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Abstract— In this paper, a nonlinear latency model is pre-
sented to describe the relationship between the strain and strain
rate of the temporal responses in robotic grasping that involves
viscoelastic contact interface. The results from experiments and
simulation are presented, and are found to match well with
each other. The nonlinear latency model was able to adequately
represent both Type I and Type II relaxation responses. For the
successive loading and holding with a soft contact, the model
describes the behavior of step-wise increase of equilibrium
strain and a polynomial relationship between the strain rate
and the strain. The nonlinear latency model can successfully
predict and model the behavior of anthropomorphic soft contact
interface in grasping and manipulation when the grasped object
is held in certain posture of prehension with repeated loading
and/or unloading.

I. INTRODUCTION

Viscoelastic materials display the properties of both elastic

solids and viscous fluids. As a result, viscoelastic materials

exhibits both elastic (linear or nonlinear) response and tem-

poral response when subject to external stimuli, such as force

or displacement. Most biological materials are considered

viscoelastic. Viscoelastic materials exhibits two important

temporal responses when subject to displacement and force

in contact interface. They are stress relaxation and strain

creep, respectively. In this paper, the nonlinear relationships

between the strain and strain rate of viscoelastic materials

are studied and derived based on the linear latency model

presented in [25]. Furthermore, simulation studies using the

latency model also produce results of stress relaxation and

strain creep responses that correlate well with the experimen-

tal data.

A. Literature review

Research studies have been conducted on the dynamic

behavior of viscoelastic materials, especially the stress wave

propagation. Theocaris and Papadopoulou studied the prop-

agation of stress waves in viscoelastic media based on the

Kelvin-Voigt model [20]. Turhan and Mengi proposed three

types of inhomogeneities of the stress wave within the

viscoelastic media [28]. Stucky and Lord utilized the finite

element modeling method (FEM) to analyze the properties of

ultrasonic waves in linear viscoelastic media [18]. Pereira,

Mansour and Davis employed a wave propagation technique

to measure the dynamic viscoelastic properties of excised

skin when subjected to a low incremental strain [15]. Fowles

and Williams derived two different phase velocities from

conservation relations, mass and energy [5]. The study of

viscoelasticity has benefited from different perspectives over

the decades. The Maxwell model and the Kelvin-Voigt

model are the first models used to describe the behavior of

viscoelasticity [4]. After that, the generalized Maxwell model

was proposed and has been widely used in modeling of linear

viscoelasticity. Sakamoto et. al applied the modified spring-

damper model to the grasping analysis of viscoelastic materi-

als in [16]. Many other studies of viscoelastic behaviors were

presented in [14], [8], [17], [2], [13], [19], [9], [10]. Research

of viscoelasticity also has been done from the rheology

viewpoint [12], [3], [1]. Golik proposed a model based on the

diffusion of holes inside rubber under an external force [7].

Contrary to the Maxwell model which uses linear springs and

dampers, Fung proposed an empirical model that separates

elastic and temporal responses [6]. Tiezzi and Kao adopted

Fung’s approach to model the soft contact [22], [24], [21],

[23], [11], [30], [29]. The consistency of the parameters in

Fung’s model has been illustrated [26]. This is in contrast to

the Maxwell model and other related models that can render

differences in the values of springs and dampers (for the

same material at the same location) on one or two order

of magnitude—a result that is not intuitive and may be

contradictory to the concept of linear device modeling.

Tsai and Kao proposed the latency model which postulates

that the stress relaxation can be considered as a result of

uneven strain distribution before the material reaches a new

equilibrium state [25]. Furthermore, Tsai and Kao utilized

the latency model to explain the responses under different

loading rates of external force [27], in which different

responses are shown to be a result of different loading rates

due to the temporal effect of viscoelasticity.

B. Relaxation and creep responses of viscoelasticity

Stress relaxation and strain creep are two well-known

properties of viscoelastic materials. Stress relaxation,

normally called relaxation, depicts the varying contact

force/stress with time when a constant displacement is

applied to the material [6]. Two types of relaxations are

defined in [25] and shown in Figure 1. Type I relaxation

exhibits decreasing stress under a constant displacement,

typically at the end of loading. Type II relaxation exhibits

increasing stress under a constant displacement, typically at
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Fig. 1. (a) Type I and Type II relaxation as observed experimentally
in association with the latency model. (b) The latency model with linear
relationship between strain and strain rate [25].

the end of unloading. (See Fig. 1.) Creep response, the other

important property, is the displacement/strain change when

a constant force is applied to viscoelastic materials. Creep

and relaxation illustrate the delayed temporal responses with

the application of displacement or force.

C. Applications

The study of viscoelastic responses is important because of

its relevance to both the stability and the response of contact

interface in robotic grasping and manipulation. Furthermore,

the results of such study can be used to optimize energy con-

sumption for robotic grasping by understanding the nature of

viscoelastic contact interface, and to facilitate the modeling

of robotic grasping which involves both elastic and temporal

responses, such as those in soft fingers, biomedical tissues,

and anthropomorphic contact interface.

II. THEORETICAL BACKGROUND

Based on the experimental observation and the fundamen-

tal concept in physics, we postulate the following two aspects

of viscoelastic contact behaviors.

1) The two viscoelastic phenomena, stress relaxation and

strain creep, are caused by unbalanced stress states

within the material subject to transition of external

stimuli. Such response in some literature was referred

to as hole displacement, especially in polymeric mate-

rials [7]. The velocity of stress propagation inside the

material determines the time constants of exponential

decay or growth for stress relaxation or strain creep.

2) The material, given enough time, will always approach

the equilibrium state at which internal stress is bal-

anced and stress propagation ceases. This state is called

the equilibrium state.

The latency model [25] proposed by Tsai and Kao is

described by the following equations

ε̇c = −ν1(εc − εe) & εe = −
N0c0

αc

(1)

where εc is the compressive strain measured externally at

the contact interface, ε̇c is the strain rate, and εe is the strain

when equilibrium state is reached. The parameters ν1, N0, c0

and αc are constants pertaining to material properties [25].
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Fig. 2. The nonlinear latency model

The latency model elucidates a process for viscoelastic

materials to reach equilibrium after being subjected to ex-

ternal stimuli. When a new equilibrium state is reached, the

strain becomes the equilibrium strain, ε = εe, with the strain

rate becoming zero, ε̇ = 0. In [25], stress relaxation was

discussed and modeled by assuming one exponential term

in the exponentially decaying temporary response. Based

on the latency model with this assumption, an intuitive

and straightforward linear relationship (with a closed-form

solution) between the strain and strain rate can be obtained,

as shown in Fig. 1. The temporal response in Fig. 1 is a

function of the time t, with 0 ≤ t ≤ ∞.

The experimental results suggest that the relationship is

nonlinear, as shown in the nonlinear latency model in Fig. 2.

As a result, we propose the following empirical model to

represent the nonlinear polynomial relationship between the

strain and strain rate in the following equations with respect

to odd or even exponent

ε̇ =

{

−ν(ε − εe)
n if n is odd

−[sgn(ε − εe)]ν(ε − εe)
n if n is even

(2)

where εe is the equilibrium strain, ν and n are constants of

the empirical polynomial function, and ε is the instantaneous

strain at any point within the material. Eq. (2) shows that the

magnitude of strain rate can be determined from the current

strain, ε , and the equilibrium strain, εe. In other word, if the

current strain is further away from the equilibrium strain, a

larger magnitude of strain rate will be expected.

In this paper, we adopt odd exponents in equation (2) for

the convenience in analysis. With n being odd, we can re-

write (2) as follows

ε̇ = −ν(ε − εe)
n (3)

Eqs. (2) and (3) extends the linear model in Fig. 1 to include

the nonlinearity observed in experiments. The experimental

study will be presented in Section III. This model has two as-

sumptions. First, the material is assumed to be homogeneous.

Second, every infinitesimal element within the material is

assumed to have similar property, such that we can apply

the empirical model from the exterior contact surface to the

core of the material.

The solution of the differential equation in (3), before

reaching the equilibrium state εe, can be obtained as follows.
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Fig. 3. The experimental setup of a tensile testing machine with a pair of
flat parallel fixture plates.

(I) When εe > ε0:

ε = εe − [(n−1)(ν t + c)]
1

1−n with c =
(εe − ε0)

1−n

(n−1)
(4)

(II) When εe < ε0:

ε = εe +[(n−1)(ν t + c)]
1

1−n with c =
(ε0 − εe)

1−n

(n−1)
(5)

where ε0 = ε(0) is the boundary condition, which represent

the initial strain when t = 0.

Eqs. (4) and (5) are the solutions of the differential

equation of the nonlinear latency model. The solutions of

the strain ε is a function of time, the exponent n, and the

coefficient ν . When t →∞, the second term on the right-hand

side of the equal sign will vanish, resulting in ε = εe. Physi-

cally, this means that the strain will converge asymptotically

to an equilibrium strain when time approaches infinity. This

is consistent with the latency model and observation based

on the experimental data.

III. EXPERIMENTAL STUDY

A tensile test machine is employed to conduct experiments

for measuring and observing the temporal responses of

viscoelastic contact interface. The experimental setup and

procedures are explained in the following sections.

A. Experimental Setup

Experiments were conducted using a tensile testing ma-

chine with a pair of parallel flat fixtures pressing upon the

object, as shown in Fig. 3. The system is identical to a

parallel-jaw gripper, and will be so referred to in this paper.

The load cell has a range of 2kN force with an accuracy of

0.2N and high repeatability. The displacement measurements

have an accuracy of 10−3 mm. Multiple experiments with

varying loading rates, stationary and relaxation phase, and

unloading phase were conducted. The parameters of the

experiments are tabulated in Fig. 3.

The inertia of the fixture is compensated by the design

of the equipment in order to minimize the effect of force

measurement due to acceleration or deceleration. Calibration

experiments were conducted to measure the inertia force

without contact to identify the amount of inertia force due

to the fixture alone. The results indicate a maximum of

0.35N of inertia force (within the range of acceleration and

deceleration used in the experiments) measured by the load

cell, which is only slightly larger than the accuracy of the

load cell. Based on the parameters used in the experiments,

we conclude that the inertia effect is less than 1% of the

typical range of forces; therefore, it is negligible.

The material of the grasped object is a viscoelastic soft

rubber ball with a radius of 35mm.

B. Procedures of Experiments

The procedures of various experiments conducted with

different loading rates are enumerated in the following.

1) The gripper is moved to barely touch the surface of

the viscoelastic object.

2) The upper fixture moves in vertical direction for load-

ing, unloading, and holding by following a prescribed

control sequence of displacements.

3) The gripper unloads and breaks contact.

Two different tests were conducted. In the first test, as

shown in Fig. 4(a), the fixture moves to compress the

viscoelastic object in an increment of 5mm with the dis-

placements of 5, 10, 15, 20, and 25mm. At the end of

each loading sequence and increment, the fixture was held

at that displacement for 10 seconds. This is shown in the

bottom plot of Fig. 4(a). In the other test, the fixture first

compressed the object to a displacement of 25mm. After

that, the displacements were reversed to go through the

descending order of 25, 20, 15, 10, and 5mm. The fixture

was also held at each displacement for 10 seconds at every

step and with the same loading/unloading rate, 500mm/min.

This is shown in the bottom plot of Fig. 4(b).

C. Experimental Results and Analysis

The experimental results of the two tests are presented

in Figs. 4(a) and 4(b). The normal forces at the contact

surface are measured and plotted in the top plots in Figs. 4(a)

and 4(b).

To obtain strains and strain rates from the experimental

results, we assume a linear relationship between the strain,

ε , and stress, σ , for the sake of convenience in analysis; that

is,

ε =
σ

E
=

f /A

E
(6)

where A is the area of contact at the exterior surface, f is

the measured force, and E is the Young’s modulus of the

material which has an average value of 2.8× 104 Pa. The

area of contact grows with the amount of depression, d, of

the fixture onto the surface of the object, and can be written

as follows

A = π a2 = π [(r)2 − (r−d)2] (7)

where r is the radius of the ball, a is the radius of the contact

area, and d is the displacement (or depression) in the vertical

direction, as shown in Fig. 5
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Fig. 4. Experimental results from a tensile test with a pair of flat parallel
fixture plates. (a) loading and relaxation; (b) loading followed by successive
unloading and hold. Bother Types I and II relaxation are present.

Finally, we can calculate the strains and strain rates as

functions of time

ε(t) =
f (t)

Eπ[r2 − (r−d(t))2]
(8)

ε̇(t) =
dε(t)

dt
(9)

The strains and strain rates can be calculated based on the

measured force and displacement, and are plotted as blue

curves in Fig. 6(a) and Fig. 6(b).

Next, we chose n = 5 in (2) because it is the lowest order

of polynomial which fits the experimental results the best.

The nonlinear latency model becomes

ε̇ = −ν(ε − εe)
5 (10)

The least-square (LS) curve fitting technique is applied using

Eq. (10) with the results plotted as red curves in Fig. 6(a)

and Fig. 6(b). The parameters are listed in Table I for loading

and Table II for unloading.

The fitting results indicate that the equilibrium strains, εe,

are consistent for the same displacement in both continuous

loading and continuous unloading experimental results. In

addition, we found that the parameter, ν , in the continuing

loading experiment in Table I shows consistent decrease with

the increase in corresponding equilibrium strain, εe. This

trend, however, is not repeatable in unloading (Table II).

r-dr

F

d/2

d/2

F

a

Fig. 5. A model of a nonlinear viscoelastic ball making contact with a
parallel-jaw gripper. The contact area is assumed to be circular. The plot to
the left of the grasped object is the plot of equivalent latency model.
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Fig. 6. Plots (a) and (b) are the analysis of strain rate versus strain of the
experimental results (a) and (b) in Fig. 4, respectively. The blue points are
the values calculated from the experimental results, using (6) and (7). The
red curves are the best fit using (10).

It may be due to the different mechanisms of loading

and unloading. For loading, the test machine gave a direct

displacement for compression. But for unloading, the gripper

moved backward and let material expand freely. We believe

this may be a reason for the inconsistent phenomenon of ν

between the two sets of parameters in Tables I and II.

IV. SIMULATION

Based on the model presented in (2), we use MATLAB

to simulate the force response with the same displacement

profile as that in the experiments, shown in Figs. 4(a)

and 4(b). As the fixture of the tensile machine moves the

distance of d, the movement is kinematically identical to

each contact surface moving with a distance of d/2, with

respect to the plane of symmetry in the middle of the ball,

as illustrated in Fig. 5. The procedures of simulation are

presented in the next section.
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TABLE I

FITTING RESULTS OF FIG. 6(A) (LOADING) ε̇ = −ν(ε − εe)
5

curve # 1 2 3 4 5

εe −0.1661 −0.2193 −0.2623 −0.3031 −0.3144

ν 4.1×104 2.6×104 2.0×104 1.4×104 1.2×103

TABLE II

FITTING RESULTS OF FIG. 6(B) (UNLOADING) ε̇ = −ν(ε − εe)
5

curve # 1 2 3 4 5

εe −0.3144 −0.3031 −0.2623 −0.2193 −0.1661

ν 1.4×103 1.4×106 1.4×105 7.0×104 2.8×104

A. Simulation Procedures

1) First, we divide the material into m segments axially,

as illustrated in Fig. 7.

2) The displacement of contact surface is updated with

the progress of compression. We assume the displace-

ment will eventually be evenly distributed when time

approaches infinity. As a result, the equilibrium strain,

εe at the i-th element equals the displacement of i-th

node divided by the original length from i-th node to

the symmetric center.

3) The model in (10) is applied to each of the segments

from the contact element from the exterior surface to

the plane of symmetry. The strain of each element

changes according to the corresponding strain rate

calculated by (10).

4) The force at the contact interface will simply be equal

to the product of the stress at the contact interface,

σ1 (the first element), and the contact area, A. That is,

F = σ1 ×A = (Eε1)×
{

π[r2 − (r−d1)
2]

}

(11)

B. Simulation Results

Fig. 8 shows the results of simulation based on the model

presented in (10), corresponding to the experimental results

in Fig. 4(a). The procedures of simulation are described in

the previous section. It can be seen from the results that the

trend of Type I relaxation in simulation is similar to that of

ith
εe=di/(n-i+1)l

0

1st
εe=d

1
/nl

0l
0

d2

d1

F

F

Fig. 7. This diagram shows the discrete model used in the simulation.
The object is divided into m segments (m = 8 in this figure). When an
external force, F , is applied, the stress/strain wave will propagate toward
the plane of symmetry of the grasped object, consistent with the latency
model illustrated in Figure 5. In order to apply the model in (10) to the
simulation, we estimate the equilibrium strain, ith

εe, of the i-th element by
assuming the strain between the i-th element and plane of symmetry is
uniformly distributed.

0 10 20 30 40 50 60
0

10

20

30

40

50

Time (sec)

F
o
rc

e
 (

N
)

0 10 20 30 40 50 60
0

10
20

Time (sec)

D
is

p
. 
(m

m
)

Fig. 8. The results of simulation corresponding to Fig. 4(a).

the experimental results. In addition, the amount of relaxation

in each step also matches quite well with the experimental

data in Fig. 4(a). This suggests that the proposed model

can capture the relaxation responses of such grasping task

adequately. We note that the unloading curve at the end

of Fig. 8 (at t ∼= 53sec) drops faster than the experimental

results, which is probably due to the different mechanisms in

loading and unloading as discussed in the end of the previous

section. Overall, the simulation employed here can capture

the relaxation responses of successive loading, and can model

the nonlinear latency response well. This simulation tool will

be useful in studying the robotic grasping or prehension that

involves soft viscoelastic contacts.

V. DISCUSSIONS

Based on the preceding presentation of the results of ex-

perimental study and simulation using the nonlinear latency

model, observation and results are presented in the following.

A. Amount of relaxation versus displacement

As experimental results in Fig. 4(a) and Fig. 4(b) show,

a larger amount of relaxation is always resulted when the

displacement of loading is larger. This is due to the higher

equilibrium strain, εe.

B. Results in Tables I and II

In Table I, it is observed that the magnitudes of the

equilibrium strain, |εe|, increases as the loading-holding

procedure repeats itself from steps 1 to 5. This causes a

larger amount of relaxation, as alluded to in Section V-A.

In addition, the values of the coefficient, ν , decreases as the

loading-holding process progresses from steps 1 to 5. It is

also noted that with the increase of the magnitude of the

equilibrium strain, |εe|, the coefficient, ν , decreases.

In Table II, it is observed that the magnitudes of the

equilibrium strain, |εe|, decreases as the unloading-holding

procedure repeats itself from steps 2 to 5, after the initial

loading to the maximum displacement of 25mm. The values

of the coefficient, ν , decreases when the unloading-holding

cycles start after step “2”. (Step 1 is the loading process.) The

values of the equilibrium strains at the various displacement

steps are the same as the corresponding ones in Tables I.
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VI. CONCLUSIONS

In this paper, a contact model for nonlinear viscoelastic

materials is presented with both simulation and experiments.

The model describes the relationship between the strains

and the strain rates of infinitesimal element within the

material. The proposed model postulates that the values of

strain will asymptotically reach an equilibrium strain. The

nonlinear latency model attempts to characterize the path

by which the strain varies from the initial value to the

equilibrium strain, with successive loading, unloading, and

holding—a situation which occurs often in robotic grasping

and manipulation involving soft contacts. The simulation tool

developed based on the latency model appears to match well

with the experimental results.

Future study will be focused on the physical meaning

of the exponent, n, of the nonlinear latency model and

its correlation to the material structure or property of soft

contacts.
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