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Abstract— The advantages of tilt-and-torsion angles in anal-
ysis of zero-torsion parallel kinematics machines (PKM) have
been reported by several literatures. However, geometric prop-
erties of tilt-and-torsion angles are not completely understood
and fully utilized in synthesis of novel zero-torsion PKMs.
In this paper, we study geometric properties of the so called
zero-torsion motion types via differential geometry of Lie
groups. We show that zero-torsion motion types admit simple
representations under canonical coordinates of the first kind
of the special Euclidean group SE(3). Using the proposed
representation, we give a classification of zero-torsion PKMs.
The synthesis condition for several well known zero-torsion
PKMs are correctly identified. We will conduct type synthesis
of zero-torsion PKMs in a separate paper.

I. INTRODUCTION

Recently, type synthesis of parallel kinematics machines

(PKM) with mixed translational and rotational degree of

freedoms (D) becomes a popular area of research [1], [2],

[3], [4], [5]. For convenience, they are often referred to as

mTnR PKMs. Such notation is however not accurate, since

it does not give information about the way of composition

of each translational and rotational degree of freedom. For

this reason, we prefer the more precise notion of motion type

[6].

If the set of rigid motions (attainable by the end-effector

of a PKM) relative to a reference configuration agrees with

a subgroup G (or a submanifold N ) of the special Euclidean

group SE(3) in a neighborhood of the identity, we say that

the mechanism has the motion type of G (or N ). In this

paper, our notations for subgroups and submanifolds largely

follow [6].

Take 1T 2R PKMs for example, reference [4]-Fig.4 shows

a PKM having the same motion type as that of a prismatic

joint T (z) (along z-axis) followed by a universal joint

U(o, x, y), which is a product of one 1-D translational

subgroup T (z) and two 1-D rotational subgroups R(o, x)
and R(o, y):

T (z)U(o, x, y) = T (z)R(o, x)R(o, y) (1)

or a product of exponential1 (PoE) [7], [6]. We refer to such
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1Here the reason for the name ”exponential” shall be clear in Section II.

motion types as universal motion types, since the 2R DoF

is represented by U(o, x, y), the motion type of a universal

joint.

Another example of 1T 2R PKMs is the symmetric 3-

T T S (or planar-spherical bond, [8]) PKM family2 [3],

whose motion type is the product of T (z) with a complex 2R
motion type. Reference [9] used Rodrigues formula to show

that its rotation matrix is generated by a horizontal rotation

vector. Reference [10] used tilt-and-torsion angle [11] to

parameterize its rotation matrix, and showed that its torsion

angle is constantly zero. Such PKMs are referred to as zero-

torsion PKMs. Zero-torsion PKMs have been extensively

studied by [12], [13], [14].

Since tilt-and-torsion angles do not depend on the choice

of rotation axes as is the case of U(o, x, y), it is ideal for

modeling mT 2R PKMs, such as 2R orientation devices,

3T 2R five-axis machine tools and their 1T 2R modules.

However, tilt angle and zero-torsion PKMs are less referred

to in PKM synthesis literatures. This is probably due to

lack of both a proper definition of zero-torsion motion types,

and knowledge of their geometric properties. To the authors’

knowledge, most PKM synthesis literatures focus on mT 2R
universal motion types [15], [4], [16], [17].

In fact, the majority of PKM synthesis literatures are

concerned with subchains and PKMs with PoEs [18], [19],

[20], [6]; while zero-torsion motion types has no PoE rep-

resentation. Another reason for unpopularity of zero-torsion

motion type is that, there is a lack of motivation for type

synthesis of PKMs with parasitic motions. While PoE usually

avoid the presence of parasitic motions, zero-torsion motion

types usually have parasitic translations.

This paper is multi-purpose. First, it fills the gap between

analysis and synthesis of mT 2R zero-torsion PKMs; second,

it brings more sense into mT 2R motion types with parasitic

motions, and gives a unified picture of PKMs with or

without parasitic motions, and also PKMs with universal

or zero-torsion motion types; third, it throws some light on

innovation of PKM synthesis with new motion types.

This paper is organized as follows: in Section II, we

first review the basic knowledge of Lie group theory, which

is necessary for understanding the rest of the paper, then

we utilize these geometric tools in definition and analysis

of zero-torsion motion types. We derive several geometric

properties of zero-torsion motion types, which are crucial to

a unified classification and synthesis of zero-torsion PKMs.

Finally, we give our conclusion and foresee our future work.

2Here S denotes a spherical joint.
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The synthesis of zero-torsion PKMs is treated in a separate

paper.

II. GEOMETRIC PROPERTIES OF

ZERO-TORSION MOTION TYPES

In this section, we first give a minimal review of mathe-

matics necessary for understanding the rest of the material.

Then we use canonical coordinates of the first kind to give

a precise definition for zero-torsion motion types, based on

which we give a classification of zero-torsion motion types.

A. Basic Lie group theory

We give a brief review of Lie group theory in a similar

fashion to [7], [6]. A formal treatment of the material can

be found in [21], [22].

By attaching a copy of the reference frame to a rigid body,

a rigid displacement can be identified with an element g =
(p,R) ∈ SE(3) which, in homogeneous representation, has

the following form:

SE(3) ,

{[

R p
0 1

]∣

∣

∣

∣

p ∈ R
3, R ∈ SO(3)

}

(2)

where SO(3) denotes the set of 3 × 3 orthogonal matrices

of determinant 1. Given a change of reference frame g0 ∈
SE(3), a rigid displacement g in the new reference frame is

given by its conjugation, denoted Ig0 (g):

Ig0(g) , g0gg
−1
0 (3)

The Lie algebra of SE(3), denoted se(3), is a 6-D vector

space consisting of all 4× 4 matrices of the form:

se(3) ,
{

ξ̂ ∈ R
4×4|eξ̂t ∈ SE(3), ∀t ∈ R

}

=

{[

ω̂ v
0 0

]∣

∣

∣

∣

ω̂T = −ω̂ ∈ R
3×3, v ∈ R

3

} (4)

An element of se(3) is called a twist, usually denoted by

ξ̂, η̂, etc. se(3) is isomorphic to R
6 by:

∧ : R6 7→ se(3),

[

v
ω

]∧

=

[

ω̂ v
0 0

]

(5)

where

ω̂ =





ω1

ω2

ω3





∧

=





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (6)

The ∧ operator satisfies:

ω̂v = ω × v, v ∈ R
3

ω̂2 = ωωT − ‖ω‖2I
(7)

The exponential map:

exp : se(3) 7→ SE(3), exp(ξ̂) = eξ̂ (8)

defines a local diffeomorphism taking the zero vector of

se(3) to the identity of SE(3). It can be computed that

(eξ̂)−1 = e−ξ̂.

Given a twist ξ = (v, ω)T , eξ̂ is given by:

eξ̂ =

[

eω̂ [(I − eω̂)ω̂v + ωωTv] 1
‖ω‖2

0 1

]

, ‖ω 6= 0 (9)

where eω̂ is given by Rodrigues formula:

eω̂ = I +
ω̂

‖ω‖
sin ‖ω‖+

ω̂2

‖ω‖2
(1 − cos ‖ω‖) (10)

Its inverse is given by:

ξ̂ = log

[

R p
0 1

]

=

[

ω̂ Ap
0 1

]

(11)

where ω̂ = logR is given by:

2 cos ‖ω‖+ 1 = trace(R), ω̂ =
1

2 sin ‖ω‖
(R−RT ) (12)

and

A = I −
1

2
ω̂ +

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)

2‖ω‖2 sin ‖ω‖
ω̂2 (13)

Given an arbitrary basis (v̂1, . . . , v̂6) of se(3), there are

two ways to locally parameterize SE(3):

• Canonical coordinate of the first kind:

(θ1, . . . , θ6) 7→ e
∑6

i=1 v̂iθi (14)

• Canonical coordinate of the second kind:

(θ1, . . . , θ6) 7→ ev̂1θ1 · · · ev̂6θ6 (15)

also known as product of exponential (POE) [7].

In general, e
∑6

i=1 v̂iθi does not equal ev̂1θ1 · · · ev̂6θ6 .

A Lie subgroup G of SE(3) is a closed subset of SE(3)
such that:

∀g1, g2 ∈ G ⊂ SE(3) ⇒ g1g
−1
2 ∈ G (16)

One can check by (16) that Ig0(G) , {Ig0(g)|g ∈ G} is also

a subgroup of SE(3), called a conjugate subgroup.

The Lie algebra g of a subgroup G is given by:

g ,

{

ξ̂ ∈ se(3)|eξ̂t ∈ G, ∀t ∈ R

}

(17)

which is a subspace of se(3) and is closed under the Lie

bracket:

[, ] : g× g 7→ g, [ξ̂, η̂] , ξ̂η̂ − η̂ξ̂ (18)

g is called a Lie subalgebra of se(3).
The Lie subalgebra of a conjugate subgroup Ig0G is given

by:

Adg0g , {g0ξ̂g
−1
0 |ξ̂ ∈ g} (19)

The Adjoint transformation Adg0(ξ̂) = g0ξ̂g
−1
0 induces a

linear map on R
6 ∼= se(3):

Adg0ξ =

[

R0 p̂0R0

0 R0

]

ξ (20)

for some g0 = (p0, R0) ∈ SE(3). Adg0 relates to Ig0 via:

Ig0(e
ξ̂) = eAdg0 ξ̂ (21)

Lie subgroups of SE(3) provide model spaces for rigid

displacements generated by say, the six lower pairs (revolute,

2308



{ê1, ê2, ê3, ê4, ê5, ê6}

SE(3)

{ê1, ê2, ê3, ê6}

X (X(ω))

{ê1, ê2, ρê3 + ê6}

Yρ (Yρ(ω))

{ê1, ê2, ê3}

T(3)

{ê1, ê2, ê6}

SE(2) (PL(ω))

{ê4, ê5, ê6}

SO(3) (S(p))

{ê3, ê6}

C (C(q, ω))

{ê1, ê2}

T2 (T2(ω))

{ρê3 + ê6}

Hρ (Hρ(q, ω))

{ê1}

T1 (T (v))

{ê6}

SO(2) (R(q, ω))
dim = 1

dim = 2

dim = 3

dim = 4

dim = 6

Fig. 1. A classification of Lie subgroups of SE(3). The upper part of
each box denotes the Lie subalgebra of the corresponding Lie subgroup in
its normal form, and the lower part denotes the conjugacy class. Enclosed
in the parenthesis is a generic member of the conjugacy class.

prismatic, helical, cylindrical, spherical and planar joints).

Classification of Lie subgroups of SE(3), up to a conjuga-

tion, have been studied in [23], [24], [25], and the results

are displayed in Fig.1. In the figure, {ei}
6
i=1 is the canonical

basis of R6, {êi1 , . . . , êin} is the Lie subalgebra spanned by

êi1 , . . . , êin . In other words, the preimage of Lie subgroups

of SE(3) under exp are Lie subalgebras of se(3).
Rigid displacements generated by a parallelogram joint Pa

or a universal joint are not closed under the group operation,

and so is that of a five-axis machine as there simply exists

no Lie subgroup of dimension 5 at all. For this reason,

(regular) submanifolds of SE(3) are introduced in [6], [8],

[4] to provide additional modeling spaces for mechanism

motions. The preimage of a submanifold M of SE(3) under

exp is no longer a Lie subalgebra, but a hypersurface of

se(3) in a neighborhood of 0 ∈ se(3). Thus for convenience,

we use the word hypersurface to mean its corresponding

submanifold under exp.

Two special families of regular submanifolds are defined:

(i) Category I submanifolds of the form N1 ·N2, where N1 is

a submanifold of T (3) and N2 a submanifold of S(o), and

(ii) Category II submanifolds of the form H1 · H2, where

H1 and H2 are Lie subgroups of SE(3) with nontrivial

intersection (also referred to as dependent products). Cate-

gory I submanifolds are used to model desired task motions,

and 25 dependent products of Category II submanifolds are

enumerated in Table III of [6], some of which are used in

[8], [19], [6] for subchain (or limb) synthesis.

B. Canonical representation of zero-torsion motion types

The tilt-and-torsion angle (or modified Euler angles) is

proposed in [11] for orientation workspace analysis, and is

well explained in [11], [10]. Here we use a slightly different

convention: we parameterize the tilt axis, denoted ω, by its

angle between x-axis and ω:

ω = x cos θ + y sin θ (22)

an denote the tilt angle by α, then the corresponding torsion-

less (or zero-torsion) rotation matrix R is given by:

R = eω̂α = e(x̂ cos θ+ŷ sin θ)α (23)

Using the following coordinate transformation:
{

θ1 = α cos θ

θ2 = α sin θ
(24)

the zero-torsion rotation, in its homogeneous representation,

is represented by:
[

R 0
0 1

]

= eê4θ1+ê5θ2 (25)

It is not difficult to see that the zero-torsion rotation is exactly

represented by canonical coordinates of the first kind (14).

Thus,

exp{ê4, ê5} , {eξ̂|ξ̂ ∈ {ê4, ê5}}

= {e(ê4 cos θ+ê5 sin θ)α|θ ∈ [0, 2π], α ∈ [−π, π]}
(26)

defines a 2-D zero-torsion submanifold of SO(3).
exp{ê4, ê5} has the following geometric properties:

1) Invariance by change of basis: By (26), given

any other basis (v̂1, v̂2) of {ê4, ê5}, exp{v̂1, v̂2} =
exp{ê4, ê5} on the domain of intersection. This is a

property not shared by the PoE R(o, x)R(o, y);

2) Invariance by inverse: Since (eξ̂)−1 = e−ξ̂, and

for any ξ̂ ∈ {ê4, ê5}, we also have −ξ̂ ∈ {ê4, ê5}.

(exp{ê4, ê5})
−1 = exp{ê4, ê5}. This is a property not

shared by U(o, x, y) = R(o, x)R(o, y);
3) z-axial symmetry: This is equivalent to saying that

Ig0(exp{ê4, ê5}) = exp{ê4, ê5} for all g0 ∈ R(o, z).
From (21), we have:

Ig0(exp{ê4, ê5}) = exp{Adg0 ê4, Adg0 ê5} (27)

where (Adg0 ê4, Adg0 ê5) is just a change of basis for

{ê4, ê5}. To see this, let g0 = Rz(ψ), then:
{

Adg0 ê4 = ê4 cosψ + ê5 sinψ

Adg0 ê5 = −ê4 sinψ + ê5 cosψ
(28)

The symmetry follows from 1);

4) exp{ê4, ê5} is omni-directional, i.e. for any ω ⊥ z,

the 1-D subgroup R(o, ω) is contained in exp{ê4, ê5}.

This is a great advantage of exp{ê4, ê5} over

U(o, x, y) = exp{ê4} exp{ê5}, which only contains 2

1-D subgroups of SO(3), namely R(o, x) = exp{ê4}
and R(o, y) = exp{ê5}.

As compared to U(o, x, y), exp{ê4, ê5} is more like a Lie

subgroup of SE(3), in the sense that it corresponds to a 2-D

subspace (a hyperplane) {ê4, ê5} of se(3), only that it is no
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longer a Lie subalgebra (since [ê4, ê5] = ê6 6∈ {ê4, ê5}, it is

not closed under Lie bracket).

Following this lead, we look at a 1T 2R zero-torsion sub-

manifold, exp{ê3, ê4, ê5}. It shares all geometric properties

of exp{ê4, ê5}. Moreover, exp{ê3, ê4, ê5} is not only z-axial

symmetric but also invariant under any horizontal translation.

To see this, let p = (px, py, 0)
T ∈ T2(z) and note that:

Ip exp{ê3, ê4, ê5} = exp{Adpê3, Adpê4, Adpê5} (29)

A straightforward calculation shows that:










Adpê3 = ê3

Adpê4 = ê4 − py ê3

Adpê5 = ê5 + pxê3

(30)

and thus,

{Adpê3, Adpê4, Adpê5} = {ê3, ê4, ê5} (31)

(31) and (29) prove the invariance. We also say its symmetry

is T2(z)R(o, z) = PL(z), the planar Euclidean subgroup.

exp{ê3, ê4, ê5} contains T (z) and all 1-D rotation subgroups

with rotation axis lying on the xy-plane:

∀ω ⊥ z, p = (px, py, 0)
T ∈ T2(z) ⇒

R(p, ω) ⊂ exp{ê3, ê4, ê5}
(32)

Example 1 (omni-wrist): The omni-wrist (or omni-wrist

III) [26], as shown in Fig.3, is a 2R zero-torsion PKM. Its

motion type, denoted O(o, dz) for the omni-wrist situated

at the origin and with dimension d (see the Schematic in

Fig.3(b)), is given by:

O(o, dz) =

{[

e2ω̂α − d
2 (e

ω̂α − I)2z
0 1

]∣

∣

∣

∣

ω = x cos θ + y sin θ, θ ∈ [0, 2π], α ∈ (−ε, ε)

} (33)

where ε is the tilt limit. We use (11)-(13) to derive the

preimage of O(o, dz) in se(3). Bear in mind that the ω in

(13) is actually 2αω in this example where ω is normalized.

A = I − αω̂ +
sin 2α− α(1 + cos 2α)

sin 2α
ω̂2 (34)

Then by (11),

v = −
d

2
A(eω̂α − I)2z = (dα tan

α

2
)z (35)

and

ξ̂ = ê4(2α cos θ) + ê5(2α sin θ) + ê3(dα tan
α

2
) (36)

Then the coordinate transformation:






























θ1 = 2α cos θ

θ2 = 2α sin θ

θ3 = dα tan
α

2
= θ3(θ1, θ2)

=
d

2
(θ21 + θ22)

1
2 tan

(θ21 + θ22)
1
2

4

(37)

ê4 ê5

ê3

Fig. 2. 2-D hypersurface of the omni-wrist.

(a)

v1

v2
x y

z

o d

γ

γ

(b)

Fig. 3. (a): omni-wrist (O), a PKM with four symmetric UU subchains;
(b): Schematic of a single leg of the omni-wrist.

shows that

O(o, dz) = {eξ̂|ξ̂ = ê4θ1 + ê5θ2 + ê3θ3(θ1, θ2),

θ1 ∈ (−ε1, ε1), θ2 ∈ (−ε2, ε2)}
(38)

That is to say, O(o, dz) corresponds to a 2-D hypersurface

of the 3-D vector space {ê3, ê4, ê5}, as shown in Fig.2.

It is interesting to note that this 2-D surface is still z-axial

symmetric, and {ê4, ê5} is its tangent space at 0 ∈ se(3).
The former is because AdRz(ψ)ê3 = Rz(ψ)ê3 ≡ ê3 for any

angle ψ, and that the coefficient θ3 of ê3 does not depend

on the tilt axis parameter θ. ♦
Example 2 (Reflected tripod): The reflected tripod [27],

[10], as shown in Fig.4, is a 1T 2R zero-torsion PKM. Its

motion type is given by:
{[

e2ω̂α − d
2 (e

ω̂α − I)2z + eω̂αzθ3
0 1

]∣

∣

∣

∣

ω = x cos θ

+ y sin θ, θ ∈ [0, 2π], α ∈ (−ε, ε), θ3 ∈ (−δ, δ)

}

(39)

A similar computation as in Example 1 shows that:

v = (dα tan
α

2
+

α

sinα
θ3)z (40)

Then the coordinate transformation:














θ1 = 2α cos θ

θ2 = 2α sin θ

θ′3 = dα tan
α

2
+

α

sinα
θ3

(41)

shows that (39) can be parameterized by canonical coordinate

of the second kind:

(θ1, θ2, θ
′
3) 7→ eê4θ1+ê5θ2+ê3θ

′
3 (42)
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x y

z

o
d

Fig. 4. The reflected tripod, with three RSR subchain.

In other words, the motion type of the reflected tripod is

exactly exp{ê3, ê4, ê5}, which contains O(o, dz) as a 2-D

submanifold. ♦
Generalizing from the above examples, we see that zero-

torsion motion types can be defined in the following way.

Definition 1 (zero-torsion motion type):

A submanifold M of SE(3) is said to be a zero-torsion

motion type if the preimage V , exp−1(M) projects one-

to-one onto {ê4, ê5}, where the projection is defined by:

π : se(3) 7→ so(3) , {ê4, ê5, ê6},

π(v, w)T = (0, w)T
(43)

♦
We could make use of the quotient space se(3)/t(3) and

its natural projection for a more elegant definition, if bigger

space were allowed.

C. Classification of zero-torsion motion types

Now we are ready to give a classification of zero-torsion

motion types. Starting from the simplest case, subspaces

(hyperplanes) of se(3) that contain {ê4, ê5} but not ê6 corre-

spond to zero-torsion motion types. Such subspaces include:

the 3-D {êi, ê4, ê5} for i = 1, 2, 3, the 4-D {êi, êj, ê4, ê5} for

i 6= j ∈ {1, 2, 3}, and the 5-D {ê1, ê2, ê3, ê4, ê5}. Subspaces

that contain {ê3, ê4, ê5} are of particular interest for their

abundant geometric properties. General zero-torsion motion

types are hypersurfaces of the aforementioned subspaces.

Fig.5 shows a classification of the zero-torsion subspaces,

together with related 3R motion types.

It needs to be pointed out that the classification of general

zero-torsion motion types relies on the notion of quotient

space, which does not fit the scope of this paper. Synthesis

of zero-torsion PKMs based on the classification has to be

separated from this paper for the same reason.

III. GEOMETRIC PROPERTIES OF ZERO-TORSION

PARALLEL KINEMATICS MACHINE

The symmetry properties of hypersurfaces of se(3) are

closely related to geometric properties of zero-torsion PKMs.

Take the omni-wrist, as shown in Fig.3, for example. Recall

that its motion type (38) is a 2-D hypersurface of the 3-

D subspace {ê3, ê4, ê5}, with a symmetry of R(o, z). Each

UU subchain of the omni-wrist, a 4-D hypersurface of

{ê1, ê2, ê3, ê4, ê5}

T (3) · exp{ê4, ê5}

{ê1, ê3, ê4, ê5, ê6}

exp{ê1, ê3, ê4, ê5, ê6}

{ê1, ê3, ê4, ê5}

exp{ê1, ê3, ê4, ê5}

{ê3, ê4, ê5, ê6}

exp{ê3, ê4, ê5, ê6}

{ê3, ê4, ê5}

exp{ê3, ê4, ê5}

{ê1, ê4, ê5}

exp{ê1, ê4, ê5}

{ê4, ê5, ê6}

SO(3)

{ê4, ê5}

exp{ê4, ê5}
dim = 2

dim = 3

dim = 4

dim = 5

zero-torsion motion types

3R motion types

Fig. 5. A classification of zero-torsion motion types

se(3), though not axial symmetric itself, contains the 2-D

hypersurface of omni-wrist. Thus the omni-wrist’s subchains

can be arbitrarily rotated about z-axis without affecting the

PKM’s motion type, so long as the Force Matching Condition

(FMC, [6]-Prop.6) is satisfied. This can be illustrated by the

3-subchained version of omni-wrist [28], whose neighboring

subchains are conjugate by 120◦ rotation about z-axis.

A. Geometric properties of 3-RSR PKM

The 3-RSR PKM has a motion type of exp{ê3, ê4, ê5}.

According to the geometric properties of exp{ê3, ê4, ê5},

each RSR subchain of the PKM can be displaced by a planar

transformation in PL(z) without changing the fact that it

contains the 3-D hyperplane {ê3, ê4, ê5}. This shows that

subchain symmetry of the reflected tripod is not an essential

condition for its synthesis. Moreover, its subchain can be

arbitrarily translated not only radially, but also tangentially.

B. Geometric properties of 3-planar-spherical-bond PKM

family

The symmetric 3-T RS PKM, as shown in Fig.6, is a

member of the 3-planar-spherical-bond PKM family. It is

shown to have a 1T 2R zero-torsion motion type by [10]. Its

motion type can be computed:

{[

e(x̂ cos θ+ŷ sin θ)α p
0 1

]∣

∣

∣

∣

θ ∈ [0, 2π], α ∈ (−ε1, ε1),

θ3 ∈ (−ε2, ε2), p =





h
2 cos(−2θ)(1− cosα)
h
2 sin(−2θ)(1 − cosα)

θ3



 ∈ R
3

}

(44)

A straightforward computation using (11)-(13) shows that it

does not correspond to the 3-D hyperplane {ê3, ê4, ê5}, but

rather a 3-D hypersurface of {ê1, ê2, ê3, ê4, ê5}.
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Since the zero-torsion matrix e(x̂ cos θ+ŷ sin θ)α is z-axial

symmetric, we only need to analyze symmetry of the par-

asitic motion. Observe (44) that its parasitic translation in

T2(z) has a magnitude of h2 (1−cosα), which is independent

of the tilt axis parameter θ; its direction is given by −2θ.

Thus, the PKM’s motion type remains unchanged only when

parasitic translations of all three subchains coincide for an

arbitrary tilt axis θ and tilt angle α. The conjugation Rz(ψ)
between neighboring subchains is given by:

ψ − 2(θ − ψ) = −2θ + 2kπ, ∀θ ∈ [0, 2π] (45)

from which we get ψ = 2kπ
3 , k = 1, 2. The PKM remains

zero-torsion only when neighboring subchains are conjugate

by Rz(
2π
3 ). The 3-T ST PKM [10] can be analyzed in

a similar fashion. Its subchains must remain symmetric in

order to generate a zero-torsion motion type.

h

120◦

120◦

x

y

z

o
p

Fig. 6. Schematic of the symmetric 3-T RS PKM.

IV. CONCLUSION

In this paper, we have proposed a geometric study on zero-

torsion parallel kinematics machines (PKMs). The notion

of zero-torsion motion types is defined and studied in a

Lie group theory framework. In particular, we give a clear

representation of zero-torsion rotations by canonical coordi-

nates of the first kind of SE(3). All zero-torsion motion

types are represented by hyperplanes or hypersurfaces of

{ê1, ê2, ê3, ê4, ê5}. Using such representations, the problem

of PKM synthesis becomes the intersection problem of differ-

ent hyperplanes or hypersurfaces of se(3), whose geometric

properties are easily extracted and utilized in analysis and

synthesis of zero-torsion PKMs. The synthesis condition of

several well known zero-torsion PKMs are easily identified

without exhaustive computation of loop constraints.

In a separate paper, we will dig deeper into geometric

properties of zero-torsion motion types for the synthesis of

novel zero-torsion parallel or hybrid kinematics machines.
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[16] S. Refaat, J. M. Hervé, S. Nahavandi, and H. Trinh, “Two-mode

overconstrained three-dofs rotational-translational linear-motor-based
parallel-kinematics mechanism for machine tool applications,” Robot-

ica, vol. 25, pp. 461–466, 2007.
[17] Q. Li and H. J.M., “1t2r parallel mechanisms without parasitic

motion,” IEEE Transactions on Robotics, 2010, accepted.
[18] Z. Huang and Q. C. Li, “Type synthesis of symmetrical lower-

mobility parallel mechanisms using the constraint-synthesis method,”
International Journal of Robotics Research, vol. 22, no. 1, pp. 59–79,
2003.
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