ is generated from (25), and it is stored
in the robotic arm as the kinetic energy of the arm:

δEa ≈ WJ . (27)
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Figure 9 shows the time histories of Ea, Ew and WJ

that are calculated for the optimal motion at L′
1 in Case A.

Around the start time, almost all the work WJ is stored in the
robot arm as Ea as mentioned above. After that, a part of Ea

is transmitted to Ew, and the ratio of Ew to WJ increases. In
our opinion, this energy transmission would yield the peak
of ÿe around t = 0.1 in Fig. 4.

C. Discussion

In V-A, we showed that WJ is maximized at the singular
configurations by choosing τ as τ ∥ cα. In addition, when
the robot base is located at the singular location S1, the
robot arm can pull the weight along y axis around the start
time, because δpe can be expressed as [O(δθ3), O(δθ2)]T for
τ ∥ cα. In the results in Case A and B, the optimal location
L′

1 is a little away from y axis. One reason for that would
be that the location suitable to decelerate the weight around
the end time is different from S1. Moreover, the advantage
of singular configurations shown in V-A are effective only
for a heavy weight. For example, when mw = 0 in Case A,
the optimal location is obtained at (xb, yb) = (−0.05, 0.35).

In the door opening problem dealt with in [11], the path
of the end effector coincides with the path of the door knob,
and the path does not have to be controlled by joint torque
τ . As a result, the only task for joint torque τ is supplying
energy to the system, and we could see that τ ∥ c0 near
C0 in [11]. On the other hand, in the problem dealt with in
this paper, τ has to not only supply energy to the system,
but also control the path of the weight. Figure 10 shows the
components of τ along eλ1 and eλ2 for τ shown in Fig.
5. Even at the start time, τ has a component along eλ2 to

control the motion of the weight. Nevertheless, it is verified
in Case A that the advantage of singular configurations in
supplying energy is useful for minimizing the cost function.
This advantage could be applied to a wide range of tasks
that a robot arm is expected to do.

In Case B, the equations of motion in (6) include τ g

because of the gravity. The optimal location L′
1 in Case B

is also close to the singular location S1. If the robot base is
located at S1, τ g is eliminated and the robot arm is in the
singular configuration C0, at the start time. However, joint
torques necessary to achieve the tasks depend largely on
τ g during the whole motion of the tasks. Further analysis
of the dynamics is required to examine the advantage of
singular configurations in detail under the force of gravity.
An interesting thing in Case B is that the cost function has
a local minimum at L2 where the initial configuration of
the robot arm is near Cπ . When we lift a heavy weight
up to the height of our shoulder, the arm motion seems
to connect C0 to Cπ approximately. If the weight is lifted
higher, the arm configuration returns to C0 from Cπ again,
like a weightlifting.

VI. CONCLUSIONS

In this paper, we showed that singular configurations of
a two-link robot arm is useful in minimizing joint torques
for tasks of pulling or lifting a heavy object. At the singular
configurations, the energy is supplied more efficiently to the
system by joint torques than at the other configurations. The
singular configuration where the arm is stretched out has a
better supply rate than the singular configuration where the
arm is folded completely.
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