
  

  

Abstract— In human society, there are many invisible social 
rules or spatial effects existing in our environments. The robot 
that does not comprehend these spatial effects might harm 
people or itself. This paper presents a spatial behavior cognition 
model (SBCM) to describe the spatial effects existing between 
people and people, people and environments. By understanding 
the spatial effects in human-lived environments, the robot not 
only predicts pedestrian intentions and trajectories but also 
behaves socially acceptable motions. Moreover, the concept of 
pedestrian ego-graph (PEG) is proposed to efficiently query 
pedestrian-like paths for trajectory prediction. Model 
evaluation and experiments are shown to verify the proposed 
idea in this paper. 

I. INTRODUCTION 
ODAY robots are no longer only operated in laboratories 
or factories. Lots of novel robots were designed to work 

in the populated or outdoor environments. In the near future, 
more and more robots will appear in our human society. To 
make robots “smoothly” coexist and share the environments 
with humans, robots should try to understand human 
behaviors and execute socially acceptable motions. 

In this paper, behavior understanding mainly targets at 
spatial interactions. A factor which can affect the pedestrian 
behaviors is represented as a spatial effect in this paper. There 
are many social rules or implicit “spatial effects” existing in 
human society. Pedestrians usually have high-level cognition 
to reason, infer, and interact with the environments in 
“appropriate” ways (Fig. 1). In other words, the environments 
seem to generate some “spatial effects” that force pedestrians 
to perform certain motions. Our purpose is to make robots 
understand these spatial effects and further predict pedestrian 
intentions or behave human-like motions. However, these 
spatial effects are usually invisible and immeasurable by 
sensors. It leads spatial effect understanding into a difficult 
task. Fortunately, people sometimes interpret their feelings or 
intentions through non-verbal communications such as their 
paths, postures, facial expressions, and eye contact etc. We 
are able to infer the spatial effects by observing pedestrian 
behaviors. Previous researches also studied the spatial 
interactions between people and robots [8, 10, 12]. 
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(a) (b) 

Fig. 1 Some social rules and spatial effects existing in human society, (a) 
pedestrians usually stand to one side of the escalator to allow others to rapidly 
pass, (b) people naturally keep the social distance between groups. 

However, most of these works were limited to certain 
situations or behaviors. They lacked a generalized framework 
for describing the relationships between different spatial 
effects. 

This paper mainly contributes two points. At first, the 
concept of pedestrian ego-graph (PEG) is represented. PEG is 
created based on the statistical results from collected 
trajectories of pedestrians and is utilized to rapidly generate 
pedestrian-like path for trajectory prediction. Second, the 
framework of spatial behavior cognition model (SBCM) is 
proposed to describe the spatial effects in most human-lived 
environments. The robot is further able to comprehend and 
incrementally detect new spatial effects through SBCM. 

This paper is organized as follows. In section II, the 
structure of PEG is introduced. SBCM and spatial effects 
learning are discussed from section III to V. In section VI, the 
probability model of prediction is derived. The model 
evaluation and the experiment are demonstrated in section 
VII. The conclusions are summarized in section VIII. 

II. PEDESTRIAN EGO-GRAPH 
In general, it is not easy to rapidly predict the pedestrian 

trajectory in highly dynamic environments. Most developed 
methods [6, 13] only consider the reactive social forces which 
generate the next action of the pedestrian based on current 
observations. It is usually suited for the tracking problem but 
not the prediction problem. Because of its greedy property, 
this kind of methods may fail in long term prediction and get 
blocked in the areas with local minimum cost. Although some 
algorithms were proposed for long term prediction [2-3, 14], 
they ignored the spatial effect between pedestrians and cannot 
model the avoidance behaviors between pedestrians. This 
paper presents the concept of pedestrian ego-graph (PEG) to 
overcome this drawback. 

An ego-graph [9] is a local motion planning approach used 
in the field of mobile robots, especially for the robots with 
motion constraints [7]. It is a graph that gathers several 
possible robot states and generates different trajectories 
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through these states by considering kinematics and dynamics 
constraints. Since each trajectory is only associated to certain 
states, it is able to efficiently score all the trajectories on-line 
and choose one of trajectories for the next motion strategy. 

In daily life, pedestrians usually adopt similar strategies to 
avoid obstacles. Thus we utilize the concept of ego-graph to 
predict pedestrian trajectories. On the other hand, ego-graph 
also retains the characteristic of multiple hypotheses which is 
helpful to create the probability model of prediction. The 
procedure for building the PEG from collected trajectories is 
discussed below. 

At first, 770 trajectories are collected from 6 different 
places including indoor and outdoor environments. The 
moving direction of the initial state in each trajectory is 
rotated to the upward direction (Fig. 2(a)). Each trajectory is 
divided into several trajectory pieces with lengths of 7~9 m. 
In this case, 2669 trajectory pieces are obtained.  

63 partitions distributed in 3 layers are defined depending 
on the radial distance and orientation to the center of PEG 
(Fig. 2(b)). 3 partitions from different layers become one 
partition set. Thus 1259 partition sets are generated in the 
preliminary PEG. According to the location in the PEG, each 
trajectory piece fits into one of the partition sets. From the 
statistical results, partition sets with fewer trajectory pieces 
are removed. Finally, only 49 partitions and 243 partition sets 
are reserved. Moreover, the statistical trajectory clustering 
method [4] is utilized to estimate the regression model of 
trajectories in each partition set (Fig. 3). 
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(a) (b) 
Fig. 2 (a) 770 trajectories are collected, (b) preliminary partition distribution
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(a) (b) 
Fig. 3 Trajectory clustering and regression (a) the red curve shows the
regressive trajectory in one partition set, (b) sometimes two regressive
trajectories appear in one partition set.  

 

(a) (b) 
Fig. 4 (a) pedestrian ego graph (PEG), (b) PEG can rapidly generate multiple
hypotheses for trajectory prediction. 

 The regressive trajectories in each partition are regarded 
as the policies of pedestrians. At the final, 248 trajectories are 
shown in pedestrian ego-graph as shown in Fig. 4. 

III. SPATIAL BEHAVIOR COGNITION MODEL (SBCM) 
We assume the pedestrian spatial behaviors are influenced 

by some spatial effects existing in the environments. 
According to the frequency of occurrence, the spatial effects 
are classified into general spatial effects (GSEs) and specific 
spatial effects (SSEs). GSEs usually exist in most 
environments and represent the basic spatial considerations 
of pedestrians. On the contrary, SSEs are only associated with 
certain environments or certain social rules of human society. 
Both kinds of spatial effects often co-exist and affect 
pedestrian behaviors at the same time. 

We propose a framework, called SBCM, to describe the 
relationships between pedestrian behaviors and environments. 
It consists of two main parts, the pedestrian model and SSE 
database. The architecture of SBCM is shown in Fig. 5. The 
pedestrian model retains all the spatial effects associated with 
current environment. Thus GSEs always exist in pedestrian 
model and SSEs are only considered while associated 
features are detected in the environments. The pedestrian 
behaviors are represented by fusing the spatial effects in the 
pedestrian model.  

However, there are two difficulties for building SBCM. 
The first is correctly integrating different spatial effects. To 
solve this problem, we model pedestrian behaviors as Markov 
decision processes and estimate the cost weighting of each 
spatial effect by inverse reinforcement learning (IRL) [11]. 

The second difficulty is to detect and learn the new SSEs in 
the environments. Our proposed idea is to learn a general 
behavior model which only engages with GSEs at first. Then 
this general behavior model helps to detect the SSE. The SSE 
can be further identified and learned by “subtracting” GSEs 
from pedestrian behaviors. The learned SSE is stored in SSE 
database and can be used to model pedestrian behaviors or 
detect new SSEs while the associated feature of learned SSE 
appears in the environments. The section IV and V will 
further discuss the cost functions of GSEs and SSEs. The IRL 
for cost learning is also introduced in each section. 

 

 
Fig. 5 Spatial behavior cognition model 
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IV. GENERAL SPATIAL EFFECT LEARNING 
We assume that pedestrian spatial behaviors influenced by 

four GSEs (trajectory length, static obstacle, moving obstacle, 
constant steering). Each GSE associates with a cost function 
Ci for pedestrian state ok in time step k. The cost function 
under GSEs, CGSE, is written as a linear combination of Ci 
with different weights wi shown as Eq(1). The following 
sections describe the formulation of each cost function. 

( ) ( ) ( ) ( ) ( )GSE k des des k obs obs k mo mo k str str kC o w C o w C o w C o w C o= + + + (1)

A. Trajectory Length 
We hypothesize that all pedestrians have certain 

destinations and move toward destinations with “pedestrian 
policy.” The trajectory length which indicates the distance 
from the current location of the pedestrian to the destination is 
regarded as a type of cost. Thus the cost function to the 
destination Cdes can be described by Euclidean distance 
( ( )dist ⋅ ) between two sequential states. 

( ) 1( )des k k kC o dist o o −= −  (2)

B. Static Obstacles 
In general, pedestrians would like to avoid obstacles for 

safety. Thus obstacles can be viewed as a repulsive force that 
generates high cost while pedestrians are closed to it. 
Distance transform (Dist) is used to obtain the closest 
distance to obstacles (Fig. 6(a)). Moreover, we adopt the 
similar formulation in [13] for the cost function Cobs. σ  is 
defined as 0.361 estimated from [13].  

( ) 2 2exp( 0.5 ( ) )obs k kC o Dist o σ= − ⋅  (3)

C. Moving Obstacles 
Hall [5] demonstrated that personal space (PS) plays an 

important role in spatial interactions between humans. PS can 
be considered as a self-own area surrounding each person. 
The violation of PS often causes emotional reactions 
depending on the relation between two persons. PS usually 
forms as an elliptic shape shown in Fig. 6(b). In this paper, the 
concept of PS also helps to formulate the cost caused from 
other pedestrians. According to [1], PS around the pedestrian 
can be modeled as a combination of 2 two-dimensional 
Gaussian functions shown in Fig. 6(b). The cost function of 
pedestrian i suffered from other pedestrians, Cmo, can be 
described as the summation of cost from pedestrian j to 
pedestrian i, Cji, shown in Eq.(4). 

  
(a) (b) 

Fig. 6 (a) Distance transform (Dist). The obstacle is displayed as black color.
The original map is shown in Fig. 7, (b) the cost function of personal space.

( ) ( ) ( )( )1exp 0.5
ti j i j i

mo k ji k k k k
j j

C o C o o o o−= = − ⋅ − Σ −∑ ∑  (4)
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. σ is 

also defined as 0.361 in this paper. 
 

D. Constant Steering 
Since pedestrians usually avoid frequently changing 

moving directions, the last cost function of GSE is to penalize 
the steering variation as shown in Eq.(5).  

( ) ( ) ( )( )2
1str k k kC o steering o steering o −= −  (5)

E. Model Learning  
We assume the pedestrian spatial behaviors can be 

represented as a MDP. The pedestrian trajectory consisting of 
sequential discrete states (o0, o1, o2…) follows the pedestrian 
policy

pπ . The value function V for the policy π  evaluated at 

pedestrian state o0 is given by Eq.(6). 

( ) ( ) ( ) ( )2
0 0 1 2V o C o C o C oπ γ γ= + + +  (6)

Where [0,1)γ ∈  is the discount factor. C(ok) is the total 
cost at state ok. 

 

In this section, since the pedestrian model only considers 
GSEs, C(ok) is equal to CGSE(ok). Our purpose is to estimate 
the parameter wi under the pedestrian policy. This estimation 
can be viewed as an inverse reinforcement learning (IRL) 
problem. We adopt the method [11] which formulates IRL as 
maximizing the difference of quality between the observed 
policy and other policies. The optimization can be efficiently 
solved by linear programming methods. Here the 
optimization problem becomes 

( ) ( )( )
( ) ( )

0 0

0 0

max 0 0

max

. . 1, 0 ,

j p

j p

i
o X j

i

V o V o w

s t w w V o V o

π π

π π

λ

λ

∈

− − ⋅

≥ < ≤ ≥

∑ ∑  
(7)

X0 is the set of initial states of pedestrian trajectories. λ  is 
the penalty to prevent large wi. Several policies

jπ , which 

separately consider Cdes, Cobs, or randomly combination of 
other cost functions, generate different trajectories for ( )0

jV oπ . 

The model evaluation for GSEs is discussed in section VII. 

V. SPECIFIC SPATIAL EFFECT LEARNING 
However, some spatial effects only appear in certain 

environments or from certain objects and cannot be described 
by GSEs. SSEs help to compensate this part. SSEs are 
regarded as the additional spatial effects to influence 
pedestrian behaviors. If the cost function C represents the 
cost of observed pedestrian behaviors, we are able to detect 
SSEs and even further estimate SSEs by subtracting GSEs 
from the cost function C. The complete cost function C can be 
written as 

( ) ( ) ( )k GSE k SSE kC o C o C o= +  (8)
CGSE(ok) is available from Eq.(1). The cost function CSSE is 
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represented as a grid map tabulating the costs of the SSE in 
discrete locations (Fig. 8 (a)). Similar to the last section, the 
cost estimation can be transformed into an optimization 
problem shown in Eq.(9). Hist(s), which records the 
frequency of pedestrian passing location s, is also provided as 
the penalty term. One thing we should notice is that only the 
parameters of the SSE are estimated in Eq.(9), the parameters 
of GSEs are reserved. Moreover, we generate several CSSE by 
slightly translating the coordinate of CSSE to different 
locations (Fig. 8 (b)). After fusing these CSSE, a high 
resolution CSSE is available. 

( ) ( )( )
( ) ( )

0 0

0 0

max 0 0

max ( ) ( )

. . 0, 0 ( ) ,

j p

j p

SSE
o X j

SSE

V o V o Hist s C s

s t C s C V o V o

π π

π π

λ

λ

∈

− − ⋅ ⋅

> ≤ ≤ ≥

∑ ∑  
(9)

Where s indicates all the discrete states in the grid map.  
A simple experiment is designed to verify the idea. Five 

destinations and the grid map of the environment are shown 
in Fig. 7. An interactive exhibition locates in the center of the 
environments. The pedestrians are not allowed to go into the 
interactive area in this case. However, the robot equipped 
with a laser range finder cannot detect the interactive area 
from the grid map and also cannot model the forbidden 
behavior from GSEs. It is required to detect and learn this 
SSE (the forbidden behavior) from the observed pedestrian 
trajectories. 

44 pedestrian trajectories are collected while 30 
trajectories are detected as unusual by the pedestrian model 
only considering GSEs (Fig. 9(a)). Fig. 9(b) demonstrates the 
histogram Hist(s) of pedestrian trajectories. The cost function 
of SSE, CSSE, is further estimated by Eq.(9). The estimated 
results are displayed in Fig. 10. The result of estimated CSSE 
without Hist(s) is also shown for comparison. After adding 
CSSE to the pedestrian model, SBCM generates the new 
pedestrian policy. The policy of the before and the after 
considering SSE are illustrated in Fig. 11. The policy 
considering the SSE is closer to the pedestrian policy. 

VI. PROBABILITY FRAMEWORK 
In this section, the probability model of prediction is 

derived. To clarify the meaning of symbols, some symbols 
are defined as follows. Ok is represented as the pedestrian 
trajectory from time step 1 to k. 

{ }1 2, ,k kO o o o  (10)

 

 

 
(a) (b) 

Fig. 7 History gallery, (a) the interactive exhibition is in the center of the map
and 5 destinations are denoted as green circles, (b) environment pictures. 

g
ko  indicates the discrete states of the pedestrian at time 

step k. G describes the destination of the pedestrian. The 
prediction of behaviors consists of short term and long term 
prediction. In short term prediction, only the area within PEG 
is concerned while the long term prediction considers the 
areas out of the PEG. In the following paragraphs, three 
situations, short term prediction, long term prediction and 
multiple destinations are discussed. 

A. Short term prediction 
The probability model of short term prediction is 

represented as p( ok+T | ok,G). Here we assume the pedestrian 
takes T time steps to walk through the PEG area. The 
probability is obtained from the statistical results that 
compare the predicted trajectory with real pedestrian 
trajectories. 

 
(a)                    (b) 

Fig. 8 (a) The cost function is represented as the discrete states, (b) fusing 
multiple learned cost functions to generate one high resolution cost function

 
(a)                    (b) 

Fig. 9 (a) unusual trajectories are shown in red color, (b) Hist(s). 

 
(a)                    (b) 

Fig. 10 Cost function of SSE, (a)without Hist(s), (b) with Hist(s). 
 

 
(a)                    (b) 

Fig. 11 Pedestrian policies for destination E, (a) without SSE, (b) with SSE.
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(a) (b) (c) 

Fig. 12 Simulation of long term prediction in different time steps, (a) t = 3 s, (b) t = 5 s, (c) t = 9 s. 

B. Long term prediction 
In the long term prediction, the prediction result is 

represented in discrete state in grid map. The probability of 
the prediction from time step k to k+N is modeled as 

( )| ,g
k N kp o o G+

. According to the total probability, it is 

factorized as  
( ) ( ) ( )

( ) ( ) ( )
1

1 1

1

1 1
1

| , | , | ,

| , | , | ,

g
k N

g g
i k T

g g g g
k N k k N k N k N k

o

k N
g g g g g
i i k T k T k T k

i k T o o

p o o G p o o G p o o G

p o o G p o o G p o o G

+ −

+

+ + + − + −

+ −

+ + + + +
= + +

=

⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑ ∑∏
(11)

Each grid state has 16 directions toward its next states. 
Thus we can utilize similar estimation method as short term 
prediction to estimate ( )1 | ,g g

i ip o o G+
. The final term 

( )| ,g
k T kp o o G+

 of Eq.(11) can be derived to the summation of 

the multiplication of state discretization and the short term 
prediction as shown in Eq. (12). Fig. 12 shows the 
simulation result. 

( ) ( ) ( )| , | | ,
k T

g g
k T k k T k T k T k

o
discretization short term prediction

p o o G p o o p o o G
+

+ + + += ∑  
(12)

C.  Multiple destinations 
In general, the destination of the pedestrian is usually 

unknown. However, we are able to derive the weightings of 
different destinations from the pedestrian trajectory. By 
Bayes rule, the posterior of goal weighting p(Gk|Ok) in time 
step k can be described as the multiplication of one step 
prediction and goal weighting in time step k-1. In other 
words, it is able to iteratively estimate the goal weighting 
while the new information of the pedestrian is available. 

( ) ( ) ( )
( ) ( )

1 1

1 1 1

| | , |

| , |
k k k k k k k

k k k k k

p G O p o o G p G O

p o o G p G O
− −

− − −

∝

=
 (13)

Based on the pedestrian trajectory Ok, a generalized long 
term prediction model ( )|g

k N kp o O+
 in multiple destinations 

environments is represented by the combination of 
individual long term pedestrian models with different 
weights shown as  

( ) ( ) ( )

( ) ( )

| | , |

| , |

m
g g i i
k N k k N k k k k

i

m
g i i
k N k k k k

i
Prediction Goal Weighting

p o O p o O G p G O

p o o G p G O

+ +

+

=

=

∑

∑

 
(14)

VII. MODEL EVALUATION AND ROBOT EXPERIMENT 

A. Model Evaluation  
In the training phase, 233 trajectories are collected from 

one outdoor (seq_eth) [15] and two indoor environments. 
In the testing phase, the trajectories of PEG are scored and 

prioritized on-line by V π  as shown in Eq.(6). The trajectory 
with the lowest value of V π  is chosen as the predicted 
trajectory of the pedestrian. However, the scores of the first 
several prioritized trajectories usually have a slight 
difference. In other words, they all have large chances of 
being chosen by pedestrians. To demonstrate the 
characteristic of multiple hypotheses, PEG is represented in 
three different types: PEG1, PEG5, and PEG10. The number 
indicates the amount of prioritized trajectories in PEG 
compared to the ground truth. The best one is chosen as the 
evaluated trajectory. For example, PEG5 means that the 
evaluated trajectory is the best matching trajectory chosen 
from the first five prioritized trajectories. 

Moreover, PEG is also evaluated by comparing with other 
pedestrian models including constant velocity (CV) and 
linear trajectory avoidance (LTA) [13]. 80 testing 
trajectories are randomly selected from the dataset 
(seq_hotel) [15]. However, the trajectories of short length or 
those belonging to a group are removed. The prediction 
results are shown in Fig. 13. The average error and its one 
standard deviation in different distances of prediction are 
listed in TABLE I and TABLE II. All the models perform 
well while predicted distance is lower than 3 meters. 
However, performance difference is obvious in long 
distance prediction. Because of the advantage of multiple 
hypotheses, PEG5 and PEG10 dramatically decrease the 
prediction error and shrink the uncertainty of prediction. 

B. Robot Experiment 
This section demonstrates a service robot performs 

pedestrian-like motions by considering the spatial effects 
discussed in section IV and V. The robot platform is shown 
in Fig. 14(a). The laser ranger finder equipped on the robot is 
used for localization and pedestrian tracking. By learning the 
spatial effects, the robot is able to search a path similar to the 
pedestrian behavior that detours around the interactive 
exhibition (Fig. 14(b)). While a pedestrian is moving toward 
the right-bottom side of the map, the robot is able to utilize 
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the pedestrian model to predict the potential location of the 
pedestrian in the next few seconds. To prevent the potential 
collision, the robot queries a new path surrounding the other 
side of the interactive exhibition (Fig. 14 (c)-(d)). 

VIII. CONCLUSION 
In this paper, we present the concept of pedestrian ego- 

graph (PEG) and the framework of spatial behavior cognition 
model (SBCM). PEG provides human-like trajectories for 
modeling pedestrian behaviors. By the advantages of multiple 
hypotheses, PEG is helpful to build the probability model of 
prediction. Moreover, the proposed framework of SBCM not 
only provides a good ability to discover new spatial effects but 
also estimates the corresponding cost functions. Furthermore, 
the probability models of prediction including short term, long 
term and multiple destinations are also derived. The pedestrian 
model combining PEG and SBCM shows excellent results in 
the model evaluation. Finally, we have further demonstrated a 
practical application that a service robot behaves socially 
acceptable motions by detecting and learning the spatial 
effects in the environment. 
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TABLE I  
STATISTICAL RESULTS- AVERAGE ERROR (UNIT:METER) 

 1 m 2 m 3 m 4 m 5 m 6 m 7 m 
CV 0.0373 0.1221 0.2210 0.3625 0.5272 0.6890 0.8540 
LTA 0.0535 0.1279 0.2119 0.2850 0.3779 0.4443 0.5087 
PEG1 0.0475 0.1347 0.2226 0.3034 0.3417 0.3801 0.4432 
PEG5 0.0306 0.0754 0.1058 0.1174 0.1310 0.1561 0.2326 
PEG10 0.0294 0.0744 0.1000 0.1045 0.1209 0.1338 0.2050 

TABLE II  
STATISTICAL RESULTS- STANDARD DEVIATION (UNIT:METER) 

 1 m 2 m 3 m 4 m 5 m 6 m 7 m 
CV 0.0420 0.1554 0.2590 0.3883 0.5274 0.6867 0.8984 
LTA 0.0431 0.0921 0.1499 0.2036 0.2475 0.3067 0.3754 
PEG1 0.0469 0.1352 0.1544 0.2168 0.2629 0.3188 0.3649 
PEG5 0.0290 0.0559 0.0764 0.1026 0.1400 0.1674 0.1989 
PEG10 0.0259 0.0567 0.0665 0.0828 0.1264 0.1605 0.1740 

 

Fig. 13 Prediction results in different pedestrian models. The right image 
shows LTA fails in the area with local minimum cost. Black: ground truth. 
Red: PEG. Blue: LTA. Green: CV 
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Fig. 14 the experiment of navigation. 
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